
Building a Single-Box 100 Gbps Software Router
Sangjin Han†, Keon Jang†, KyoungSoo Park, and Sue Moon†

KAIST

Abstract—Commodity-hardware technology has advanced in
great leaps in terms of CPU, memory, and I/O bus speeds.
Benefiting from the hardware innovation, recent software routers
on commodity PC now report about 10 Gbps in packet routing. In
this paper we map out expected hurdles and projected speed-ups
to reach 100 Gbps in packet routing on a single commodity PC.
With careful measurements, we identify two notable bottlenecks
for our goal: CPU cycles and I/O bandwidth. For the former, we
propose reducing per-packet processing overhead with software-
level optimizations and buying extra computing power with
GPUs. To improve the I/O bandwidth, we suggest scaling the
performance of I/O hubs that limits packet routing speed to well
before 50 Gbps.

I. INTRODUCTION

Software routers are attractive platforms for flexible packet
processing. While the early routers were built on general-
purpose computers, they could not compete with carrier-
grade routers with tens of Gbps or higher speed and gave
way to specialized hardware in late 90’s. With the recent
advancements in PC hardware, such as multi-core CPUs, high-
bandwidth network cards, fast CPU-to-memory interconnects
and system buses, software routers are coming back with
competitive cost performance ratio. For example, RouteBricks,
a experimental software router platform, reports 8.33 Gbps, or
6.35 Gbps excluding Ethernet overheads, for IPv4 routing of
64B packets on a single PC [3]. In this paper we raise the
following question: How far can we push the performance of
a single-box software router with technologies from today and
in the predictable future? We map out expected hurdles and
project speed-ups to reach 100 Gbps on a single x86 machine.

II. OPPORTUNITIES AND CHALLENGES

Recent architectural improvements from Intel and AMD
have opened up new possibilities for software routers: (i)
Multi-core processors extend the processing power in a scal-
able manner; (ii) Memory controllers integrated in CPUs
provide large memory bandwidth even for many CPU cores;
(iii) PCI Express (PCIe) connects high-speed peripherals, such
as 10 Gbps network interface cards (NICs); and (iv) Multiple
CPU sockets connected to each other via point-to-point inter-
connects, such as Intel QuickPath Interconnect (QPI) or AMD
HyperTransport, expand the computing capacity of a single
machine. Effective utilization of these resources is the key to
building high-performance software routers.

Figure 1 shows one example of currently available hardware
configuration for software routers. It adopts Non-Uniform
Memory Access (NUMA) architecture, and has two NUMA

†Sangjin Han, Keon Jang, and Sue Moon were supported by NAP of Korea
Research Council of Fundamental Science & Technology.

RAMRAM CPU0

IOH0

RAM

NIC0,1

NIC2,3

IOH1

RAM

NIC6,7

NIC8,9

Node 0 Node 1

10G port QPIPCIe x8

RAM RAM

NIC4,5 NIC10,11

CPU1

Fig. 1. Block diagram of example system configuration

nodes. Each node has its own I/O hub (IOH), which bridges
peripherals to the CPU. QPI links interconnect CPU sock-
ets and IOHs. Dual-port 10GbE NICs are connected to the
IOH via PCIe x8 links. Six dual-port 10GbE NICs would
offer 120 Gbps of maximum aggregate throughput. With this
configuration, we identify and address several performance
bottlenecks for scalable software routers in Sections II-A
through II-C.

Note that we only consider systems based on Intel CPUs in
this work, but our discussion can easily expand to AMD-based
systems.

A. CPU Cycles
Modern NICs support multiple packet queues dedicated to

individual CPU cores, and thus packet processing scales well
with the number of CPU cores without CPU cache pollution.
However, small packets dominate the packet forwarding per-
formance in software routers. Regardless of the packet size,
a fixed number of CPU cycles is needed for the forwarding
table lookup to find the destination output port. At the line
rate of tens of Gbps, the per-packet processing cost poses a
serious challenge even with multi-core CPUs.

RouteBricks points at the CPU as the performance bottle-
neck in building a 10 Gbps router. They report that 1, 229 CPU
cycles are needed to forward a packet from one NIC port
to another NIC port. If we assume minimum-sized (or 64B
packets) arriving at 100 Gbps, which translates to 149 million
packets per second (Mpps), then we need 277 GHz of CPU
cycles. Even with the latest Intel X7560 CPUs (eight 2.26 GHz
cores in a chip) configured on four CPU sockets, we only get
72.3 GHz in total and still need four times more CPU cycles
to reach our goal. RouteBricks delivers 8.33 Gbps for IPv4
routing per machine, and their choice for over 10 Gbps speed is
to stack four servers with Valiant Load Balancing and achieve
15.77 Gbps aggregate speed. Even with multiple servers, the
aggregate speed of 100 Gbps seems a distant reality.



2

Can we improve per-packet processing overhead? We find
the solutions in packet processing software optimizations.
RouteBricks uses NIC-driven batching for performance im-
provement. We propose the following for further improve-
ments: (i) remove dynamic per-packet buffer allocation and
use static buffers instead; (ii) perform prefetch over descriptors
and packet data to mitigate compulsory cache misses; (iii)
minimize cache bouncing and eliminate false sharing [6]
between CPU cores. By incorporating these improvements, we
achieve about a factor of six reduction in per-packet processing
overhead and reduce the required number of CPU cycles to
under 200 CPU cycles per packet [4]. Then the total number of
CPU cycles required for the 100 Gbps forwarding speed comes
down to 30 GHz, which is achievable with today’s CPUs.

While packet forwarding is the core functionality of routers,
it is one of many tasks that a typical router performs. On top
of packet I/O, a router must handle IPv4 and IPv6 routing,
IPsec, and myriads of other tasks. Even with today’s fastest
CPUs only a very limited number of spare CPU cycles is left
for other tasks. In order to build a full-fledged software router
with the 100 Gbps speed, we should consider other sources of
computing power, such as Field-Programmable Gate Arrays
(FPGAs) [5] and Graphics Processing Units (GPUs) [1].

B. I/O Capacity

Packet I/O involves the complex interplay among CPUs,
NICs, and memory. Packets received from NICs go through
PCIe links, IOHs, QPI links, and finally memory buses. Then
CPUs process packets with memory access, and the reverse
process occurs for packet transmission. Here we examine
possible bottlenecks in the packet data path between NICs
and CPUs.

PCI Express links: Today’s 10GbE NICs have one or two
ports, using PCIe x8 as a host interface. PCIe 2.0 interface
operates at 2.5 GHz or 5.0 GHz per lane, which translates to
bidirectional 250MB/s or 500MB/s, respectively. Intel 82598-
based NICs, used in [3], operates at 2.5 GHz and has bidi-
rectional 20 Gbps bandwidth over eight lanes. However, the
effective bandwidth is not enough for dual 10 Gbps line-rate
links due to encoding and protocol overhead of PCIe and
bookkeeping operations for packets, such as packet descriptor
write-back. RouteBricks reports 12.3 Gbps for maximum
effective bandwidth for each NIC. Newer Intel NICs with
82599 chipsets operate at 5.0 GHz and thus eliminate this
bottleneck.

To build a 100 Gbps software router, we need at least five
PCIe 2.0 x8 slots. However, a single Intel 5520 or 7500 IOH
can only support up to four x8 slots. Moreover, we need
spare slots to use other devices, such as graphics cards or
management NICs. Thus we need two IOHs in the mainboard
as depicted in Figure 1. We use Super Micro Computer’s
X8DAH+-F that has four PCIe 2.0 x8 slots and two PCIe
2.0 x16 slots, and can have up to six 10GbE dual port NICs
in total.

RAMRAM CPU0

IOH0

RAM

NIC0,1

NIC2,3

IOH1

RAM

Node 0 Node 1

10G port

QPI

PCIe x8

RAM RAM

NIC4,5

RAMRAM CPU0

IOH0

RAM

NIC0,1

NIC2,3

IOH1

RAM

NIC6,7

NIC8,9

Node 0 Node 1

RAM RAM

RAM CPU0

IOH0

RAM

NIC0,1

NIC2,3

RAM

Configuration (i)

Configuration (ii)

Configuration (iii)

CPU1

CPU1

Fig. 2. System configurations for experiments

QuickPath Interconnect: In our system, QPI links play three
roles; (i) a CPU socket-to-socket link for remote memory
access; (ii) an IOH-to-IOH link for proxying I/O traffic
heading to the other NUMA node; (iii) CPU-to-IOH links for
interconnection between CPUs and peripherals. Each QPI link
has bidirectional bandwidth of 12.8 GB/s or 102.4 Gbps. Let
us consider the worst case scenario that every packet received
through NICs in one IOH is forwarded to NICs connected
to the other IOH. The required bandwidth in the IOH-to-
IOH and CPU-to-IOH links should be at least 50 Gbps for
each direction, which is only half of available bandwidth. The
bandwidth of CPU socket-to-socket QPI link is not a problem
as long as packets are processed in the same CPU that receives
packets and the NICs move the packets into the memory that
belongs to the same socket as the NICs do.

I/O Capacity Measurement: We measure I/O capacity to see
whether the system achieves the theoretical limits. At the time
of this experiment we have access to only eight NICs, half of
which are used as packet generators. We limit our experiment
to four dual-port NICs. We use two systems for evaluation.
One is a server machine with dual CPU sockets and dual IOHs,
and the other is a desktop machine with one CPU socket and
a single IOH. The desktop machine has three PCIe slots: two
are occupied by NICs and one by graphics card.

To gauge I/O capacity and identify its bottleneck, we
consider three configurations in Figure 2: (i) three NICs are
connected to one IOH in the server system and one NUMA
node is used for packet processing, (ii) two NICs are connected
to each IOH in the server system (four NICs in total), and



3

0

10

20

30

40

50

60

70

80

90

100

64 128 256 512 1024 1514

T
h

ro
u

g
h

p
u

t 
(G

b
p

s)

Packet size (bytes)

TX only RX only Forwarding

Fig. 3. Packet I/O throughput from Configuration (i) in Figure 2

0

10

20

30

40

50

60

70

80

90

100

64 128 256 512 1024 1514

T
h

ro
u

g
h

p
u

t 
(G

b
p

s)

Packet size (bytes)

TX only RX only Forwarding Forwarding (node-crossing)

Fig. 4. Packet I/O throughput from Configuration (ii) in Figure 2

(iii) two NICs in the desktop system. For each configuration,
we measure packet reception (RX), transmission (TX), and
forwarding (RX + TX) capacity separately. For all experiments
we generate traffic enough to saturate the capacity of all NICs.

Figure 3 depicts the results of experiments from configu-
ration (i). TX throughput is capped at around 50 Gbps with
total 60 Gbps NICs. RX throughput is around 30 Gbps, far
less than transmission throughput. Forwarding performance is
about 20 Gbps.

We plot the throughputs from Configuration (ii) of dual
IOHs with four NICs in Figure 4. TX throughput is 80
Gbps, reaching the theoretical maximum. RX and forwarding
throughputs are 60 and 40 Gbps, exactly double the single IOH
case. The results imply that the actual performance of the dual
socket server system cannot reach 100 Gbps of forwarding
or receiving performance. In all of our experiments, CPUs
are not the bottleneck, and putting more cores or CPUs will
not help. The slight degradation of throughput with larger
packet sizes is because batching in large packets leads to
longer processing time per batch and results in delayed packet
reading from NICs. We can reduce the batch size for larger
packets to eliminate the performance gap between packet sizes.
In Figure 4, we also show the results when packets cross
the NUMA nodes, but we see little performance degradation
compared to non-crossing cases. It implies that the QPI link
is not the limiting factor at 40 Gbps but the question remains
as to where the bottleneck is.

To find the cause of throughput difference between RX and
TX side, we conduct the same experiment with the desktop
system. Figure 5 shows the results. Interestingly RX and
TX reach the full throughput of 40 Gbps with two NICs.
This leads us to the conclusion that the RX performance
degradation in the server system is due to dual IOHs rather

0

10

20

30

40

50

60

70

80

90

100

64 128 256 512 1024 1514

T
h

ro
u

g
h

p
u

t 
(G

b
p

s)

Packet size (bytes)

TX only RX only Forwarding

Fig. 5. Packet I/O throughput from Configuration(iii) in Figure 2

than dual CPU sockets. By Googling, we find that the receive
I/O throughput degradation with dual IOHs is also known to
the GPGPU programming community and that single IOH
with dual sockets did not have the problem [2]. Forwarding
performance is around 30 Gbps, and is lower than RX and
TX throughput. Since QPI and PCIe bus are full-duplex links,
I/O should not be the problem. We find that the forwarding
performance in the desktop scenario is limited by the memory
bottleneck. We explain further details in the following section.

C. Memory Bandwidth

Forwarding a packet involves several memory access. To
forward 100 Gbps traffic, the minimum memory bandwidth
for packet data is 400 Gbps (100 Gbps for transfer between
NICs and memory, another 100 Gbps for transfer between
memory and CPUs, and doubled for each direction of RX and
TX). Bookkeeping operations with packet descriptors add 16
bytes memory read/write access for each packet, giving more
pressure on memory buses depending on packet sizes.

In Figure 5, we see that the forwarding throughput is lower
than that of RX and TX due to insufficient memory bandwidth.
We find that (i) CPU usage for forwarding is 100% regardless
of packet sizes and load/store memory stall wastes most
CPU cycles and (ii) with memory overclocking to have more
memory bandwidth, we improve the forwarding performance
close to 40 Gbps.

For both our server and desktop configurations, we use
triple-channeled DDR3 1, 333MHz, giving theoretical peak
bandwidth of 32.0 GB/s for each CPU and 17.9 GB/s empir-
ical bandwidth according to our experiments. Unfortunately,
assuming two nodes in the system, we need effective memory
bandwidth of 25 GB/s for each node to forward 100 Gbps
traffic.

One way to boost the memory bandwidth in NUMA systems
is to have more nodes and to distribute the load to multiple
physical memory in different nodes. In this case, NUMA-
aware data placement becomes particularly important. This
is because remote memory access is expensive in NUMA
systems in terms of latency and may overload interconnects
between nodes. High-performance software routers on NUMA
systems should consider careful node partitioning so that
communication between node be minimized.



4

III. DISCUSSION AND FUTURE WORK

In this paper we have reviewed the feasibility of a 100 Gbps
router with today’s technology. We find two major bottlenecks
in the current PC architecture: CPU cycles and I/O bandwidth.
For the former, we propose reducing per-packet processing
overhead with optimization techniques and amplifying the
computing cycles with FPGAs or GPUs. For the latter, we
believe the improvement in IOH chipsets and multi-IOH
configuration, and more memory bandwidth with four or more
CPU sockets could alleviate the bottleneck. A 100 Gbps
software router will open up great opportunities for researchers
to experiment with new ideas and we believe it will be a reality
in the near future.

REFERENCES

[1] “General Purpose computation on Graphics Processing Units,” http:
//www.gpgpu.org.

[2] “Nvidia forum,” http://forums.nvidia.com/index.php?showtopic=104243.
[3] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone,

A. Knies, M. Manesh, and S. Ratnasamy, “RouteBricks: exploiting
parallelism to scale software routers,” in Proceedings of ACM Symposium
on Operating Systems Principles (SOSP), 2009.

[4] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: a GPU-
Accelerated Software Router,” submitted for publication.

[5] J. Naous, G. Gibb, S. Bolouki, and N. McKeown, “NetFPGA: reusable
router architecture for experimental research,” in PRESTO ’08: Pro-
ceedings of the ACM workshop on Programmable routers for extensible
services of tomorrow. New York, NY, USA: ACM, 2008, pp. 1–7.

[6] J. Torrellas, H. S. Lam, and J. L. Hennessy, “False Sharing and Spatial
Locality in Multiprocessor Caches,” IEEE Transactions on Computers,
vol. 43, no. 6, pp. 651–663, 1994.


