

1970

FORTH - A Language for Interactive Computing

Charles H.Moore

Geoffrey C. Leach

 Mohasco Industries, Inc.
 57 Lyon Street
 Amsterdam, New York 12010

Abstract

FORTH is a program that interfaces keyboards with computer. It provides

all the software necessary to time-share users and manage core and disk

memory. Its key is a dictionary that divides memory into entries that

identify character strings, code and data. The resulting language is

sufficiently powerful to describe FORTH itself, and sufficiently flexible

to make inquiries with. It may be readily extended to handle as many,

and as complex, applications as hardware permits. On the B-5500 FORTH

uses 2K of core and can express a complex application in each of the 30

1K regions of core that remain.

 FORTH-0

What is FORTH?

FORTH is a computer program. It provides a software interface between

terminal and computer. It provides a complete Software interface with a

large computer. Including a language in which the user can describe his

application. And in which FORTH is written.

The software provided with large conmputers supplies a heirarchy of lan-

guages; The assembler defines the language for describing the compiler

and supervisor; the supervisor the language for job control; the compiler

the language for application programs; the application program the lan-

guage for its input. The user may not know, or know of, all these lan-

guages; but they are there. They stand between him and the computer,

imposing their restrictions on what he can do and what it will cost.

And cost it does, for this vast heirarchy of languages reguires a huge

investment of man and machine time to produce, and an equally large effort

to maintain. The cost of documenting these programs and of reading the

documentation is enormous. And after all this effort the programs are still

full of bugs, awkward to use and satisfying to no one.

We maintain that this multi-level nightmare is precisely that. We place

the blame upon the lack of a suitable language. FORTH provides a suitable

language, and by using it an order of magnitude improvement in the cost,

effort and efficiency of providing a terminal interface.

 FORTH-1

We introduce a language with which a man at a keyboard can talk to a

computer - man-machine communication. The reverse problem does not arise.

The computer handles machine-man communication in rote fashion-typing

specified replies.

We insert FORTH between man and machine and define 2 dictionaraies:

man-FORTH and FORTH-machine. The man-FORTH dictionary is a collection

of documentation - of which this is a part - that teaches the man how

to express his thoughts in FORTH.

The FORTH-machine dictionary is the subject of this paper, for it is the

key to the dramatic sucess of FORTH.

 FORTH-2

The Dictionary

A dictionary is an association of words with meanings. FORTH’s dictionary

is a list of words together with their definitions (Fig. 1). Almost the

entire program is contained in the dictionary, excepting only certain con-

trol information.

FORTH is an interpretative program, as are all language processors. It

uses a scanner to read character string, identify individual words and

find them in the dictionary. The FORTH dictionary differs from a con-

ventional symbol table. Each entry specifies code that is to be executed

when that word is encountered. Parameters used by this code are also part

of the entry.

Certain words construct dictionary entries for the words they preceed -

they declare their successors. Each such word indentifies the code to be

executed when its entry is encountered. For example, a : declares the

next word to be a definition.

It is helpful to distinguish 3 classes of words: nouns, verbs and defini-

tions. Illustrating each of these may clarify the structure of the dic-

tionary (Fig. 2).

 A noun is a word that names storage. The code it specifies causes

either an address or a value to be placed on the stack. (This

stack is a last-in/first-out store used to hold arguments - keep

them in mind.)

 3 VECTOR X

 Will reserve 3 consecutive cells for X. When X is seen by the

scan-ner the address of the first cell is placed on the stack.

 FORTH-3

The phrase

 7 CONSTANT N

 will assign 1 cell to hold the constant 7. When N is seen 7 will

be placed on the stack.

 A . declares a verb and points to the parameter part as the code to

be executed. Subsequent words will generate instructions and place

them in this region.

 A : declares a definition and stores the following character string

(until the first ;) in the parameter part. The code specified

directs the scanner to interpret this string. The words it finds

 there may in turn be nouns, verbs, or definitions. Definitions may be ref-

erenced within a definition (nested) but may not be declared there.

The process of making a dictionary entry and filling the parameter part is

core allocation. A noun fills core with data, a verb with code and a defini-

tion with a character string. Clearly different entries will require differ-

ent amounts of core, which complicates the dictinoary search. However the

variable length of entries poses no real problem.

Just as making dictionary entries uses core, so deleting them releases core

for re-use. To avoid awkward gaps in the dictionary - and because it seems

the natural thing to do - only the latest entries my be deleted. The dic-

tionary thus provides the user with direct and effective control of the core

assigned him.

 FORTH-4

The Program

The dictionary organizes core and thus forms a major component of FORTH.

However most words do not modify the dictionary - they merely reside there.

Fig. 3 is a functional diagram of FORTH. The major blocks besides the

dictionary are the scanner and the queue. Notice that although FORTH

implements a supervisor, compiler and loader these aspects cannot be

localized.

The Scanner:

The heart of FORTH is the scanner. A simple loop that reads the next word,

finds it in the dictionary and executes its associated code.

What does the scanner recognize as a word? A word starts with any charac-ter

and ends at the first special character. Thus

 X@J+

would be broken into

 X @J +

In practice, most words are separated by spaces - but this is not always

convenient. Words have arbitrary length. The leading characters are stored

in the dictionary and the rest discarded.

The convention the words may start with special characters increases the

set of words with mnemonic value. For example

 + +1 +FIX +VECTOR

may represent different addition operators. And

 IF .IF #IF

different forms of a conditional operator

 FORTH-5

In the first case the primary mnemonic value is carried by the special

character; in the second by the alphabetic word.

Period (.) is considered alphabetic so that it may serve as a break

character and decimal point. Thus

 3.14 COSMIC.RAY

are both words.

The scanner depends upon a character pointer to tell it where to read

next. A word may change this pointer and thus alter the sequence of

input words. This is the way definitions and backward branches are im-

plemented. The user is free to establish other conventions if he wishes.

Manipulated the character pointer permits a remarkably simple and inde-

pendent scanner.

For example, imput is initially expected from the keyboard. The first word

would probably cause input to be read from disk - expanding the dictinary.

Other words might come from definitions stored in core. The scanner itself

is independent of the source of its input, and freely intermingles all 3

sources (Fig. 4).

 FORTH-6

Dictionary Search:

Finding a word in the dictionary involves more than the structure of the

dictionary. The search proceeds from later to earlier entries. This

is a convenient way to search since a word may be redefined and the latest

definition found.

However the search does not always begin with the latest entry. To some

extent this is under the user’s control, but the main variation involves

definitions. A definition is an entry that contains other words that must

be interpreted. We specify that the search for these words begin at the

defintion (Fig 5). This has 2 desirable effets: Words must be defined

before they are used - a valuable diagnostic aid. And when a word is rede-

fined, though its old meaning is not directly accessible, old definitions can

still reference the old meaning. The only restriction on redefinition is

exactly that - that the user need no longer directly access the old meaning.

The net effect of this convention is that words may be defined, redefined

and referenced in a completely natural fashion. The user rarely need trouble

about the search mechanism; it follows the context so closely as to seem

to be aware of his intention.

Of course the redefinition ability means that there are no reserved words.

In fact there are no reserved concepts. The user is completely free to

redefine any aspect of FORTH he wishes. Our system definitions are avail-

able to save him trouble, and have been selected for maximum utility. But

we do not force our choices upon him.

 FORTH-7

In addition to word, address and parameter parts, each entry has a link

and the dictionary becomes a linked list. Since the dictionary is large,

several hundred entries, search time is important. So we scramble each

word to determine which of 32 chains it will be found in and then follow

the links of this chain through memory (Fig. 6). Thus with 300 entries,

only 5 comparisons should produce a match. This complicates the problems

of deleting entries and starting the search at definitions, but the ad-

vantage is overwhelming.

There is a large class of words that are defined but not in the dictionary -

numbers. Numbers may be placed in the dictionary, and often are. But if a

number is not found, it is assumed to define itself and its value is placed

on the stack.

If a word cannot be found in the dictionary and is not a number, it is un-

defined and in error. The scanner will type the word and return to the key-

board for input - the current input string being abandoned. The user must

correct the error, restore the dictionary and restart his program.

 FORTH-8

The Queue:

The purpose of the queue is to share the computer among users. When

a user enters the system he is allotted a region in memory for his dictionary

and for the buffers and indicators required by his presence. This includes

notifying the queue of his arrival and of his priority and linking him into

the existing dictionary at the appropriate place, which may be the basis sys-

tem definitions or some resident application (Fig. 7).

When a user requests a system resource (including I/O) he is enqueued until

it becomes available. Thus, the queue is used to resolve conflicts among

users. Timesharing the computer is implicit in this treatment of the user.

Once a user is established - and this requires only that core be available -

he becomes a natural part of the system, indistinguishable from preexisting

parts. User swapping may take place every time there is an interrupt or the

current user enqueues and requires only that a very small amount of system

information be changed.

No attempt is made to overlap or otherwise optimize I/O. A user’s requests are

satisfied as expedient with due regard for priority. Although this may

be inefficient from the standpoint of his elapsed time, there are other uses and

to expedite one is to penalize others. Every effort is made to minimize the

impact of any user upon the system. For example, sorting algorithim are usually

designed to minimize elapsed time. FORTH’s sorting algorithim mini-mizes core

and disk, and is free to run as long as necessary. The problem of cpu-bound

verbs is solved by handling the timer interrupt in the same way as an I/O

finish.

 FORTH-9

Sheets:

The definitions we have discussed to far have referenced character strings in

core. Another kind of definition is stored on disk. The phrase

 1017 SHEET FIT

declares FIT as a sheet with disk address 1017. When FIT is encountered, the

scanner is directed to disk for further input.

FIT identifies a region of disk that contains source language. We call it a

sheet because typically such definitions consist of about 50 lines of 40

characters, which fit nicely on a sheet of paper.

An application typically uses several sheets to describe the dictionary entries

it requires. In effect, referencing a sheet moves its entries from disk to

core, compiling them on the way.

A sheet may reference other sheets and thus direct the retrieval of informa-

tion. For example, to generate FORTH we access ROOT, a sheet that acts like

an index: it declares a number of other sheets. One of these sheets is

SYSGEN, which references other sheets in a particular order and thereby

assembles the system dictionary.

Sheets may be edited and definitions added or changed using definitions on

the seet EDIT. Each user is assigned disk space and provided tools to main-

tain it.

 FORTH-10

The Language

We have been speaking of FORTH as a program that implements a language

and we have described the dictionary that explains the language to the

computer. But we have not described the language beyond mentioning the

basic kinds of words: nouns, verbs, and definitions.

There are two reasons for this. FORTH, to an honesty significant extent,

only supplies the tools whereby a user can construct a language that looks

as he wants it to. Second, there are 200 words in the dictionary, all of

which are intended to be used - and therefore must be explained.

Moreover, although we claim significant compactness of FORTH programs, such

compactness is not apparent in small examples. It arises through the economies

of tailoring definitions to a specific application. It is the case that our

small programs are smaller than your small program, but our large programs are

much smaller than your large programs.

Nevertheless, we can try to give you an impression of FORTH’s language by some

brief discussion and a simple example.

 FORTH-11

Verbs vs. Definitions:

It is useful to distinguish 2 classes of words: those that cause instruc-

tions to be generated and those that do not. The former are used only to

describe the code for verbs, the latter are used everywhere.

An instruction generating word is *DUP. It says: Generate the instructions

that will duplicate the top of the stack when executed. It is used by verbs

that wish to manipulate the arguments they find on the stack.

The word DUP is interpretive. It says: Duplicate the top of the stack.

It is used when the stack is to be changed at once, it contrast to *DUP.

There is clearly a similarity between the two, in fact DUP is defined in terms

of *DUP:

 . DUP *DUP RETURN

is a FORTH statement that effects a dictionary entry. The . declares the next

word (DUP) to be a verb. The words following it generate the code for the verb.

*DUP generates its instructions, RETURN generates a branch to the scanner.

In general, instruction generating words are prefixed by one of several

special characters, for ready identification. For example, *IF........*THEN

represent a pair of related words that generate a condition forward branch.

*IF generates instructions to test the top of the stack for true (1) or false (0)

and branch on the false condition. *THEN fills in the branch address. Thus,

 *IF *DUP *THEN

is a FORTH statement that will generate code to test the top of the stack for true

or false and duplicate on true.

 FORTH-12

Analogous to the above is the statement:

 IF DUP THEN

which will test and duplicate the top of the stack on true. This statement

actually tests the stack when encountered, in contrast to the previous ex-

ample, which generates instruction to do the same thing.

Commonly used words fall into 3 categories:

 Operators (arguments on the stack)

 + - x / MOD OR GREATER

 Conditional statements:

 IF ELSE THEN

 Iterative statements:

 DO CONTINUE

These words are all verbs. In fact, most system words are verbs.

There is a certain equivalence between defintions and verbs. In fact, most

operations could be written as either. Definitions are easier to code, but

their execution, being interpretive, is slow. Verbs are harder

to code, bu are most versatile as they may use the full hardware instruction

set and are 100 times faster in execution. It seems that a good balance be-

tween ease of coding and execution time is achieved by coding the inner loop

as a verb and the remainder as a definition.

 FORTH-13

An Example

We illustrate the language of FORTH by summing the squares of integers be-

tween 2 limits. The user types

 17 63 SUMSQ

To request 62 2
 ∑ I
 I=17

Fig. 8 shows the source language required. We will attempt a running

commentary:

Since the numbers 17 and 63 are not in the dictionary, the scanner places them

on the stack. It then finds SUMSQ in the dictionary and executes the

associated code. The colon preceeding SUMSQ indicates that it is a defini-

tion, so the scanner is directed to the character string following it. The

next word read is thus SHIFT.

SHIFT mist also be interpreted. At this point the stack contains 17 63. It will

place a zero before the numbers on the stack (interchanging them in the process).

-1 @T are 2 words that form a phrase. -1 is a number that is placed on the

stack. @T uses it as an address relative to the top of the stack and fetches

the first number - 17. 0 is a number and is placed on the stack. -3 =T is

another phrase that will store this 0 3 places deep in the stack - where the 17

was. At this point the stack contains 0 63 17.

The ; marking the end of SHIFT directs the scanner back to SUMSQ where the next

word is DO. DO marks the beginning of a loop.

 FORTH-14

Status

FORTH was developed in the fall of 1968 on an IBM 1130. We used it

primarily to generate pictures on the 2250 display scope, a task it

handles with ease. We also developed a report generator that would

select, sort and print records from sequential files with an ease and

versitility beyond the range of a conventional approach.

In February 1969, we generated FORTH fo the Burroughs B-5500. At the

time of writing, we are developing B-5500 applications, one of which

will be the 1130 report generator.

FORTH encourages compact programs. Definitions make the programmers job so

much easier that he is strongly motivated to isolate the significant

features of his problem and to factor out those constructs that occur

repeatedly. Proof of the effectiveness of this technique is the compactness

of FORTH itself.

FORTH is a small program, composed mostly of dictionary. FORTH is written

in FORTH and is its most complex application. FORTH requires 16 sheets to

describe FORTH. FORTH requires 20 seconds to generate FORTH. FORTH uses

4K 16 bit words on the IBM 1130 and 2K 48 bit words on the B-5500. We

estimate 8K bytes on any of the System 360 models. These figures are for

a complete software package capable of supporting an independent application for

every 4-8K bytes (depending on word size and hardware) of core available.

 FORTH-16

Both core and source program size are orders of magnitude less than the

conventional systems they replace. This is a dramatic refutation of the

conventional approach to software, and we presume to offer FORTH as a stan-

dard against which to measure system software.

Any application within the capacity of the hardware can be described in

FORTH: easily, compactly and in a manner as self documenting as the program-

mer wishes. There are certain restrictions on how FORTH may be used: It

requires keyboard communication. Jobs may not be batched in background,

however they require only as much attention after starting as the programmer

has designed into the application. FORTH has no automatic error-handling

facilities. These may be provided the the user if he wishes, but otherwise

FORTH merely reports an error to the user and awaits instructions. The user

must assume responsibility for his source language and the integrity of his

data. He must maintain his dictionary in the appropriate fashion. In brief,

FORTH words with the user to solve his problems: it makes no attempt to

solve them for him.

For example, FORTH can process a payroll. It requires a responsible person

from the payroll department to edit the personnel file, see that the checks

are in his remote printer and respond to errors as they are detected by FORTH.

If you prefer to batch your change cards, merge them into a master tape and

print the checks off line, stick with COBOL.

FORTH is a complete software package and a closed software package. FORTH

programs must be written in FORTH. There are no provisions for compiling

or executing programs written in other languages. To provide such facilities

would be to force upon FORTH the very problems it is designed to avoid.

 FORTH-17

In Summary

FORTH is a program that interfaces keyboards with computer. It is a small

program, though not intended for small computers. FORTH requires about

4K of core and each application (keyboard) requires an additional 1K. It

also requires perhaps 100K characters of disk storage for source language.

Modest enough requirements, but beyond the scope of desk-top computers.

FORTH implements a language that gives the user the complete access to hardware

capabilities, and complete freedom to design a compact POL. Interestingly

enough, FORTH applications do not use subscripts, counters and such house-

keeping variables. They require very little data storage - usually in the

form of arrays. They are composed mostly of definitions - seemingly endless

nests of definitions - which are simple to write and simple to use. FORTH

applications make efficient use of computer resources, and share these readily

with other applications. In a word, FORTH is THE computer language.

 FORTH-18

 Word Address Parameters

 Word Address Parameters

 Word Address Parameters

 Word Address Parameters

 •
 •
 •
 •
 •
 •

 Word Address Parameters

 Word Address Parameters

 Word Address Parameters

Fig. 1 - The Dictionary:

 A word may be 4 to 8 characters long, depending on implementation;

 Its address identifies code to be executed - distinguishes kinds of

 words;

 Its parameters may be absent, numbers, code or characters - they

 distinguish words of the same kind.

 FORTH-19

Entry Word Address Parameter

Noun Word Data

 Place address or value of data

 on stack

Verb Word Code

Definition Word Character String

 Direct scanner to interpret

 character string

Figure 2

Dictionary entries are distinguished by the code executed when they are seen

and the parameters used by that code.

 FORTH-20

 Keyboard

 Queue

 Disk

 Scanner

 Search Enter

 Dictionary

Figure 3.

 Components of FORTH.

 FORTH-21

 Keyboard

 Disk

 Scanner

 Dictionary

Figure 4

 The scanner accepts input indiscriminantly from keyboard,

disk and dictionary.

 FORTH-22

 Type A Type B

 Last Entry

 : A... B...

 Find B

 Keyboard Limit

 Undefined

 : D...

 : B... C... D...

 Find C Find D

 : C...

 First Entry

 Undefined

Fig. 5 Dictionary search depends upon the order in which words are declared,

and the context in which they are sought:

 Words read from the keyboard are sought from the last entry -

subject to a lower limit.

 Words read from definition are sought before the definition.

 The arrows show the portion of the dictionary searched for the defini-

tion indicated in the dictionary.

 FORTH-23

 Link Word Address Paramerter Entry

 # 1 # 2 # 3

 Start of chain

 Last
 entry

Fig 6 Dictionary showing 3 search chains

 Dashes show physical order; lines show search order.

 Search Proceeds:

 1- Scramble word to select chain #1, #2, or #3.

 2- Find last entry in chain from array of chain heads.

 3- Follow links comparing word with entry.

 FORTH-24

 Keyboards

 User User User
 Definitions Definitions Definitions

 Application
 Definitions

 System
 Definitions

Figure 7

 User dictionaries may be linked together and with the system

dictionary.

 FORTH-25

 . F *DUP *DUP x1 RETURN

 : SHIFT -1 @T 0 -3 =T ;

 : SUMSQ SHIFT DO

 F -3 @T + -3 =T

 1+ CONTINUE BD;

 Fig. 8 FORTH source language to evaluate and type a sum of squares with

 limits on the stack.

 FORTH-26

