FORTH - A Language for Interactive Conputing

Charl es H. Mbore

Geoffrey C. Leach

Mohasco | ndustries, Inc.
57 Lyon Street
Anst erdam New York 12010

Abst r act

FORTH is a programthat interfaces keyboards with conputer. It provides
all the software necessary to time-share users and manage core and di sk
menmory. Its key is a dictionary that divides menory into entries that
identify character strings, code and data. The resulting |anguage is
sufficiently powerful to describe FORTH itself, and sufficiently flexible
to make inquiries with. It may be readily extended to handl e as many,
and as compl ex, applications as hardware permts. On the B-5500 FORTH
uses 2K of core and can express a conplex application in each of the 30

1K regions of core that remain.

FORTH- 0

What is FORTH?

FORTH is a conputer program It provides a software interface between

term nal and conputer. It provides a conplete Software interface with a
| arge conputer. Including a |anguage in which the user can describe his

application. And in which FORTH is witten.

The software provided with | arge connmputers supplies a heirarchy of I|an-
guages; The assenbler defines the | anguage for describing the conpiler
and supervisor; the supervisor the | anguage for job control; the conpiler
the | anguage for application prograns; the application programthe |an-
guage for its input. The user may not know, or know of, all these |an-
guages; but they are there. They stand between him and the conputer

i mposing their restrictions on what he can do and what it will cost.

And cost it does, for this vast heirarchy of |anguages reguires a huge
i nvestment of man and machine tine to produce, and an equally large effort
to maintain. The cost of docunenting these prograns and of reading the
docunentation is enornmous. And after all this effort the prograns are stil

full of bugs, awkward to use and satisfying to no one.

We maintain that this multi-level nightmare is precisely that. W place
the blame upon the lack of a suitable |anguage. FORTH provides a suitable
| anguage, and by using it an order of nagnitude inprovenent in the cost,

effort and efficiency of providing a term nal interface.

FORTH- 1

We introduce a | anguage with which a man at a keyboard can talk to a
conput er - man-machi ne comruni cati on. The reverse probl em does not ari se.
The conputer handl es nmachi ne-man conmuni cation in rote fashion-typing

specified replies.

We insert FORTH between man and machi ne and define 2 dictionaraies:
man- FORTH and FORTH-nmachine. The man- FORTH dictionary is a collection
of documentation - of which this is a part - that teaches the man how

to express his thoughts in FORTH

The FORTH-machine dictionary is the subject of this paper, for it is the

key to the dramatic sucess of FORTH

FORTH- 2

The Dictionary

A dictionary is an association of words with meanings. FORTH s dictionary
is alist of words together with their definitions (Fig. 1). A npst the
entire programis contained in the dictionary, excepting only certain con-
trol information.

FORTH is an interpretative program as are all |anguage processors. It
uses a scanner to read character string, identify individual words and
find themin the dictionary. The FORTH dictionary differs froma con-
ventional synbol table. Each entry specifies code that is to be executed
when that word is encountered. Paraneters used by this code are al so part
of the entry.

Certain words construct dictionary entries for the words they preceed -
they declare their successors. Each such word indentifies the code to be
executed when its entry is encountered. For exanple, a : declares the

next word to be a definition

It is helpful to distinguish 3 classes of words: nouns, verbs and defini-
tions. Illustrating each of these may clarify the structure of the dic-
tionary (Fig. 2).
A noun is a word that names storage. The code it specifies causes
ei ther an address or a value to be placed on the stack. (This
stack is a last-in/first-out store used to hold argunments - keep
themin mnd.)
3 VECTOR X
Wl reserve 3 consecutive cells for X. Wen X is seen by the
scan-ner the address of the first cell is placed on the stack

FORTH- 3

The phrase
7 CONSTANT N
will assign 1 cell to hold the constant 7. When Nis seen 7 will

be placed on the stack

A . declares a verb and points to the parameter part as the code to
be executed. Subsequent words will generate instructions and pl ace

themin this region.

A : declares a definition and stores the follow ng character string

(until the first ;) in the parameter part. The code specified

directs the scanner to interpret this string. The words it finds

there may in turn be nouns, verbs, or definitions. Definitions may be ref-

erenced within a definition (nested) but may not be declared there.

The process of nmmking a dictionary entry and filling the paraneter part is
core allocation. A noun fills core with data, a verb with code and a defini -
tion with a character string. Clearly different entries will require differ-
ent amounts of core, which conplicates the dictinoary search. However the

variable length of entries poses no real problem

Just as nmeking dictionary entries uses core, so deleting themrel eases core
for re-use. To avoid awkward gaps in the dictionary - and because it seens
the natural thing to do - only the latest entries ny be deleted. The dic-
tionary thus provides the user with direct and effective control of the core
assigned him

FORTH- 4

The Program

The dictionary organi zes core and thus forns a najor conponent of FORTH
However nost words do not nodify the dictionary - they nerely reside there.
Fig. 3 is a functional diagramof FORTH. The nmjor bl ocks besides the
dictionary are the scanner and the queue. Notice that although FORTH

i npl enents a supervisor, conpiler and | oader these aspects cannot be

| ocal i zed.

The Scanner:

The heart of FORTH is the scanner. A sinple |oop that reads the next word,

finds it in the dictionary and executes its associ ated code.

What does the scanner recoghize as a word? A word starts with any charac-ter
and ends at the first special character. Thus

X@ +
woul d be broken into

X @ +
In practice, npost words are separated by spaces - but this is not always
convenient. Words have arbitrary length. The | eading characters are stored

in the dictionary and the rest discarded.

The convention the words may start with special characters increases the
set of words with menonic val ue. For exanple
+ +1 +FI X +VECTOR
may represent different addition operators. And
IF .IF #F
different fornms of a conditional operator

FORTH- 5

In the first case the primary menonic value is carried by the special

character; in the second by the al phabetic word.

Period (.) is considered al phabetic so that it may serve as a break
character and decinmal point. Thus
3. 14 COSM C. RAY

are both words.

The scanner depends upon a character pointer to tell it where to read
next. A word may change this pointer and thus alter the sequence of

i nput words. This is the way definitions and backward branches are im
pl enented. The user is free to establish other conventions if he wi shes.
Mani pul ated the character pointer pernmits a renmarkably sinple and inde-

pendent scanner.

For exanple, input is initially expected fromthe keyboard. The first word
woul d probably cause input to be read from di sk - expanding the dictinary.
Ot her words might conme fromdefinitions stored in core. The scanner itself
i s independent of the source of its input, and freely internmingles all 3

sources (Fig. 4).

FORTH- 6

Di cti onary Search

Finding a word in the dictionary involves nore than the structure of the
di ctionary. The search proceeds fromlater to earlier entries. This

is a convenient way to search since a word may be redefined and the | atest

definition found.

However the search does not always begin with the latest entry. To sone
extent this is under the user’s control, but the main variation involves
definitions. A definition is an entry that contains other words that nust

be interpreted. W specify that the search for these words begin at the
defintion (Fig 5). This has 2 desirable effets: Wrds nust be defined

before they are used - a val uable diagnostic aid. And when a word is rede-
fined, though its old nmeaning is not directly accessible, old definitions can
still reference the old nmeaning. The only restriction on redefinition is

exactly that - that the user need no longer directly access the old meaning.

The net effect of this convention is that words may be defined, redefined

and referenced in a conpletely natural fashion. The user rarely need trouble
about the search nmechanism it follows the context so closely as to seem

to be aware of his intention.

Of course the redefinition ability nmeans that there are no reserved words.

In fact there are no reserved concepts. The user is conpletely free to
redefi ne any aspect of FORTH he wishes. Qur systemdefinitions are avail -
able to save himtrouble, and have been selected for maximumutility. But

we do not force our choices upon him

FORTH- 7

In addition to word, address and paraneter parts, each entry has a |ink
and the dictionary becones a linked list. Since the dictionary is |arge,
several hundred entries, search tinme is inportant. So we scranble each
word to deternmine which of 32 chains it will be found in and then follow
the links of this chain through nenmory (Fig. 6). Thus with 300 entries,
only 5 conparisons should produce a match. This conplicates the probl ens
of deleting entries and starting the search at definitions, but the ad-

vant age i s overwhel ni ng.

There is a large class of words that are defined but not in the dictionary -
nunbers. Nunbers may be placed in the dictionary, and often are. But if a
nunber is not found, it is assuned to define itself and its value is placed

on the stack.

If a word cannot be found in the dictionary and is not a nunber, it is un-
defined and in error. The scanner will type the word and return to the key-
board for input - the current input string being abandoned. The user nust

correct the error, restore the dictionary and restart his program

FORTH- 8

The Queue:

The purpose of the queue is to share the conputer anong users. Wen

a user enters the systemhe is allotted a region in nmenory for his dictionary
and for the buffers and indicators required by his presence. This includes
notifying the queue of his arrival and of his priority and linking himinto
the existing dictionary at the appropriate place, which may be the basis sys-

tem definitions or sonme resident application (Fig. 7).

When a user requests a systemresource (including I/0O he is enqueued unti

it becones available. Thus, the queue is used to resolve conflicts anpng

users. Tinmesharing the conputer is inplicit in this treatnment of the user.

Once a user is established - and this requires only that core be avail able -

he becones a natural part of the system indistinguishable from preexisting
parts. User swapping nay take place every tinme there is an interrupt or the
current user enqueues and requires only that a very small anmount of system

i nformati on be changed.

No attenpt is nmade to overlap or otherwi se optimze I/O A user’s requests are
satisfied as expedient with due regard for priority. Although this may

be inefficient fromthe standpoint of his elapsed tine, there are other uses and
to expedite one is to penalize others. Every effort is nade to nmininize the

i npact of any user upon the system For exanple, sorting algorithimare usually
designed to mnim ze elapsed time. FORTH s sorting algorithimmni-n zes core
and disk, and is free to run as |long as necessary. The problem of cpu-bound
verbs is solved by handling the tinmer interrupt in the same way as an I/ 0O
finish.

FORTH-9

Sheet s:
The definitions we have discussed to far have referenced character strings in
core. Another kind of definition is stored on disk. The phrase
1017 SHEET FIT
declares FIT as a sheet with disk address 1017. When FIT is encountered, the

scanner is directed to disk for further input.

FIT identifies a region of disk that contains source | anguage. We call it a
sheet because typically such definitions consist of about 50 lines of 40

characters, which fit nicely on a sheet of paper.

An application typically uses several sheets to describe the dictionary entries
it requires. |In effect, referencing a sheet noves its entries fromdisk to

core, conpiling themon the way.

A sheet may reference other sheets and thus direct the retrieval of inforna-
tion. For exanple, to generate FORTH we access ROOT, a sheet that acts like
an index: it declares a number of other sheets. One of these sheets is
SYSGEN, which references other sheets in a particular order and thereby

assenbl es the system dictionary.

Sheets nmay be edited and definitions added or changed using definitions on

the seet EDIT. Each user is assigned disk space and provided tools to main-

tain it.

FORTH- 10

The Language

We have been speaking of FORTH as a programthat inplenents a | anguage
and we have described the dictionary that explains the | anguage to the
computer. But we have not described the | anguage beyond nentioning the

basi ¢ ki nds of words: nouns, verbs, and definitions.

There are two reasons for this. FORTH, to an honesty significant extent,
only supplies the tools whereby a user can construct a |anguage that | ooks
as he wants it to. Second, there are 200 words in the dictionary, all of

which are intended to be used - and therefore nust be expl ai ned.

Mor eover, although we claimsignificant conpactness of FORTH prograns, such
conpactness is not apparent in small exanples. It arises through the econonies
of tailoring definitions to a specific application. It is the case that our
small prograns are smaller than your small program but our |arge prograns are

much snal |l er than your | arge prograns.

Neverthel ess, we can try to give you an inpression of FORTH s | anguage by sone

bri ef discussion and a sinple exanple.

FORTH- 11

Verbs vs. Definitions:
It is useful to distinguish 2 classes of words: those that cause instruc-
tions to be generated and those that do not. The fornmer are used only to

describe the code for verbs, the latter are used everywhere.

An instruction generating word is *DUP. It says: CGenerate the instructions
that will duplicate the top of the stack when executed. It is used by verbs
that wish to manipul ate the argunments they find on the stack
The word DUP is interpretive. It says: Duplicate the top of the stack
It is used when the stack is to be changed at once, it contrast to *DUP
There is clearly a simlarity between the two, in fact DUP is defined in terns
of *DUP:
DUP * DUP RETURN

is a FORTH statenent that effects a dictionary entry. The . declares the next
word (DUP) to be a verb. The words following it generate the code for the verb
*DUP generates its instructions, RETURN generates a branch to the scanner.
In general, instruction generating words are prefixed by one of severa
speci al characters, for ready identification. For exanple, *IF........ * THEN
represent a pair of related words that generate a condition forward branch
*| F generates instructions to test the top of the stack for true (1) or false (0)
and branch on the false condition. *THEN fills in the branch address. Thus,

*I'F *DUP *THEN
is a FORTH statenment that will generate code to test the top of the stack for true

or false and duplicate on true.

FORTH- 12

Anal ogous to the above is the statenent:

IF DUP THEN
which will test and duplicate the top of the stack on true. This statenent
actually tests the stack when encountered, in contrast to the previous ex-

anpl e, which generates instruction to do the sane thing.

Commonly used words fall into 3 categories:
Operators (argunents on the stack)
+ - x / MOD OR GREATER
Condi tional statenents:
| F ELSE THEN

Iterative statenments

DO CONTI NUE
These words are all verbs. 1In fact, npbst system words are verbs.
There is a certain equival ence between defintions and verbs. |In fact, nost

operations could be witten as either. Definitions are easier to code, but
their execution, being interpretive, is slow. Verbs are harder

to code, bu are nost versatile as they may use the full hardware instruction
set and are 100 tines faster in execution. It seenms that a good bal ance be-
tween ease of coding and execution tine is achieved by coding the inner |oop

as a verb and the remni nder as a definition

FORTH- 13

An_Exanpl e

We illustrate the | anguage of FORTH by summ ng the squares of integers be-

tween 2 linmts. The user types

17 63 SUMSQ
To request 62 2
a I
1 =17
Fig. 8 shows the source |anguage required. We will attenpt a running

conment ary:

Since the nunbers 17 and 63 are not in the dictionary, the scanner places them
on the stack. It then finds SUMSQ in the dictionary and executes the

associ ated code. The colon preceeding SUMSQ i ndicates that it is a defini-
tion, so the scanner is directed to the character string following it. The

next word read is thus SHIFT.

SHI FT mist also be interpreted. At this point the stack contains 17 63. It wll
pl ace a zero before the nunbers on the stack (interchanging themin the process).
-1 @ are 2 words that forma phrase. -1 is a nunber that is placed on the
stack. @ uses it as an address relative to the top of the stack and fetches
the first nunber - 17. 0 is a nunber and is placed on the stack. -3 =T is

anot her phrase that will store this 0 3 places deep in the stack - where the 17

was. At this point the stack contains 0 63 17.

The ; marking the end of SHI FT directs the scanner back to SUMSQ where the next
word is DO. DO marks the beginning of a | oop.

FORTH- 14

St at us

FORTH was devel oped in the fall of 1968 on an IBM 1130. W used it
primarily to generate pictures on the 2250 display scope, a task it
handl es with ease. W al so devel oped a report generator that would
sel ect, sort and print records fromsequential files with an ease and

versitility beyond the range of a conventional approach

In February 1969, we generated FORTH fo the Burroughs B-5500. At the
time of witing, we are devel opi ng B-5500 applications, one of which

will be the 1130 report generator

FORTH encour ages conpact progranms. Definitions nake the programers job so
much easier that he is strongly notivated to isolate the significant
features of his problemand to factor out those constructs that occur
repeatedly. Proof of the effectiveness of this technique is the compactness

of FORTH itself.

FORTH is a small program conposed nostly of dictionary. FORTH is witten

in FORTH and is its nost conplex application. FORTH requires 16 sheets to
descri be FORTH. FORTH requires 20 seconds to generate FORTH. FORTH uses

4K 16 bit words on the IBM 1130 and 2K 48 bit words on the B-5500. W

estimte 8K bytes on any of the System 360 nodels. These figures are for

a conpl ete software package capabl e of supporting an independent application for

every 4-8K bytes (depending on word size and hardware) of core avail abl e.

FORTH- 16

Both core and source program size are orders of magnitude | ess than the
conventional systens they replace. This is a dramatic refutation of the
conventional approach to software, and we presune to offer FORTH as a stan-
dard agai nst which to neasure system software

Any application within the capacity of the hardware can be described in
FORTH: easily, conpactly and in a manner as self docunmenting as the program
mer wi shes. There are certain restrictions on how FORTH nay be used: It
requi res keyboard comruni cation. Jobs may not be batched in background,
however they require only as nuch attention after starting as the programer
has designed into the application. FORTH has no automatic error-handling
facilities. These may be provided the the user if he w shes, but otherw se
FORTH nerely reports an error to the user and awaits instructions. The user
must assune responsibility for his source | anguage and the integrity of his
data. He nust maintain his dictionary in the appropriate fashion. 1In brief,
FORTH words with the user to solve his problens: it nmakes no attenpt to

solve themfor him

For exanpl e, FORTH can process a payroll. It requires a responsible person
fromthe payroll departnent to edit the personnel file, see that the checks
are in his rempte printer and respond to errors as they are detected by FORTH.
If you prefer to batch your change cards, nerge theminto a master tape and
print the checks off line, stick with COBOL.

FORTH is a conpl ete software package and a cl osed software package. FORTH
prograns nmust be witten in FORTH There are no provisions for conpiling

or executing progranms written in other |anguages. To provide such facilities
woul d be to force upon FORTH the very problens it is designed to avoid.

FORTH- 17

I n_Sunmmary

FORTH is a programthat interfaces keyboards with conputer. It is a snmal
program though not intended for small conputers. FORTH requires about
4K of core and each application (keyboard) requires an additional 1K It
al so requires perhaps 100K characters of disk storage for source |anguage.

Modest enough requirenents, but beyond the scope of desk-top conputers.

FORTH i npl enents a | anguage that gives the user the conplete access to hardware
capabilities, and conplete freedomto design a conpact POL. Interestingly
enough, FORTH applications do not use subscripts, counters and such house-
keepi ng variables. They require very little data storage - usually in the
formof arrays. They are conposed nostly of definitions - seemingly endl ess
nests of definitions - which are sinple to wite and sinple to use. FORTH
applications nmake efficient use of conputer resources, and share these readily

with other applications. |In a word, FORTH is THE conputer | anguage.

FORTH- 18

Word Addr ess Par aneters
Word Addr ess Par aneters
Word Addr ess Par aneters
Word Addr ess Par aneters
Word Addr ess Par aneters
Word Addr ess Par aneters
Word Addr ess Par aneters

Fig. 1 - The Dictionary:

A word may be 4 to 8 characters |ong, depending on inplenentation;

Its address identifies code to be executed - distinguishes kinds of

wor ds;

Its paraneters may be absent, nunmbers, code or characters - they

di stingui sh words of the sanme kind.

FORTH- 19

Entry Wor d Addr ess Par anet er

Noun Wor d ‘ Dat a
L—> Pl ace address or value of data
on stack
Ver b Wor d \ Code
Definition Wor d ‘ Character String
{5} Direct scanner to interpret
character string
Figure 2

Di ctionary entries are distinguished by the code executed when they are seen

and the paraneters used by that code.

FORTH- 20

Keyboard

=y

Di sk

Figure 3.

Conmponent s of FORTH.

Queue

Scanner

Sear ch

Ent er

Di ctionary

FORTH- 21

Keyboard

=

Di sk

(D o

vV

Di ctionary

—

Figure 4

The scanner accepts input indiscrimnantly from keyboard,

di sk and dictionary.

FORTH- 22

Type A Type B

Last Entry

N
™N

A . B
/ 4 Find B
Keyboard Limt
Undefi ned
D. .
B C.. D
/ Find C Find D
C.
First Entry

Undef i ned

Fig. 5 Dictionary search depends upon the order in which words are decl ared,
and the context in which they are sought:
Words read fromthe keyboard are sought fromthe last entry -

subject to a lower limt.

Words read fromdefinition are sought before the definition

The arrows show the portion of the dictionary searched for the defini-

tion indicated in the dictionary.

FORTH- 23

Fig 6 Dictionary showing 3 search chains

Dashes show physica

Sear ch Proceeds:

1-

2-

order;

Scranmbl e word to select chain #1,

l'i nes show search order.

#2, or #3.

Find last entry in chain fromarray of chain heads.

3- Follow links conmparing word with entry.

Li nk Wor d Addr ess Par anerter Entry
1 2 # 3
Start of chain
1
——
e
™
™~
I
p

FORTH- 24

Last
entry

L

Keyboar ds

=

User
Definitions

User
Definitions

L

\

/

Appli cation
Definitions

Figure 7

User
Definitions

System
Definitions

User dictionaries may be |linked together and with the system

dictionary.

FORTH- 25

F * DUP * DUP x1 RETURN

SHI FT -1 @ 0 -3 =T

SUMSQ SHIFT DO

F -3 @ + -3 =T

1+ CONTI NUE BD;

Fig. 8 FORTH source |anguage to evaluate and type a sum of squares with

limts on the stack.

FORTH- 26

