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A Generic Amplifier
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Consider the generic two-port (e.g. amplifier or filter) shown
above. A port is defined as a terminal pair where the current
entering one terminal is equal and opposite to the current
exiting the second termianl.

Any circuit with four terminals can be analyzed as a two-port
if it is free of independent sources and the current condition is
met at each terminal pair.

All the complexity of the two-port is captured by four complex
numbers (which are in general frequency dependent).
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Two-Port Parameters

There are many two-port parameter set, which are all
equivalent in their description of the two-port, including the
admittance parameters (Y ), impedance parameters (Z ),
hybrid or inverse-hybrid parameters (H or G ), ABCD,
scattering S , or transmission (T ).

Y and Z paramters relate the port currents (voltages) to the
port voltages (currents) through a 2x2 matrix. For example

(
v1
v2

)
=

(
z11 z12
z21 z22

)(
i1
i2

) (
i1
i2

)
=

(
y11 y12
y21 y22

)(
v1
v2

)

Hybrid parameters choose a combination of v and i . For
example hybrid H and inverse hybrid G (dual)

(
v1
i2

)
=

(
h11 h12
h21 h22

)(
i1
v2

) (
i1
v2

)
=

(
g11 g12
g21 g22

)(
v1
i2

)
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Scattering Parameters

Even if we didn’t know anything about incident and reflected
waves, we could define scattering parameters in the following
way. Define two new quantities v+ and v− as linear
combinations of v and i (parameterized by Z0) which are

related to the available power from the source (v+
2
/2Z0) and

the reflected or unused power absorbed by the network
(v−

2
/2Z0)

v+ = v + iZ0

v− = v − iZ0

Since votlage and current are related by Z (or Y ), we expect
the same to be true of V+ and v− through a new matrix

v− = Sv+

We have already derived the relation between Z and S . The
important point is that S is just another N-port parameter set
like Z/Y /H/G and ABCD family.
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Two-Port Parameters

+
V

−

+
V

−

[
g11 g12
g21 g22

]

[
g11 g12
g21 g22

]

+
v
−

+
u
−

+
u
−

I I

+
v
−

i i

j j

I1 = i1 + j1

I2 = i2 = j2

V1 = v1 = u1

V2 = v2 + u2

Notice that a series connection of two two-ports implies the
same current flows through both two-ports whereas the
voltage across the two-ports is the sum of the individual
voltages.
On the other hand, a shunt connection of two two-ports
implies the same voltage is applied across both two-ports
whereas the current into the two-ports is the sum of the
individual currents.
These simple observations allow us to simply sum two-port
parameters for various shunt/series interconnections of
two-ports.
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Choosing Two-Port Parameters
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YL
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Yout

Amp

Feedback

The choice of parameter set is usually determined by
convenience. For instance, if shunt feedback is applied, Y
parameters are most convenient, whereas series feedback
favors Z parameters. Other combinations of shunt/series can
be easily described by H or G .

ABCD parameters are useful for cascading two-ports.
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Feedback Example
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I I

I1 = i1 + j1

I2 = i2 = j2

V1 = v1 = u1

V2 = v2 + u2

Amplifier

Feedback

Any real feedback amplifier is non-ideal due to instrinsic
feedback in the amplifier itself (bilateral nature) and the
feedforward through the feedback network.

The feedback network also loads the primary amplifier.

It’s hard to apply ideal signal flow analysis to the real circuit
unless...
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Feedback Example (cont)
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I IAmplifier

Feedback

g11 + g11 0
g21 + g21 g22 + g22

0 g12 + g12
0 0

�

Since the overall two-port parameters of the amplifier in
closed loop is simply the sum of the amplifier and feedback
network two-port parameters, we can simply move the
non-idealities of the feedback network (loading and
feedforward) into the main amplifier and likewise move the
instrinsic feedback of the amplifier to the feedback network.

Now we can use ideal feedback analysis.
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Series — Shunt Feedback
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(a) Series-Series (b) Series-Shunt
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(c) Shunt-Series (d) Shunt-Shunt
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Choice of Feedback Parameters

+
V

−

+
V

−

[ ]

[ ]

I IAmplifier

Feedback

h11 +h11 0
h21 + 21 h22 + 22

0 h12 + 12

0 0

�

h h

h

Which two variables (v or i) are the same for both two-ports:
i1 = iA1 = iB1 and v2 = vA2 = V B

2 Make these the independent
variables.
Which two variables (v or i) sum to form the two-port
variables: v1 = vA1 + vB1 and i2 = iA2 + iB2 . Make these the
dependent variables.
Order variables with the first row port 1, and the second row
port 2.

(
v1
i2

)
=

(
v1
i2

)A

+

(
v1
i2

)B

= (HA + HB)

(
i1
v2

)
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Y Parameters

In this lecture we’ll primarily use the Y parameters

(
i1
i2

)
=

(
y11 y12
y21 y22

)(
v1
v2

)

But our choice is arbitrary. We’re lucky because many of the
results that we derive in terms of Y-parameters can be applied
to other two-port parameters exactly (input impedance,
output impedance, gain, etc).

Remember all 2-port parameters are different representations
of the same two-port and therefore must yield the same
answer for any question. It is relatively easy to convert
between different two-port represeanations.
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Admittance Parameters

Notice that y11 is the short circuit input admittance

y11 =
i1
v1

∣∣∣∣
v2=0

The same can be said of y22. The forward transconductance is
described by y21

y21 =
i2
v1

∣∣∣∣
v2=0

whereas the reverse transconductance is described by y12.

If a two-port amplifier is unilateral, then y12 = 0
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Why Use Two-Port Parameters?

The parameters are generic and independent of the details of
the amplifier → can be a single transistor or a multi-stage
amplifier

High frequency transistors are more easily described by
two-port parameters (due to distributed input gate resistance
and induced channel resistance)

Feedback amplifiers can often be decomposed into an
equivalent two-port unilateral amplifier and a two-port
feedback section

We can make some very general conclusions about the
“optimal” power gain of a two-port, allowing us to define
some useful metrics
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Calculations with Two-Ports
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Hybrid-Π Admittance Example

roCin

Cµ

gmvin
+
vin
−

Yπ

Yµ

Yo

Rin Co

Let’s compute the Y parameters for the common hybrid-Π
model

y11 = yπ + yµ

y21 = gm − yµ

gmvinYπ

Yµ

Yo

+
v1
−

i2

+
v2
−
= 0

15 / 32



Hybrid-Π Example (cont)

y22 = yo + yµ

y12 = −yµ

gmvinYπ

Yµ

Yo

+
v2
−

i1

+
v1
−
= 0

Note that the hybrid-π model is unilateral if yµ = sCµ = 0.
Therefore it’s unilateral at DC.

A good amplifier has a high ratio y21
y12

because we expect the
forward transconductance to dominate the behavior
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Voltage Gain and Input Admittance

Since i2 = −v2YL, we can write

(y22 + YL)v2 = −y21v1

Which leads to the “internal” two-port gain

Av =
v2
v1

=
−y21

y22 + YL

Check low freq limit for a hybrid-Π: Av = −gmZo ||ZL X

The input admittance is easily calculated from the voltage
gain

Yin =
i1
v1

= y11 + y12
v2
v1

Yin = y11 −
y12y21

y22 + YL
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Output Admittance

By symmetry we can write down the output admittance by
inspection

Yout = y22 −
y12y21

y11 + YS

Note that for a unilateral amplifier y12 = 0 implies that

Yin = y11

Yout = y22

The input and output impedance are de-coupled!

18 / 32



External Voltage Gain

The gain from the voltage source to the output can be
derived by a simple voltage divider equation

A′v =
v2
vs

=
v2
v1

v1
vs

= Av
YS

Yin + YS
=

−YSy21
(y22 + YL)(YS + Yin)

If we substitute and simplify the above equation we have

A′v =
−YSy21

(YS + y11)(YL + y22)− y12y21

Verify that this makes sense at low frequency for hybrid-Π:

A′v (DC ) =
−YSy21

(YS + y11)(YL + y22)
=

Zin

Zin + ZS
×−gmRL||ro
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Feedback Amplifiers and Y -Params

Note that in an ideal feedback system, the amplifier is
unilateral and the closed loop gain is given by y

x = A
1+Af

We found that the voltage gain of a general two-port driven
with source admittance YS is given by

A′v =
−YSy21

(YS + y11)(YL + y22)− y12y21

If we unilaterize the two-port by arbitrarily setting y12 = 0, we
have an “open” loop forward gain of

Avu = A′v
∣∣
y12=0

=
−YSy21

(YS + y11)(YL + y22)
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Identification of Loop Gain

Re-writing the gain A′v by dividing numerator and
denominator by the factor (YS + y11)(YL + y22) we have

A′v =

−YSy21
(YS+y11)(YL+y22)

1− y12y21
(YS+y11)(YL+y22)

We can now see that the “closed” loop gain with y12 6= 0 is
given by

A′v =
Avu

1 + T

where T is identified as the loop gain

T = Avuf =
−y12y21

(YS + y11)(YL + y22)
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The Feedback Factor and Loop Gain

Using the last equation also allows us to identify the feedback
factor

f =
Y12

YS

If we include the loading by the source YS , the input
admittance of the amplifier is given by

Yin = YS + y11 −
y12y21

YL + y22

Note that this can be re-written as

Yin = (YS + y11)

(
1− y12y21

(YS + y11)(YL + y22)

)
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Feedback and Input/Output Admittance

The last equation can be re-written as

Yin = (YS + y11)(1 + T )

Since YS + y11 is the input admittance of a unilateral
amplifier, we can interpret the action of the feedback as
raising the input admittance by a factor of 1 + T .

Likewise, the same analysis yields

Yout = (YL + y22)(1 + T )

It’s interesting to note that the same equations are valid for
series feedback using Z parameters, in which case the action
of the feedback is to boost the input and output impedance.
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Two-Port Stability
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Stability and Negative Resistance

�(Zin) < 0

Active
Network

Passive Termination
+
vs
−

is

+
vR
−

iR

vs
is

= −R
vR
iR

= R

Loosely speaking, a two-port network is stable if it does not
oscillate. Oscillation occurs when the two-port can deliver
power.

The two-port sources power to the RLC termination shown
above .

Notice that when a voltage source is sourcing power to
resistor R, the voltage to current ratio is negative
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More Rigorous Proof of Stability

The two-port network is unstable if it supports non-zero
currents/voltages with passive terminations

(
i1
i2

)
=

(
y11 y12
y21 y22

)(
v1
v2

)

Since i1 = −v1YS and i2 = −v2YL

(
y11 + YS y12

y21 y22 + YL

)(
v1
v2

)
= 0

The only way to have a non-trial solution is for the
determinant of the matrix to be zero at a particular frequency
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Conditions for Instablility: Loop Gain

Taking the determinant of the matrix we have

(YS + y11)(YL + y22)− y12y21 = 0

Let’s re-write the above in the following form

1− y12y21
(y22 + YL)(y11 + YS)

= 0

or
1 + T = 0

Where we have identified the loop gain T . We can clearly see
that instability implies that T = −1, which is exactly what we
learned in feedback system analysis.

27 / 32



Conditions for Instablility: Impedance

Going back to the determinant of the matrix we have

(YS + y11)(YL + y22)− y12y21 = 0

Now let’s re-write the above in the following form

YS + y11 −
y12y21

y22 + YL
= 0

or
YS + Yin = 0

Or equivalently
YL + Yout = 0
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Stability (cont)

A network is unstable at a particular frequency if
YS + Yin = 0, which means the condition is satisfied for both
the real and imaginary part. In particular

<(YS + Yin) = <(YS) + <(Yin) = 0

Since the terminations are passive, <(YS) > 0 which implies
that

<(Yin) < 0

The same equations also show that

<(Yout) < 0

So if these conditions are satisfied, the two-port is unstable
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More on Stability

The conditions for stability are a function of the source and
load termination

<(Yin) = <
(
y11 −

y12y21
YL + y22

)
> 0

<(Yout) = <
(
y22 −

y12y21
YS + y11

)
> 0

For a unilateral amplifier, the conditions are simple and only
depend on the two-port

<(y11) > 0

<(y22) > 0
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Stability Factor

In general, it can be shown that a two-port is absolutely stable
iff

<(y11) > 0

<(y22) > 0

k > 1

The stability factor k is given by

k =
2<(y11)<(y22)−<(y12y21)

|y12y21|

The stability of a unilateral amplifier with y12 = 0 is infinite
k =∞ which implies absolute stability since as long as
<(y11) > 0 and <(y22) > 0
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A Preview: Degrees of Stability

A amplifier with absolute stability or unconditional stability
(k > 1) means that the two-port is stable for all passive
terminations at either the load or the source.

If k < 1, then the system can be conditionally stable, or stable
for a range of source/load impedances. This range of
impedance is very easily calculated using scattering
parameters. It’s also possible for a system to be completely
unstable.

Unconditional stability is very conservative if the source and
load impedance is well specified and well controlled.

But in certain situations the load or source impedance may
vary greatly. For instance the input impedance of an antenna
can vary if the antenna is disconnected, bent, shorted, or
broken.

An unstable two-port can be stabilized by adding sufficient loss
at the input or output to overcome the negative conductance.
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