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Power Gain
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@ We can define power gain in many different ways. The power

gain Gp, is defined as follows

PL
G, = —
P Pin

= (Y1, Vi) # f(Ys)

@ We note that this power gain is a function of the load
admittance Y and the two-port parameters Yj;.
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Power Gain (cont)

@ The available power gain is defined as follows

Pav,L

G, =
? Pav,S

= f(Ys, Yy) # (Y1)
@ The available power from the two-port is denoted P,, |
whereas the power available from the source is P, s.

o Finally, the transducer gain is defined by

PL
Gt = = (Y ) Y57 K
T Pav,S ( t J)

@ This is a measure of the efficacy of the two-port as it
compares the power at the load to a simple conjugate match.
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Derivation of Power Gain

@ The power gain is readily calculated from the input
admittance and voltage gain

V2
Pin: ’ 21‘ %(Ym)

V. 2
P, = ’;‘m(m

Va | R(YL)
Vil R(Vin)

G Va2 R(Y)
PrYL+ Y2 R(Yin)

Gp =
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Derivation of Available Gain
S e e

@ To derive the available power gain, consider a Norton
equivalent for the two-port where (short port 2)

—Yo1

lg=—h=YnVi = — 2|
q 2 21 V1 Y11—|—YSS

@ The Norton equivalent admittance is simply the output
admittance of the two-port
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Available Gain (cont)

@ The available power at the source and load are given by

P _ |IS|2 P, | = ‘/eq|2
25 7 8R(Ys) LT BR(Yeq)
G _ |lea|" ROYS)

T s | R(Yeq)

c _‘ Ya > R(Ys)

? Yll + YS §R(qu)
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Transducer Gain Derivation

@ The transducer gain is given by

Py FR(YL)| V2|2 Va |?
Gr = P, s =2 152 = AR(YL)R(Ys) E
8R(Ys)

@ We need to find the output voltage in terms of the source
current. Using the voltage gain we have and input admittance

we have
Vaj _|_Ya
Vi YL+ Yo
Is = V1i(Ys + Yin)
Va| | Ya 1
Is| | YL+ Ya2||Ys+ Yil
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Transducer Gain (cont)

|Ys + Yin| = |Ys + Y11 —

@ We can now express the output voltage as a function of
source current as

2 | Yar1]?

T (Ys + Y ) (YL + Ya2) — Yia You |

@ And thus the transducer gain

Vo
Is

AR(YL)R(Ys)| Yar|?
I(Ys + Y1) (YL + Ya2) — Y12 Yo |?

Gr =
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Maximum Power Gain and the Bi-Conjugate Match
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Comparison of Power Gains

@ It's interesting to note that all of the gain expression we have
derived are in the exact same form for the impedance, hybrid,
and inverse hybrid matrices.

@ In general, P < P,, 1, with equality for a matched load.

Thus we can say that
GT < Ga

@ The maximum transducer gain as a function of the load
impedance thus occurs when the load is conjugately matched
to the two-port output impedance

PL(YL = You) _

G,
Pav,S ?

GT,max,L =
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Comparison of Power Gains (cont)

o Likewise, since P, < P,, s, again with equality when the the
two-port is conjugately matched to the source, we have

Gr < G,

@ The transducer gain is maximized with respect to the source

when
GT,max,S = GT(Yin = Y;) = Gp
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Bi-Conjugate Match

@ When the input and output are simultaneously conjugately
matched, or a bi-conjugate match has been established, we
find that the transducer gain is maximized with respect to the
source and load impedance

GT,max = Up,max = Ga,max

@ This is thus the recipe for calculating the optimal source and
load impedance in to maximize gain

Y12 Y21
Yi, =Y — —=— =Y¢
in 11 YL T Y22
Y12 Y21
Your = Yoo — 12721 _ vy
out 22 YS n Y11

@ Solution of the above four equations (real/imag) results in the
optimal Ys opr and Y opt-
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Calculation of Optimal Source/Load

@ Another approach is to simply equate the partial derivatives of
Gt with respect to the source/load admittance to find the

oGt 0 oGt 0
maximum point 9Gs e

oGt oGt

0Bs 0 B, 0

@ Again we have four equations. But we should be smarter
about this and recall that the maximum gains are all equal.
Since G, and G, are only a function of the source or load, we
can get away with only solving two equations.
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Calculation of Optimal Source/Load

@ Working with available gain

0G, 0 0G, _0
0Gs 0Bs
@ This yields Ys o, and by setting Y, = Y, we can find the
YL,opt-
@ Likewise we can also solve
P 0 8GP 0

oG 0B,
@ And now use Ys oot = Y,

in*
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Optimal Power Gain Derivation

@ Let's outline the procedure for the optimal power gain. We'll
use the power gain G, and take partials with respect to the

load. Let
Yik = mji + jnjk
YL =G+ XL
Yi2Yor = P +jQ = Le/?
| Ya1|?
G, = G
P D L
Y12 Y- Y12 Yo1(Y, Yoo )*
8‘8<Y11 12Y21 >:m ~ R(Ya2 Yau( L+222))
YL+ Yo |YL+ Yoo
D = m11|Y/_ + Yzz‘z — P(GL + m22) — Q(B/_ + n22)
06, _o_ I¥ulG oD

0B, D? 0B,
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Optimal Load (cont)

@ Solving the above equation we arrive at the following solution

BL,opt = Wll — n22

@ In a similar fashion, solving for the optimal load conductance

1

Wﬂ\/(2m11m22 — P)2 — L2

GL,opt =

o If we substitute these values into the equation for G, (lot’s of
algebra ...), we arrive at

| Yo |?
2mi1moy — P + \/(2m11m22 — P)2 — 12

Gp,max =
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Final Solution

@ Notice that for the solution to exists, G; must be a real
number. In other words

(2m11m22 — P)2 > L2

(2m11m22 — P) > L

K:M“

@ This factor K plays an important role as we shall show that it
also corresponds to an unconditionally stable two-port. We
can recast all of the work up to here in terms of K

. Y12 Yo1 — 2R(Y11)R(Y22) + | Y2 Yar (K + VK2 — 1)

Ys opt = —jS(Y11)

2R(Va0)
— K2
Vi ope = 3 Yan) + 112721 = 2RO »/22;%)(2\)/12 )
Y21 1

Gp,max = GT,max = Ga,max =

Yo K+ VK2 1
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Maximum Gain

@ The maximum gain is usually written in the following
insightful form

Gmax = E(K -V K2 — 1)

Y12

@ For a reciprocal network, such as a passive element, Y12 = Y21
and thus the maximum gain is given by the second factor

Gr,max:K_VK2_1

@ Since K > 1, |Gy max| < 1. The reciprocal gain factor is
known as the efficiency of the reciprocal network.

@ The first factor, on the other hand, is a measure of the
non-reciprocity.

19/26



Unilateral Maximum Gain

@ For a unilateral network, the design for maximum gain is
trivial. For a bi-conjugate match

Ys = Y1*1
| Ya1|?
GT,max =
4my1myp)
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Stability of a Two-Port
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Stability of a Two-Port

@ A two-port is unstable if the admittance of either port has a
negative conductance for a passive termination on the second
port. Under such a condtion, the two-port can oscillate.

o Consider the input admittance

. Y12 Y21
Yin = Gin + jBin = Y11 — m

@ Using the following definitions

Y11 = gu1 + jbu1 YioYo1r = P+ jQ = Lo

Yoo = + jb .

22 = 822 T Jb22 Y, =G, ‘|'J_B_L |
e Now substitute real/imag parts of the above quantities into
Yi
P+jQ

Yin = g11 + jb11 — —— .
in = 8117751 g2 + jb + G + jBL

(P+jQ)(g22 + G — j(bo2 + By))
(g22 + GL)? + (b2 + BL)?

= g11 + jb11 —
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Input Conductance

@ Taking the real part, we have the input conductance

P(g22 + G) + Q(bx + By)

Y. = o= —
R(Yin) = Gin = 1 (g22 + GL)? + (b2 + BL)?

(g22 + G1)* + (b2 + BL)* — 2= (g2 + G1)
D
@ Since D > 0 if g11 > 0, we can focus on the numerator. Note
that g1 > 0 is a requirement since otherwise oscillations
would occur for a short circuit at port 2.

Q
— 4y (b2 + By)

@ The numerator can be factored into several positive terms

P Q
——(g22+GL)— —(b22+By)
811 811

P\ Q \\* P*+@?
Z(GL+<g22>> +<BL+(b22 )) - 5
2g11 2g11 4gty

23 /26

N = (g22+ G1)?*+ (boz + BL)?




Input Conductance (cont)

@ Now note that the numerator can go negative only if the first
two terms are smaller than the last term. To minimize the
first two terms, choose G; = 0 and B; = — (bzg — ?QH

(reactive load)

= g — _
@ And thus the above must remain positive, N,;, > 0, so

P\ _P+@
- — >0
<g22 2g11 ) gt

P+L L
811822 > — = 5(1 + cos ¢)
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Linvill /Llewellyn Stability Factors

@ Using the above equation, we define the Linvill stability factor

L <2g1180— P

B L
2g11822 — P
@ The two-port is stable if 0 < C < 1.

<1
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Stability (cont)

@ It's more common to use the inverse of C as the stability

measure
281182 — P

L
@ The above definition of stability is perhaps the most common

>1

K — 2§R( Y11)§R( Y22) - %( Y12 Y21) >1
| Y12 You|

@ The above expression is identical if we interchange ports 1/2.
Thus it's the general condition for stability.

@ Note that K > 1 is the same condition for the maximum
stable gain derived earlier. The connection is now more
obvious. If K < 1, then the maximum gain is infinity!
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