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Mixers

RFIF

LO

RF IF

LO

An ideal mixer is usually drawn with a multiplier symbol

A real mixer cannot be driven by arbitrary inputs. Instead one
port, the “LO” port, is driven by an local oscillator with a
fixed amplitude sinusoid.

In a down-conversion mixer, the other input port is driven by
the “RF” signal, and the output is at a lower IF intermediate
frequency

In an up-coversion mixer, the other input is the IF signal and
the output is the RF signal
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Frequency Down-Conversion

down-conversion

RFIF LO

IF

As shown above, an ideal mixer translates the modulation
around one carrier to another. In a receiver, this is usually
from a higher RF frequency to a lower IF frequency.

We know that an LTI circuit cannot perform frequency
translation. Mixers can be realized with either time-varying
circuits or non-linear circuits

3 / 30



Ideal Multiplier

Suppose that the input of the mixer is the RF and LO signal

vRF = A(t) cos (ω0t + φ(t))

vLO = ALO cos (ωL0t)

Recall the trigonometric identity

cos(A + B) = cosA cosB − sinA sinB

Applying the identity, we have

vout = vRF × vLO

=
A(t)ALO

2
{cosφ (cos(ωLO + ω0)t + cos(ωLO − ω0)t)

− sinφ (sin(ωLO + ω0)t + sin(ωLO − ω0)t)}
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Ideal Multiplier (cont)

Grouping terms we have

vout =
A(t)ALO

2
{cos ((ωLO + ω0)t + φ(t)) +

cos ((ωLO − ω0)t + φ(t))}

We see that the modulation is indeed translated to two new
frequencies, LO + RF and LO − RF . We usually select either
the upper or lower “sideband” by filtering the output of the
mixer

RF IF

LO

high-pass or low-pass
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Mixer + Filter

RF=LO-IF LOIF=LO-RF IM=LO+IF

Note that the LO can be below the RF (lower side injection)
or above the RF (high side injection)

Also note that for a given LO, energy at LO ± IF is converted
to the same IF frequency. This is a potential problem!
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Upper/Lower Injection and Image

Example: Downconversion Mixer

RF = 1GHz = 1000MHz

IF = 100MHz

Let’s say we choose a low-side injection:

LO = 900MHz

That means that any signals or noise at 800MHz will also be
downconverted to the same IF
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Receiver Application

RF+IMAGE

LO

IF

LNA

The image frequency is the second frequency that also
down-converts to the same IF. This is undesirable becuase the
noise and interferance at the image frequency can potentially
overwhelm the receiver.

One solution is to filter the image band. This places a
restriction on the selection of the IF frequency due to the
required filter Q
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Image Rejection

RF+IMAGE

LO

IF

LNA

IMAGE REJECT

Suppose that RF = 1000MHz, and IF = 1MHz. Then the
required filter bandwidth is much smaller than 2MHz to
knock down the image.

In general, the filter Q is given by

Q =
ω0

BW
=

RF

BW
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Image Reject Filter

In our example, RF = 1000MHz, and IF = 1MHz. The
Imagine is on 2IF = 2MHz away.

Let’s design a filter with f0 = 1000MHz and f1 = 1001MHz.

A fifth-order Chebyshev filter with 0.2 dB ripple is down about
80dB at the IF frequency.

But the Q for such a filter is

Q =
103MHz

1MHz
= 103

Such a filter requires components with Q > 103!
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RF Filtering

LO 1

IF 1

LNA

IF 2

LO 2

The fact that the required filter Q is so high is related to the
problem of filtering interferers. The very reason we choose the
superheterodyne architecture is to simplify the filtering
problem. It’s much easier to filter a fixed IF than filter a
variable RF.

The image filtering problem can be relaxed by using multi-IF
stages. Instead of moving to such a low IF where the image
filtering is difficult (or expensive and bulky), we down-convert
twice, using successively lower IF frequencies.
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Direct Conversion Receiver

RF

LO=RF

IF=DC

LNA

LO leakage

A mixer will frequency translate two frequencies, LO ± IF

Why not simply down-convert directly to DC? In other words,
why not pick a zero IF?

This is the basis of the direct conversion architecture. There
are some potential problems...
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Direction Conversion

First, note that we must down-convert the desired signal and
all the interfering signals. In other words, the LNA and mixer
must be extremely linear.

Since IF is at DC, all even order distortion now plagues the
system, because the distortion at DC can easily swamp the
desired signal.

Furthermore, CMOS circuits produce a lot of flicker noise.
Before we ignored this source of noise becuase it occurs at low
frequency. Now it also competes with our signal.

Another issue is with LO leakage. If any of the LO leaks into
the RF path, then it will self-mix and produce a DC offset.
The DC offset can rail the IF amplifier stages.

Finally, if the modulation is complex, a simple mixer will
garble the upper and lower side-band, a point we’ll cover soon.
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Direct Conversion (cont)

Example: If the IF amplifier has 80dB of gain, and the mixer
has 10 dB of gain, estimate the allowed LO leakage. Assume
the ADC uses a 1V reference.

To rail the output, we require a DC offset less than 10−4V. If
the LO power is 0dBm (316mV), we require an input leakage
voltage < 10−5V, or an isolation better than 90dB!

A better solution is to high-pass filter (if the modulation
format allows it) or to cancel the offset voltage with a DAC in
the baseband.
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Phase of LO

In a direction conversion system, the LO frequency is equal to
the RF frequency.

Consider an input voltage v(t) = A(t) cos(ω0t). Since the LO
is generated “locally”, it’s phase is random relative to the RF
input:

vLO = ALO cos(ω0t + φ0)

If we are so unlucky that φ0 = 90◦, then the output of the
mixer will be zero∫

T
A(t)ALO sin(ω0t) cos(ω0t)dt

≈ A(t)ALO

∫
T

sin(ω0t) cos(ω0t)dt = 0
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I/Q Hartley Mixer

RF cos(ωLOt)

sin(ωLOt)

90◦

90◦

IF

An I/Q mixer implemented as shown above is known as a
Hartley Mixer.

We will also show that such a mixer can perform image
rejection.
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Delay Operation

Consider the action of a 90◦ delay on an arbitrary signal.
Clearley sin(x − 90◦) = − cos(x). Even though this is obvious,
consider the effect on the complex exponentials

sin(x − π

2
) =

e jx−jπ/2 − e−jx+jπ/2

2j

=
e jxe−jπ/2 − e−jxe jπ/2

2j
=

e jx(−j)− e−jx(j)

2j

= −e jx + e−jx

2
= − cos(x)

Positive frequencies get multiplied by −j and negative
frequencies by +j . This is true for a narrowband signal when
it is delayed by 90◦.
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Image Problem (Again)

RF+(ω)RF−(ω) RF+(ω − ω0)

RF+(ω + ω0)

IM+(ω)

IM−(ω)

IM+(ω − ω0)

IM−(ω + ω0)

LO−LO

IF−IF

ejωLOt

e−jωLOt

RF−(ω − ω0)

IM−(ω − ω0)

LO

LO

−LO

−LO

IM−(ω)

ejωLOt

e−jωLOt

RF−(ω) RF−(ω + ω0) RF+(ω)

IM+(ω) IM+(ω + ω0)

Complex Modulation (Positive Frequency)

Complex Modulation (Positive Frequency)

Real Modulation

We see that the image problem is due to to multiplication by
the sinusoid and not a complex exponential. If we could
synthesize a complex exponential, we would not have the
image problem.
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Sine/Cosine Modulation

IF−IF LO−LO

IF−IF LO−LO

Cosine Modulation

Sine Modulation

IF−IF LO−LO

Delayed Sine Modulation

1/j

1/j
1/j

1/j

Using the same approach, we can find the result of multipling
by sin and cos as shown above. If we delay the sin portion, we
have a very desirable situation! The image is inverted with
respect to the cos and can be cancelled.
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Direct Down-Conversion with Complex Modulated
Waveform

IF−IF LO−LO

RF Spectrum

IF−IF LO−LO

IF Spectrum

Note that if the signal is a complex modulated signal
up-converted, then if we simply downconvert it with a tone
(sin or cos), the image reject probelm get translated into a
spectrum mangling problem.
For this reason, a complex down-converter is required, which
explains why most modern communication sytems use a
complex I and Q mixer.
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Image Rejection Matching Requiremetns

The image rejection scheme just described is very sensitive to
phase and gain match in the I/Q paths. Any mismatch will
produce only finite image rejection.

The image rejection for a given gain/phase match is
approximately given by

IRR(dB) = 10 · log
1

4

((
δA

A

)
2 + (δθ)2

)
For typical gain mismatch of 0.2− 0.5 dB and phase mismtach
of 1◦ − 4◦, the image rejection is about 30dB - 40 dB. We
usually need about 60− 70 dB of total image rejection.
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±45◦ Delay Element

RF

cos(ωLOt)

sin(ωLOt)

IF

The passive R/C and
C/R lowpass and
highpass filters are a nice
way to implement the
delay. Note that their
relative phase difference is
always 90◦.

∠Hlp = ∠
1

1 + jωRC
= − arctanωRC

∠Hhp = ∠
jωRC

1 + jωRC
=
π

2
− arctanωRC
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Gain Match / Quadrature LO Gen

But to have equal gain, the circuit must operate at the 1/RC
frequency. This restricts the circuit to relatively narrowband
systems. Multi-stage polyphase circuits remedy the situation
but add insertion loss to the circuit.

The I/Q LO signal is usually generated directly rather than
through an high-pass and low-pass network.

Two ways to generate the I/Q LO is through a divide-by-two
circuit (requires 2× LO) or a quadrature oscillator (requires
two tanks).
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Practical Mixer Realization

vLO

vRF

vIF

RS

RL

Real mixers are realized not as “multipliers” but using
switches. The above schematic is in the core building block
for a mixer: a switch !

The control port of the switch is driven by the periodic LO
signal (square or sine wave), and hence the transfer function
varies periodically:

vIF (t) = vRF (t)
RL

RL + RSW (t)

RSW (t) = f (vLO(t))
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Mixer Analysis: Time Domain

A generic mixer operates with a periodic transfer function
h(t + T ) = h(t), where T = 1/ω0, or T is the LO period. We
can thus expand h(t) into a Fourier series

y(t) = h(t)x(t) =
∞∑
−∞

cne
jω0ntx(t)

For a sinusoidal input, x(t) = A(t) cosω1t, we have

y(t) =
∞∑
−∞

cn
2
A(t)

(
e j(ω1+ω0n)t + e j(−ω1+ω0n)t

)
Since h(t) is a real function, the coefficients c−k = ck are
even. That means that we can pair positive and negative
frequency components.

25 / 30



Time Domain Analysis (cont)

= c1
e j(ω1+ω0)t + e j(−ω1+ω0)t

2
A(t)+c−1

e j(ω1−ω0)t + e j(−ω1−ω0)t

2
A(t)+· · ·

Take c1 and c−1 as an example (c1 = c−1)

= c1A(t) cos(ω1 + ω0)t + c1A(t) cos(ω1 − ω0)t + · · ·

Summing together all the components, we have

y(t) =
∞∑
−∞

cn cos(ω1 + nω0)t

Unlike a perfect multiplier, we get an infinite number of
frequency translations up and down by harmonics of ω0.
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Frequency Domain Analysis

Since multiplication in time, y(t) = h(t) · x(t), is convolution
in the frequency domain, we have

Y (f ) = H(f ) ∗ X (f )

The transfer function H(f ) =
∑∞
−∞ cnδ(f − nf0) has a

discrete spectrum. So the output is given by

Y (f ) =

∫ ∞
−∞

∞∑
−∞

cnδ(σ − nf0)X (f − σ)dσ

=
∞∑
−∞

cn

∫ ∞
−∞

δ(σ − nf0)X (f − σ)dσ
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Frequency Domain (cont)
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By the frequency sifting property of the δ(f − σ) function, we
have

Y (f ) =
∞∑
−∞

cnX (f − nf0)

Thus, the input spectrum is shifted by all harmonics of the LO
up and down in frequency.
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Noise/Image Problem

Previously we examined the “image” problem. Any signal
energy a distance of IF from the LO gets downconverted in a
perfect multiplier. But now we see that for a general mixer,
any signal energy with an IF of any harmonic of the LO will
be downconverted !

These other images are easy to reject because they are distant
from the desired signal and a image reject filter will be able to
attenuate them significantly.

The noise power, though, in all image bands will fold onto the
IF frequency. Note that the noise is generated by the mixer
source resistance itself and has a white spectrum. Even
though the noise of the antenna is filtered, new noise is
generated by the filter itself!
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Mixer Noise Definition

By definition we have F = SNRi
SNRo

. If we apply this to a
receiving mixer, the input signal is at the “RF” and the output
signal is at “IF”. There is some ambiguity to this definition
because we have to specify if the RF signal is a single (upper
or lower) or double sideband modulated waveform.

For a single-sideband modulated waveform, the noise from the
image band adds, therefore doubling the IF noise relative to
RF. Thus the F = 2.

For a double sideband modulated waveform, though, there is
signal energy in both sidebands and so for a perfect
multiplying mixer, F = 1 since the IF signal is twice as large
since energy from both sidebands fall onto the IF.

If an image reject filter is used, the noise in the image band
can be suppressed and thus F = 1 for a cascade of a sharp
image reject filter followed by a multiplier.
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