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Thermal Noise of a Resistor

R

v2
n

G i2n

All resistors generate noise. The noise power generated by a
resistor R can be represented by a series voltage source with
mean square value v2n

v2n = 4kBTRB

Equivalently, we can represent this with a current source in
shunt

i2n = 4kBTGB
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Resistor Noise Example

Here B is the bandwidth of observation and kT is
Boltzmann’s constant times the temperature of observation

This result comes from thermodynamic considerations, thus
explaining the appearance of kT

Often we speak of the “spot noise”, or the noise in a specific
narrowband δf

v2n = 4kBTRδf

Since the noise is white, the shape of the noise spectrum is
determined by the external elements (L’s and C ’s)
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Resistor Noise Example

Suppose that R = 10kΩ and T = 20◦C = 293K.

4kBT = 1.62× 10−20

v2n = 1.62× 10−16 × B

vn,rms =

√
vn(t)2 = 1.27× 10−8

√
B

If we limit the bandwidth of observation to B = 106MHz,
then we have

vn,rms ≈ 13µV

This represents the limit for the smallest voltage we can
resolve across this resistor in this bandwidth
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Combination of Resistors

If we put two resistors in series, then the mean square noise
voltage is given by

v2n = 4kBT (R1 + R2)B = v2n1 + v2n2

The noise powers add, not the noise voltages

Likewise, for two resistors in parallel, we can add the mean
square currents

i2n = 4kBT (G1 + G2)B = i2n1 + i2n2

This holds for any pair of independent noise sources (zero
correlation)
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Resistive Circuits

R1 R2

R3 RLVS

VT,s

RT

v2
Tn

RL

For an arbitrary resistive circuit, we can find the equivalent
noise by using a Thevenin (Norton) equivalent circuit or by
transforming all noise sources to the output by the appropriate
power gain (e.g. voltage squared or current squared)

VT ,s = VS
R3

R1 + R3

v2Tn = 4kBTRTB = 4kBT (R2 + R1||R3)B
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Noise in an LTI System

S(f) H(f) |H(f)|2S(f)

A fundamental result from Stochastic Systems is that if you
inject noise into an LTI system (such as a filter), the output
noise is shaped by the magnitude of the transfer function

V
2

=

∫ ∞
−∞

S(f )|H(f )|2df

Note that we can’t say anything about the phase, but we
know the magnitude response will be filtered.

Any white noise source, such as a resistor, will be shaped by
poles in the system.
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Noise for Passive Circuits (I)

Passive
Noisy
Circuit

Passive
Noiseless
Circuit

Z(jω)

v2
eq

For a general linear circuit, the mean square noise voltage
(current) at any port is given by the equivalent input
resistance (conductance)

v2eq = 4kBT<(Z (f ))δf
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Noise for Passive Circuits (II)

This is the “spot” noise. If the network has a filtering
property, then we integrate over the band of interest

v2T ,eq = 4kBT

∫
B
<(Z (f ))df

Unlike resistors, L’s and C ’s do not generate noise. They do
shape the noise due to their frequency dependence.
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Noise Analysis

To find the equivalent mean square noise voltage for a circuit,
we use the small signal model (noise signals are actually small,
so it’s a good approximation). For each noise source, invoke
superposition and calculate the noise contribution to the
desired node

v2n,o = |G1,o |2v2n,1 + |G2,o |2v2n,2 + · · · =
∑

k

|Gk,o |2v2n,k

where v2n,k is the kth noise source, and the gain from that
noise to the output node is given by Gk,o . Note that the
polarity of the noise sources is irrelevant since we’re summing
powers (all positive quantities). The above expression
assumes that the noise sources are independent. Later on
we’ll see how to handle correlated noise sources.
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Example: Noise of an RC Circuit

G C

To find the equivalent mean square
noise voltage of an RC circuit, begin
by calculating the impedance

Z =
1

Y
=

1

G + jωC
=

G − jωC

G 2 + ω2C 2

Integrating the noise over all frequencies, we have

v2n =
4kBT

2π

∫ ∞
0

G

G 2 + ω2C 2
dω =

kBT

C

Notice the result is independent of R. Since the noise and
BW is proportional/inversely proportional to R, its influence
cancels out
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Noise of a Receiving Antenna

v2
n

Assume we construct an antenna with ideal conductors so
Rwire = 0

If we connect the antenna to a spectrum analyzer, though, we
will observe noise

The noise is also “white” but the magnitude depends on
where we point our antenna (sky versus ground)
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Equivalent Antenna Temperature

v2a = 4kBTARradB

Rrad

Va

v2
a

Rrad

Va

TA

TA is the equivalent antenna temperature and Rrad is the
radiation resistance of the antenna

Since the antenna does not generate any of its own thermal
noise, the observed noise must be incident on the antenna. In
fact, it’s “black body” radiation.

Physically TA is related to the temperature of the external
bodies radiating into space (e.g. space or the ground)
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Diode Shot Noise

A forward biased diode exhibits noise called shot noise. This
noise arises due to the quantized nature of charge.

The noise mean square current is given by

i2d ,n = 2qIDCB

The noise is white and proportional to the DC current IDC

Reversed biased diodes exhibit excess noise not related to shot
noise.
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Noise in a BJT

All physical resistors in a BJT produce noise (rb, re , rc ). The
output resistance ro , though, is not a physical resistor.
Likewise, rπ, is not a physical resistor. Thus these resistances
do not generate noise

The junctions of a BJT exhibit shot noise

i2b,n = 2qIBB

i2c,n = 2qICB

At low frequencies the transistor exhibits “Flicker Noise” or
1/f Noise.
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BJT Hybrid-Π Model

v2
rb

v2
re

v2
rc

Cπrπ

Cµ

+
vπ

−
gmvπi2b i2c

rb

re

rc

ro

The above equivalent circuit includes noise sources. Note that
a small-signal equivalent circuit is appropriate because the
noise perturbation is very small
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FET Noise

In addition to the extrinsic physical resistances in a FET (rg ,
rs , rd ), the channel resistance also contributes thermal noise

The drain current noise of the FET is therefore given by

i2d ,n = 4kBTγgds0δf + K
I a
D

CoxL2eff f
e
δf

The first term is the thermal noise due to the channel
resistance and the second term is the “Flicker Noise”, also
called the 1/f noise, which dominates at low frequencies.

The factor γ = 2
3 for a long channel device.

The constants K , a, and e are usually determined empirically.
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FET Channel Resistance

Consider a FET with VDS = 0. Then the channel conductance
is given by

gds,0 =
∂IDS

∂VDS
= µCox

W

L
(VGS − VT )

For a long-channel device, this is also equal to the device
transconductance gm in saturation

gm =
∂IDS

∂VGS
= µCox

W

L
(VGS − VT )

For short-channel devices, this relation is not true, but we can
define

α =
gm

gd0
6= 1
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FET Noise Equivalent Circuit

Cgs gmvgs ro

Cgd

+
vgs

−

Rg

Rs

Rd

i2d

v2
Rg

v2
Rd

v2
Rs

The resistance of the substrate also generates thermal noise.
In most circuits we will be concerned with the noise due to
the channel i2d and the input gate noise v2Rg
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Physical Origin of Noise

An elegant derivation of the physical origin of the noise of a
resistor is due to van der Ziel. Consider an RC circuit where
as a result of thermal agitation of electrons, the capacitor is
charged and discharged constantly. On average, the energy
stored is given by the equipartition theorem:

1

2
CV 2 =

1

2
kBT

V 2 =
kBT

C

This result can be derived rigorously assuming a Boltzmann
distribution for the energy (see later slides).
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Noise Voltage Due to Resistor

Let’s say that we don’t know the power spectral density of the
noise of the resistor. Whatever it’s noise is, though, we know
that noise voltage at the capacitor can be computed from

V
2

=

∫ ∞
−∞

S2
V (ω)|H(ω)|2dω

where H(ω) is the transfer function from the resistor noise to
the capacitor

H(ω) =
1

1 + jωRC

|H(ω)|2 =
1

1 + ω2(RC )2
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Noise Bandwidth

Integrating the noise we have

V
2

=

∫ ∞
−∞

S2
V (ω)

1

1 + ω2(RC )2
dω

If we assume that the voltage noise density does not depend
on frequency (experimental fact), then we have

V
2

= S
2
V

∫ ∞
−∞

1

1 + ω2(RC )2
dω =

S2
V

2RC

Now applying the Equipartition Theorem

SV
2

2RC
=

kBT

C

SV
2

= 2kBTR
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Double Sideband Noise Spectral Density

In most noise calculations, we integrate noise over positive
frequencies, which means we should double the result of our
previous calculation to properly account for noise

SV
2

= 4kBTR
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If you like Physics...

For a capacitor, the energy stored E = CV 2/2 due to a noise
resistor should be proportional to the Boltzmann distribution
exp(−E/kBT ) (assume thermal equilibrium at temperature
T ).

To find the proportionality constant, note that integrating this
quantity over all energy values should be unity∫ ∞

−∞
Kexp

(−CV 2

2kBT

)
dV = 1

K =

√
C

2πkBT
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Thermodynamics Leads the Way

Now we can compute the mean squared value of the voltage

V 2 =

√
C

2πkBT

∫ ∞
−∞

V 2exp

(−CV 2

2kBT

)
dV

V 2 =
kBT

C

The last step follows after performing the integral.
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