
“My bad opinions”
2015/01/15

Awk in 20 Minutes

What's Awk

Awk is a tiny programming language and a command line tool. It's particularly appropriate for log
parsing on servers, mostly because Awk will operate on files, usually structured in lines of human-
readable text.

I say it's useful on servers because log files, dump files, or whatever text format servers end up
dumping to disk will tend to grow large, and you'll have many of them per server. If you ever get
into the situation where you have to analyze gigabytes of files from 50 different servers without
tools like Splunk or its equivalents, it would feel fairly bad to have and download all these files
locally to then drive some forensics on them.

This personally happens to me when some Erlang nodes tend to die and leave a crash dump of
700MB to 4GB behind, or on smaller individual servers (say a VPS) where I need to quickly go
through logs, looking for a common pattern.

In any case, Awk does more than finding data (otherwise, grep or ack would be enough) — it also lets
you process the data and transform it.

Code Structure

An Awk script is structured simply, as a sequence of patterns and actions:

comment
Pattern1 { ACTIONS; }

comment
Pattern2 { ACTIONS; }

comment
Pattern3 { ACTIONS; }

comment
Pattern4 { ACTIONS; }

Every line of the document to scan will have to go through each of the patterns, one at a time. So if
I pass in a file that contains the following content:

this is line 1
this is line 2

Then the content this is line 1 will match against Pattern1. If it matches, ACTIONS will be executed.
Then this is line 1 will match against Pattern2. If it doesn't match, it skips to Pattern3, and so on.

Once all patterns have been cleared, this is line 2 will go through the same process, and so on for
other lines, until the input has been read entirely.

This, in short, is Awk's execution model.

Awk in 20 Minutes https://ferd.ca/awk-in-20-minutes.html

1 of 6 5/1/20, 7:36 PM

Data Types

Awk only has two main data types: strings and numbers. And even then, Awk likes to convert them
into each other. Strings can be interpreted as numerals to convert their values to numbers. If the
string doesn't look like a numeral, it's 0.

Both can be assigned to variables in ACTIONS parts of your code with the = operator. Variables can be
declared anywhere, at any time, and used even if they're not initialized: their default value is "", the
empty string.

Finally, Awk has arrays. They're unidimensional associative arrays that can be started dynamically.
Their syntax is just var[key] = value. Awk can simulate multidimensional arrays, but it's all a big hack
anyway.

Patterns

The patterns that can be used will fall into three broad categories: regular expressions, Boolean
expressions, and special patterns.

Regular and Boolean Expressions

The Awk regular expressions are your run of the mill regexes. They're not PCRE under awk (but gawk
will support the fancier stuff — it depends on the implementation! See with awk --version), though for
most usages they'll do plenty:

/admin/ { ... } # any line that contains 'admin'
/^admin/ { ... } # lines that begin with 'admin'
/admin$/ { ... } # lines that end with 'admin'
/^[0-9.]+ / { ... } # lines beginning with series of numbers and periods
/(POST|PUT|DELETE)/ # lines that contain specific HTTP verbs

And so on. Note that the patterns cannot capture specific groups to make them available in the
ACTIONS part of the code. They are specifically to match content.

Boolean expressions are similar to what you would find in PHP or Javascript. Specifically, the
operators && ("and"), || ("or"), and ! ("not") are available. This is also what you'll find in pretty much
all C-like languages. They'll operate on any regular data type.

What's specifically more like PHP and Javascript is the comparison operator, ==, which will do fuzzy
matching, so that the string "23" compares equal to the number 23, such that "23" == 23 is true. The
operator != is also available, without forgetting the other common ones: >, <, >=, and <=.

You can also mix up the patterns: Boolean expressions can be used along with regular expressions.
The pattern /admin/ || debug == true is valid and will match when a line that contains either the word
'admin' is met, or whenever the variable debug is set to true.

Note that if you have a specific string or variable you'd want to match against a regex, the
operators ~ and !~ are what you want, to be used as string ~ /regex/ and string !~ /regex/.

Also note that all patterns are optional. An Awk script that contains the following:

{ ACTIONS }

Would simply run ACTIONS for every line of input.

Special Patterns

Awk in 20 Minutes https://ferd.ca/awk-in-20-minutes.html

2 of 6 5/1/20, 7:36 PM

There are a few special patterns in Awk, but not that many.

The first one is BEGIN, which matches only before any line has been input to the file. This is basically
where you can initiate variables and all other kinds of state in your script.

There is also END, which as you may have guessed, will match after the whole input has been
handled. This lets you clean up or do some final output before exiting.

Finally, the last kind of pattern is a bit hard to classify. It's halfway between variables and special
values, and they're called Fields, which deserve a section of their own.

Fields

Fields are best explained with a visual example:

According to the following line
#
$1 $2 $3
00:34:23 GET /foo/bar.html
_____________ _____________/
$0

Hack attempt?
/admin.html$/ && $2 == "DELETE" {
print "Hacker Alert!";

}

The fields are (by default) separated by white space. The field $0 represents the entire line on its
own, as a string. The field $1 is then the first bit (before any white space), $2 is the one after, and so
on.

A fun fact (and a thing to avoid in most cases) is that you can modify the line by assigning to its
field. For example, if you go $0 = "HAHA THE LINE IS GONE" in one block, the next patterns will now
operate on that line instead of the original one, and similarly for any other field variable!

Actions

There's a bunch of possible actions, but the most common and useful ones (in my experience) are:

{ print $0; } # prints $0. In this case, equivalent to 'print' alone
{ exit; } # ends the program
{ next; } # skips to the next line of input
{ a=$1; b=$0 } # variable assignment
{ c[$1] = $2 } # variable assignment (array)

{ if (BOOLEAN) { ACTION }
else if (BOOLEAN) { ACTION }
else { ACTION }

}
{ for (i=1; i<x; i++) { ACTION } }
{ for (item in c) { ACTION } }

This alone will contain a major part of your Awk toolbox for casual usage when dealing with logs
and whatnot.

The variables are all global. Whatever variables you declare in a given block will be visible to other
blocks, for each line. This severely limits how large your Awk scripts can become before they're
unmaintainable horrors. Keep it minimal.

Awk in 20 Minutes https://ferd.ca/awk-in-20-minutes.html

3 of 6 5/1/20, 7:36 PM

Functions

Functions can be called with the following syntax:

{ somecall($2) }

There is a somewhat restricted set of built-in functions available, so I like to point to regular
documentation for these.

User-defined functions are also fairly simple:

function arguments are call-by-value
function name(parameter-list) {

ACTIONS; # same actions as usual
}

return is a valid keyword
function add1(val) {

return val+1;
}

Special Variables

Outside of regular variables (global, instantiated anywhere), there is a set of special variables
acting a bit like configuration entries:

BEGIN { # Can be modified by the user
FS = ","; # Field Separator
RS = "\n"; # Record Separator (lines)
OFS = " "; # Output Field Separator
ORS = "\n"; # Output Record Separator (lines)

}
{ # Can't be modified by the user
NF # Number of Fields in the current Record (line)
NR # Number of Records seen so far
ARGV / ARGC # Script Arguments

}

I put the modifiable variables in BEGIN because that's where I tend to override them, but that can be
done anywhere in the script to then take effect on follow-up lines.

Examples

That's it for the core of the language. I don't have a whole lot of examples there because I tend to
use Awk for quick one-off tasks.

I still have a few files I carry around for some usage and metrics, my favorite one being a script
used to parse Erlang crash dumps shaped like this:

=erl_crash_dump:0.3
Tue Nov 18 02:52:44 2014
Slogan: init terminating in do_boot ()
System version: Erlang/OTP 17 [erts-6.2] [source] [64-bit] [smp:8:8] [async-threads:10] [hipe] [kernel-poll:false]
Compiled: Fri Sep 19 03:23:19 2014
Taints:
Atoms: 12167
=memory
total: 19012936
processes: 4327912
processes_used: 4319928

Awk in 20 Minutes https://ferd.ca/awk-in-20-minutes.html

4 of 6 5/1/20, 7:36 PM

system: 14685024
atom: 339441
atom_used: 331087
binary: 1367680
code: 8384804
ets: 382552
=hash_table:atom_tab
size: 9643
used: 6949
...
=allocator:instr
option m: false
option s: false
option t: false
=proc:<0.0.0>
State: Running
Name: init
Spawned as: otp_ring0:start/2
Run queue: 0
Spawned by: []
Started: Tue Nov 18 02:52:35 2014
Message queue length: 0
Number of heap fragments: 0
Heap fragment data: 0
Link list: [<0.3.0>, <0.7.0>, <0.6.0>]
Reductions: 29265
Stack+heap: 1598
OldHeap: 610
Heap unused: 656
OldHeap unused: 468
Memory: 18584
Program counter: 0x00007f42f9566200 (init:boot_loop/2 + 64)
CP: 0x0000000000000000 (invalid)
=proc:<0.3.0>
State: Waiting
...
=port:#Port<0.0>
Slot: 0
Connected: <0.3.0>
Links: <0.3.0>
Port controls linked-in driver: efile
=port:#Port<0.14>
Slot: 112
Connected: <0.3.0>
...

To yield the following result:

$ awk -f queue_fun.awk $PATH_TO_DUMP
MESSAGE QUEUE LENGTH: CURRENT FUNCTION
======================================
10641: io:wait_io_mon_reply/2
12646: io:wait_io_mon_reply/2
32991: io:wait_io_mon_reply/2
2183837: io:wait_io_mon_reply/2
730790: io:wait_io_mon_reply/2
80194: io:wait_io_mon_reply/2
...

Which is a list of functions running in Erlang processes that caused mailboxes to be too large.
Here's the script:

Awk in 20 Minutes https://ferd.ca/awk-in-20-minutes.html

5 of 6 5/1/20, 7:36 PM

view raw

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

crash-dump.awk hosted with ❤ by GitHub

Can you follow along? If so, you can understand Awk. Congratulations.

Fred T-H
@mononcqc
RSS

Property-Based Testing with PropEr
Erlang in Anger
Learn You Some Erlang

Parse Erlang Crash Dumps and correlate mailbox size to the currently running

function.

#

Once in the procs section of the dump, all processes are displayed with

=proc:<0.M.N> followed by a list of their attributes, which include the

message queue length and the program counter (what code is currently

executing).

#

Run as:

#

$ awk -v threshold=$THRESHOLD -f queue_fun.awk $CRASHDUMP

#

Where $THRESHOLD is the smallest mailbox you want inspects. Default value

is 1000.

BEGIN {

if (threshold == "") {

 threshold = 1000 # default mailbox size

 }

 procs = 0 # are we in the =procs entries?

print "MESSAGE QUEUE LENGTH: CURRENT FUNCTION"

print "======================================"

}

Only bother with the =proc: entries. Anything else is useless.

procs == 0 && /^=proc/ { procs = 1 } # entering the =procs entries

procs == 1 && /^=/ && !/^=proc/ { exit 0 } # we're done

Message queue length: 1210

1 2 3 4

/^Message queue length: / && $4 >= threshold { flag=1; ct=$4 }

/^Message queue length: / && $4 < threshold { flag=0 }

Program counter: 0x00007f5fb8cb2238 (io:wait_io_mon_reply/2 + 56)

1 2 3 4 5 6

flag == 1 && /^Program counter: / { print ct ":", substr($4,2) }

Awk in 20 Minutes https://ferd.ca/awk-in-20-minutes.html

6 of 6 5/1/20, 7:36 PM

