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Oscillators

An oscillator is an essential component in communication
systems, providing a carrier frequency for RF transmission, a
local oscillator (LO) for up- and down-conversion, and a
timing reference for data sampling and re-sampling.

Before the advent of electronic oscillators, sinusoidal signals
were generated from motors (which limited the highest
frequency due to mechanical resonance), or from arcs and LC
tanks, which were of limited utility.

Wikipedia: At least six researchers independently made the
vacuum tube feedback oscillator discovery ... In the summer of
1912, Edwin Armstrong observed oscillations in audion radio
receiver circuits and went on to use positive feedback in his
invention of the regenerative receiver. German Alexander
Meissner independently discovered positive feedback and
invented oscillators in March 1913. Irving Langmuir at General
Electric observed feedback in 1913. Fritz Lowenstein may have
preceded the others with a crude oscillator in late 1911...
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Electronic (Feedback) Oscillators

Active Device

Feedback

High-Q Resonator

t

T =
1

f
V0

An oscillator is an autonomous circuit that converts DC power
into a periodic waveform. We will initially restrict our
attention to a class of oscillators that generate a sinusoidal
waveform.
The period of oscillation is determined by a high-Q LC tank
or a resonator (crystal, cavity, T-line, etc.). An oscillator is
characterized by its oscillation amplitude (or power),
frequency, “stability”, phase noise, and tuning range.

3 / 53



Oscillators (cont)

Disturbance

Generically, a good oscillator is stable in that its frequency
and amplitude of oscillation do not vary appreciably with
temperature, process, power supply, and external disturbances.

The amplitude of oscillation is particularly stable, always
returning to the same value (even after a disturbance).

4 / 53



Timing Jitter
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Real oscillators don’t have a precise period of oscillation. The
period varies due to phase noise or timing jitter. The phase of
the signal increases ωt + φn increases linearly but has a small
noise component φn that causes jitter.
In the figure above, the noise is exaggerated greatly. In
practice, this slight deviation will only be observed if millions
of cycles of the oscillator are overlaid (using a digital
oscilloscope for example).
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Phase Noise
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Due to noise, a real
oscillator does not have a
delta-function power
spectrum, but rather a
very sharp peak at the
oscillation frequency.

The amplitude drops very
quickly, though, as one
moves away from the
center frequency. E.g. a
cell phone oscillator has a
phase noise that is 100dB
down at an offset of only
0.01% from the carrier!
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An LC Tank “Oscillator”

eαt cos ω0t

Note that an LC tank alone is not a good oscillator. Due to
loss, no matter how small, the amplitude of the oscillator
decays.

Even a very high Q oscillator can only sustain oscillations for
about Q cycles. For instance, an LC tank at 1GHz has a
Q ∼ 20, can only sustain oscillations for about 20ns.

Even a resonator with high Q ∼ 106, will only sustain
oscillations for about 1ms.
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Feedback Perspective
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Many oscillators can be viewed as feedback systems. The
oscillation is sustained by feeding back a fraction of the
output signal, using an amplifier to gain the signal, and then
injecting the energy back into the tank. The transistor
“pushes” the LC tank with just about enough energy to
compensate for the loss.
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Negative Resistance Perspective

Active
Circuit

Negative
Resistance

LC Tank

Another perspective is to view the active device as a negative
resistance generator. In steady state, the losses in the tank
due to conductance G are balanced by the power drawn from
the active device through the negative conductance −G .
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Reflection Coefficient Perspective

Open or Short |Γ| > 1

Z0, γ = α + jβ

A completely equivalent way to see the negative resistance
argument is to think of the reflection coefficient.
Consider launching a wave down a transmission line. We
know that the wave will have a period equal the round trip
delay td . If we inject a wave into a transmission line
resonator, the signal is attenuated due to the line loss and
decays exponentially.
If we can create a load with |Γ| > 1 and the proper phase,
then the wave will travel back and forth along the transmission
line without any loss. A negative resistance is thus required.

Γ =
Z − Z0
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Feedback Approach

si(s) so(s)
+

−
a(s)

f(s)

Consider an ideal feedback system with forward gain a(s) and
feedback factor f (s). The closed-loop transfer function is
given by

H(s) =
a(s)

1 + a(s)f (s)
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Feedback Example

f

a(s) =
a
1/3
0

(1 + sτ)

a(s)

As an example, consider a forward gain transfer function with
three identical real negative poles with magnitude |ωp| = 1/τ
and a frequency independent feedback factor f

a(s) =
a0

(1 + sτ)3

Deriving the closed-loop gain, we have

H(s) =
a0

(+sτ)3 + a0f
=

K1

(1− s/s1)(1− s/s2)(1− s/s3)
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Poles of Closed-Loop Gain

Solving for the poles

(1 + sτ)3 = −a0f

1 + sτ = (−a0f )
1
3 = (a0f )

1
3 (−1)

1
3

(−1)
1
3 = −1, e j60

◦
, e−j60

◦

The poles are therefore

s1, s2, s3 =
−1− (a0f )

1
3

τ
,
−1 + (a0f )

1
3 e±j60

◦

τ
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Root Locus
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If we plot the poles on the
s-plane as a function of
the DC loop gain
T0 = a0f we generate a
root locus

For a0f = 8, the poles are
on the jω-axis with value

s1 = −3/τ

s2,3 = ±j
√

3/τ

For a0f > 8, the poles
move into the right-half
plane (RHP)
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Natural Response

Given a transfer function

H(s) =
K

(s − s1)(s − s2)(s − s3)
=

a1
s − s1

+
a2

s − s2
+

a3
s − s3

The total response of the system can be partitioned into the
natural response and the forced response

s0(t) = f1(a1e
s1t + a2e

s2t + a3e
s3t) + f2(si (t))

where f2(si (t)) is the forced response whereas the first term
f1() is the natural response of the system, even in the absence
of the input signal. The natural response is determined by the
initial conditions of the system.

15 / 53



Real LHP Poles

e−αt

Stable systems have all poles in the left-half plane (LHP).

Consider the natural response when the pole is on the
negative real axis, such as s1 for our examples.

The response is a decaying exponential that dies away with a
time-constant determined by the pole magnitude.
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Complex Conjugate LHP Poles

Since s2,3 are a complex
conjugate pair

s2, s3 = σ ± jω0

We can group these
responses since a3 = a2
into a single term

a2e
s2t+a3e

s3t = Kae
σt cosω0t

eαt cos ω0t

When the real part of the complex conjugate pair σ is
negative, the response also decays exponentially.
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Complex Conjugate Poles (RHP)

When σ is positive (RHP),
the response is an
exponential growing
oscillation at a frequency
determined by the
imaginary part ω0

Thus we see for any
amplifier with three
identical poles, if feedback
is applied with loop gain
T0 = a0f > 8, the
amplifier will oscillate.

αte cos ω0t
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Frequency Domain Perspective

1

τ

a0f = 8

Closed Loop Transfer Function

In the frequency domain
perspective, we see that
a feedback amplifier has
a transfer function

H(jω) =
a(jω)

1 + a(jω)f

If the loop gain a0f = 8, then we have with purely imaginary
poles at a frequency ωx =

√
3/τ where the transfer function

a(jωx)f = −1 blows up. Apparently, the feedback amplifier
has infinite gain at this frequency.
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Oscillation Build Up

start-up region steady-state region

In a real oscillator, the amplitude of oscillation initially grows
exponentially as our linear system theory predicts. This is
expected since the oscillator amplitude is initially very small
and such theory is applicable. But as the oscillations become
more vigorous, the non-linearity of the system comes into play.

We will analyze the steady-state behavior, where the system is
non-linear but periodically time-varying.
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Example LC Oscillator

vo

vi

n : 1
The emitter resistor is
bypassed by a large capacitor
at AC frequencies.

The base of the transistor is
conveniently biased through
the transformer windings.

The LC oscillator uses a transformer for feedback. Since the
amplifier has a phase shift of 180◦, the feedback transformer
needs to provide an additional phase shift of 180◦ to provide
positive feedback.
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AC Equivalent Circuit
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vi
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At resonance, the AC equivalent circuit can be simplified. The
transformer winding inductance L resonates with the total
capacitance in the circuit. RT is the equivalent tank
impedance at resonance.
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Small Signal Equivalent Circuit

roCin gmvin

+
vin

−
Rin Co

CLRL

L

n : 1

The forward gain is given by a(s) = −gmZT (s), where the
tank impedance ZT includes the loading effects from the
input of the transistor

RT = r0||RL||n2Ri

C = Co + CL +
Ci

n2

23 / 53



Open-Loop Transfer Function

The tank impedance is therefore

ZT (s) =
1

sC + 1
RT

+ 1
Ls

=
Ls

1 + s2LC + sL/RT

The loop gain is given by

af (s) =
−gmRT

n

L
RT

s

1 + L
RT

s + s2LC

The loop gain at resonance is

A` =
−gmRT

n
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Closed-Loop Transfer Function

The closed-loop transfer function is given by

H(s) =
−gmRT

L
RT

s

1 + s2LC + s L
RT

(1− gmRT
n )

Where the denominator can be written as a function of A`

H(s) =
−gmRT

L
RT

s

1 + s2LC + s L
RT

(1− A`)

Note that as n→∞, the feedback loop is broken and we
have a tuned amplifier. The pole locations are determined by
the tank Q.
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Oscillator Closed-Loop Gain vs A`

Aℓ < 1

Aℓ = 1

ω0 =

√
1

LC

Closed Loop Transfer Function

If A` = 1, then the denominator loss term cancels out and we
have two complex conjugate imaginary axis poles

1 + s2LC = (1 + sj
√
LC )(1− sj

√
LC )
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Root Locus for LC Oscillator

For a second order transfer function, notice that the
magnitude of the poles is constant, so they lie on a circle in
the s-plane

s1, s2 =
−a
2b
± a

2b

√
1− 4b

a2
=
−a
2b
± j

a

2b

√
4b

a2
− 1

|s1,2| =

√
a2

4b2
+

a2

4b2
(

4b

a2
+ 1) =

√
1

b
= ω0
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Root Locus (cont)
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We see that for A` = 0, the poles are determined by the tank
Q and lie in the LHP. As A` is increased, the action of the
positive feedback is to boost the gain of the amplifier and to
decrease the bandwidth. Eventually, as A` = 1, the loop gain
becomes infinite in magnitude.
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Review: Role of Loop Gain

The behavior of the circuit is determined largely by A`, the
loop gain at DC and resonance. When A` = 1, the poles of
the system are on the jω axis, corresponding to constant
amplitude oscillation.

When A` < 1, the circuit oscillates but decays to a quiescent
steady-state.

When A` > 1, the circuit begins oscillating with an amplitude
which grows exponentially. Eventually, we find that the steady
state amplitude is fixed.
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Steady-State Analysis

start-up region steady-state region

To find the steady-state behavior of the circuit, we will make
several simplifying assumptions. The most important
assumption is the high tank Q assumption (say Q > 10),
which implies the output waveform vo is sinusoidal.

Vω2 ≈
1

jωC
Iω2

Since the feedback network is linear, the input waveform
vi = vo/n is also sinusoidal.
We may therefore apply the large-signal periodic steady-state
analysis to the oscillator. For the BJT, we can use the
modified Bessel functions.

30 / 53



Steady-State Waveforms

vo

vi

VCC

VBE,Q

IQ

The collector current is not sinusoidal, due to the large signal
drive.

The output voltage,though, is sinusoidal and given by

vo ≈ Iω1ZT (ω1) = GmZT vi
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Steady State Equations

But the input waveform is a scaled version of the output

vo = GmZT
vo
n

=
GmZT

n
vo

The above equation implies that

GmZT

n
≡ 1

Or that the loop gain in steady-state is unity and the phase of
the loop gain is zero degrees (an exact multiple of 2π)

∣∣∣∣
GmZT

n

∣∣∣∣ ≡ 1 ∠
GmZT

n
≡ 0◦
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Large Signal Gm

Recall that the small-signal loop gain is given by

|A`| =

∣∣∣∣
gmZT

n

∣∣∣∣

Which implies a relation between the small-signal start-up
transconductance and the steady-state large-signal
transconductance ∣∣∣∣

gm
Gm

∣∣∣∣ = A`

Notice that gm and A` are design parameters under our
control, set by the choice of bias current and tank Q. The
steady state Gm is therefore also fixed by initial start-up
conditions.
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Large Signal Gm (BJT)
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To find the oscillation amplitude we need to find the input
voltage drive to produce Gm.
For a general non-linearity, we need to generate this curve
using numerical integration (Fourier Series).
The large signal Gm for an arbitrary non-linearity F (·) is given
by

Gm = Iω1/Vi =
1

π

∫ 2π

0
F (Vi cos(ωt)) cos(ωt)dt

34 / 53



Large Signal Gm (BJT cont)

For a BJT, we found that under the constraint that the bias
current is fixed

Iω1 =
2I1(b)

I0(b)
IQ = Gmvi = Gmb

kT

q

Thus the large-signal Gm is given by

Gm =
2I1(b)

bI0(b)

qIQ
kT

=
2I1(b)

bI0(b)
gm

Gm

gm
=

2I1(b)

bI0(b)

35 / 53



Large Signal Gm (Differential Pair)
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For a differential pair (BJT), we can use numerical integration
to find the ratio of the large signal Gm to the small-signal gm.
The nth harmonic (single-ended) output is given by:

Iωn/IEE =

∫ 2π

0

− cos(nt)

π
(
eb cos(t) + 1

)dt
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Stability (Intuition)

Here’s an intuitive argument for how the oscillator reaches a
stable oscillation amplitude. Assume that initially Al > 1 and
oscillations grow. As the amplitude of oscillation increases,
though, the Gm of the transistor drops, and so effectively the
loop gain drops.

As the loop gain drops, the poles move closer to the jω axis.
This process continues until the poles hit the jω axis, after
which the oscillation ensues at a constant amplitude and
A` = 1.
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Intuition (cont)

A < 1A > 1

Vamp > VoVamp < Vo

Gm(Vo)ZT (ω1)

n
= 1

To see how this is a stable point,
consider what happens if somehow
the oscillation amplitude increases.

With increasing amplitude over Vo ,
we know that A` < 1 due to the
compressive characteristics of the
oscillator. This causes the
amplitude to decay.

If the oscillation amplitude were to decay below Vo , the Gm

increases and this causes the loop gain to grow. Thus the
system also rolls back to the point where A` = 1.

Up to now we have only considered the Gm non-linearity as a
possible limiting mechanism. What happens, for example, if
we do not limit the bias current of a device?
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Other Limiting Mechanisms

Ro(Vo)

Vo

Vsat

Current Limited Region Voltage Limited Region

The Gm curve may become
expansive and the oscillation
amplitude may not limit
from Gm but from other
mechanism.

If the oscillation amplitude causes the voltage at the drain of
a device to grow sufficiently large, the device may enter
“triode” region (or saturation for a bipolar) and thus the
output resistance non-linearity will limit the amplitude.

In the literature, operation in the Gm limiting region is
sometimes called the “current limited” regime, whereas
operation in the output impedance limiting regime is called
the “voltage limited” regime.
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BJT Oscillator Design

Say we desire an oscillation amplitude of v0 = 100mV at a
certain oscillation frequency ω0.

We begin by selecting a loop gain A` > 1 with sufficient
margin. Say A` = 3.

We also tune the LC tank to ω0, being careful to include the
loaded effects of the transistor (ro , Co , Cin, Rin)

We can estimate the required first harmonic current from

Iω0 =
vo
R ′T
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Design (cont)

This is an estimate because the exact value of RT is not
known until we specify the operating point of the transistor.
But a good first order estimate is to neglect the loading and
use R ′T
We can now solve for the bias point from

Iω1 =
2I1(b)

I0(b)
IQ

b is known since it’s the oscillation amplitude normalized to
kT/q and divided by n. The above equation can be solved
graphically or numerically.

Once IQ is known, we can now calculate R ′′T and iterate until
the bias current converges to the final value.
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Squegging

Squegging is a parasitic oscillation in the bias circuitry of the
amplifier.

It can be avoided by properly sizing the emitter bypass
capacitance

CE ≤ nCT
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Common Base Oscillator

vo

vi

Another BJT oscillator uses the common-base transistor.
Since there is no phase inversion in the amplifier, the
transformer feedback is in phase.

Since we don’t need phase inversion, we can use a simpler
feedback consisting of a capacitor divider.

43 / 53



Colpitts Oscillator

The cap divider works at higher frequencies. Under the cap

divider approximation f ≈ C1

C1 + C ′2
=

1

n

n = 1 +
C ′2
C1

C ′2 includes the loading from the transistor and current source.
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Colpitts Bias

Since the bias current is held constant by a current source IQ
or a large resistor, the analysis is identical to the BJT
oscillator with transformer feedback. Note the output voltage
is divided and applied across vBE just as before.
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Colpitts Family

If we remove the explicit ground connection on the oscillator,
we have the template for a generic oscillator.

It can be shown that the Colpitts family of oscillator never
squegg.
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CE and CC Oscillators

If we ground the emitter, we have a new oscillator topology,
called the Pierce Oscillator. Note that the amplifier is in CE
mode, but we don’t need a transformer!

Likewise, if we ground the collector, we have an emitter
follower oscillator.

A fraction of the tank resonant current flows through C1,2. In
fact, we can use C1,2 as the tank capacitance.
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Pierce Oscillator

Iω1

If we assume that the current through C1,2 is larger than the
collector current (high Q), then we see that the same current
flows through both capacitors. The voltage at the input and

output is therefore vo = Iω1

1

jωC1

vi = −Iω1

1

jωC2
or

vo
vi

= n =
C2

C1
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Pierce Bias

A current source or large resistor can bias the Pierce oscillator.

Since the bias current is fixed, the same large signal oscillator
analysis applies.
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Common-Collector Oscillator

Note that the collector can be connected to a resistor without
changing the oscillator characteristics. In fact, the transistor
provides a buffered output for “free”.
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Clapp Oscillator

CB

C1

C2

RB

The common-collector oscillator shown above uses a large
capacitor CT to block the DC signal at the base. RB is used
to bias the transistor.

If the shunt capacitor CT is eliminated, then the capacitor CB

can be used to resonate with L and the series combination of
C1 and C2. This is a series resonant circuit.
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Relaxation Oscillator

Vout

C R

RR

Instead of using an LC tanks as the reference frequency, a
relaxation oscillator uses an electronic delay element (RC or I
and R).

Suppose that the output is railed at the positive supply. The
capacitor C is charged through a resistor until the reference
level at V+ is crossed (VDD/2), at which point the output
transitions to the negative rail (V− > V+), and C is
discharged until it reaches the lower reference (−VSS/2).
Then the cycle repeats.
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Ring Oscillator

In CMOS technology, ring oscillators are ubiquitous. If
inverters are used, an odd number of stages will oscillate
(unstable) and the oscillation period is twice the delay of the
line.

Differential versions can be built with an even number of
stages by inverting the phase.

The oscillation frequency can be controlled by varying the
delay of each element using a “current starved” topology.

53 / 53


