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Power Gain
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Power Gain
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We can define power gain in many different ways. The power
gain Gp is defined as follows

Gp =
PL

Pin
= f (YL,Yij) 6= f (YS)

We note that this power gain is a function of the load
admittance YL and the two-port parameters Yij .
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Power Gain (cont)

The available power gain is defined as follows

Ga =
Pav ,L

Pav ,S
= f (YS ,Yij) 6= f (YL)

The available power from the two-port is denoted Pav ,L

whereas the power available from the source is Pav ,S .

Finally, the transducer gain is defined by

GT =
PL

Pav ,S
= f (YL,YS ,Yij)

This is a measure of the efficacy of the two-port as it
compares the power at the load to a simple conjugate match.
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Derivation of Power Gain

The power gain is readily calculated from the input
admittance and voltage gain

Pin =
|V1|2

2
<(Yin)

PL =
|V2|2

2
<(YL)

Gp =

∣∣∣∣
V2

V1

∣∣∣∣
2 <(YL)

<(Yin)

Gp =
|Y21|2

|YL + Y22|2
<(YL)

<(Yin)
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Derivation of Available Gain

YSIS

[
Y11 Y12

Y21 Y22

]
YeqIeq

To derive the available power gain, consider a Norton
equivalent for the two-port where (short port 2)

Ieq = −I2 = Y21V1 =
−Y21

Y11 + YS
IS

The Norton equivalent admittance is simply the output
admittance of the two-port

Yeq = Y22 −
Y21Y12

Y11 + YS
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Available Gain (cont)

The available power at the source and load are given by

Pav ,S =
|IS |2

8<(YS)
Pav ,L =

|Ieq|2
8<(Yeq)

Ga =

∣∣∣∣
Ieq
IS

∣∣∣∣
2 <(YS)

<(Yeq)

Ga =

∣∣∣∣
Y21

Y11 + YS

∣∣∣∣
2 <(YS)

<(Yeq)
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Transducer Gain Derivation

The transducer gain is given by

GT =
PL

Pav ,S
=

1
2<(YL)|V2|2

|IS |2
8<(YS )

= 4<(YL)<(YS)

∣∣∣∣
V2

IS

∣∣∣∣
2

We need to find the output voltage in terms of the source
current. Using the voltage gain we have and input admittance
we have ∣∣∣∣

V2

V1

∣∣∣∣ =

∣∣∣∣
Y21

YL + Y22

∣∣∣∣

IS = V1(YS + Yin)
∣∣∣∣
V2

IS

∣∣∣∣ =

∣∣∣∣
Y21

YL + Y22

∣∣∣∣
1

|YS + Yin|
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Transducer Gain (cont)

|YS + Yin| =

∣∣∣∣YS + Y11 −
Y12Y21

YL + Y22

∣∣∣∣

We can now express the output voltage as a function of
source current as

∣∣∣∣
V2

IS

∣∣∣∣
2

=
|Y21|2

|(YS + Y11)(YL + Y22)− Y12Y21|2

And thus the transducer gain

GT =
4<(YL)<(YS)|Y21|2

|(YS + Y11)(YL + Y22)− Y12Y21|2
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Maximum Power Gain and the Bi-Conjugate Match
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Comparison of Power Gains

It’s interesting to note that all of the gain expression we have
derived are in the exact same form for the impedance, hybrid,
and inverse hybrid matrices.

In general, PL ≤ Pav ,L, with equality for a matched load.
Thus we can say that

GT ≤ Ga

The maximum transducer gain as a function of the load
impedance thus occurs when the load is conjugately matched
to the two-port output impedance

GT ,max ,L =
PL(YL = Y ∗out)

Pav ,S
= Ga
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Comparison of Power Gains (cont)

Likewise, since Pin ≤ Pav ,S , again with equality when the the
two-port is conjugately matched to the source, we have

GT ≤ Gp

The transducer gain is maximized with respect to the source
when

GT ,max ,S = GT (Yin = Y ∗S ) = Gp
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Bi-Conjugate Match

When the input and output are simultaneously conjugately
matched, or a bi-conjugate match has been established, we
find that the transducer gain is maximized with respect to the
source and load impedance

GT ,max = Gp,max = Ga,max

This is thus the recipe for calculating the optimal source and
load impedance in to maximize gain

Yin = Y11 −
Y12Y21

YL + Y22
= Y ∗S

Yout = Y22 −
Y12Y21

YS + Y11
= Y ∗L

Solution of the above four equations (real/imag) results in the
optimal YS ,opt and YL,opt .
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Calculation of Optimal Source/Load

Another approach is to simply equate the partial derivatives of
GT with respect to the source/load admittance to find the

maximum point

∂GT

∂GS
= 0

∂GT

∂BS
= 0

∂GT

∂GL
= 0

∂GT

∂BL
= 0

Again we have four equations. But we should be smarter
about this and recall that the maximum gains are all equal.
Since Ga and Gp are only a function of the source or load, we
can get away with only solving two equations.
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Calculation of Optimal Source/Load

Working with available gain

∂Ga

∂GS
= 0

∂Ga

∂BS
= 0

This yields YS,opt and by setting YL = Y ∗out we can find the
YL,opt .

Likewise we can also solve
∂Gp

∂GL
= 0

∂Gp

∂BL
= 0

And now use YS ,opt = Y ∗in.
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Optimal Power Gain Derivation

Let’s outline the procedure for the optimal power gain. We’ll
use the power gain Gp and take partials with respect to the
load. Let

Yjk = mjk + jnjk

YL = GL + jXL

Y12Y21 = P + jQ = Le jφ

Gp =
|Y21|2
D

GL

<
(
Y11 −

Y12Y21

YL + Y22

)
= m11 −

<(Y12Y21(YL + Y22)∗)

|YL + Y22|2

D = m11|YL + Y22|2 − P(GL + m22)− Q(BL + n22)

∂Gp

∂BL
= 0 = −|Y21|2GL

D2

∂D

∂BL
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Optimal Load (cont)

Solving the above equation we arrive at the following solution

BL,opt =
Q

2m11
− n22

In a similar fashion, solving for the optimal load conductance

GL,opt =
1

2m11

√
(2m11m22 − P)2 − L2

If we substitute these values into the equation for Gp (lot’s of
algebra ...), we arrive at

Gp,max =
|Y21|2

2m11m22 − P +
√

(2m11m22 − P)2 − L2
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Final Solution

Notice that for the solution to exists, GL must be a real
number. In other words

(2m11m22 − P)2 > L2

(2m11m22 − P) > L

K =
2m11m22 − P

L
> 1

This factor K plays an important role as we shall show that it
also corresponds to an unconditionally stable two-port. We
can recast all of the work up to here in terms of K

YS,opt = −j=(Y11)+
Y12Y21 − 2<(Y11)<(Y22) + |Y12Y21|(K +

√
K 2 − 1)

2<(Y22)

YL,opt = −j=(Y22)+
Y12Y21 − 2<(Y11)<(Y22) + |Y12Y21|(K +

√
K 2 − 1)

2<(Y11)

Gp,max = GT ,max = Ga,max =
Y21

Y12

1

K +
√
K 2 − 1
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Maximum Gain

The maximum gain is usually written in the following
insightful form

Gmax =
Y21

Y12
(K −

√
K 2 − 1)

For a reciprocal network, such as a passive element, Y12 = Y21

and thus the maximum gain is given by the second factor

Gr ,max = K −
√
K 2 − 1

Since K > 1, |Gr ,max | < 1. The reciprocal gain factor is
known as the efficiency of the reciprocal network.

The first factor, on the other hand, is a measure of the
non-reciprocity.
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Unilateral Maximum Gain

For a unilateral network, the design for maximum gain is
trivial. For a bi-conjugate match

YS = Y ∗11

YL = Y ∗22

GT ,max =
|Y21|2

4m11m22
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Stability of a Two-Port
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Stability of a Two-Port

A two-port is unstable if the admittance of either port has a
negative conductance for a passive termination on the second
port. Under such a condtion, the two-port can oscillate.
Consider the input admittance

Yin = Gin + jBin = Y11 −
Y12Y21

Y22 + YL

Using the following definitions

Y11 = g11 + jb11

Y22 = g22 + jb22

Y12Y21 = P + jQ = L∠φ

YL = GL + jBL
Now substitute real/imag parts of the above quantities into
Yin

Yin = g11 + jb11 −
P + jQ

g22 + jb22 + GL + jBL

= g11 + jb11 −
(P + jQ)(g22 + GL − j(b22 + BL))

(g22 + GL)2 + (b22 + BL)2
22 / 26



Input Conductance

Taking the real part, we have the input conductance

<(Yin) = Gin = g11 −
P(g22 + GL) + Q(b22 + BL)

(g22 + GL)2 + (b22 + BL)2

=
(g22 + GL)2 + (b22 + BL)2 − P

g11
(g22 + GL)− Q

g11
(b22 + BL)

D

Since D > 0 if g11 > 0, we can focus on the numerator. Note
that g11 > 0 is a requirement since otherwise oscillations
would occur for a short circuit at port 2.

The numerator can be factored into several positive terms

N = (g22 +GL)2 +(b22 +BL)2− P

g11
(g22 +GL)− Q

g11
(b22 +BL)

=

(
GL +

(
g22 −

P

2g11

))2

+

(
BL +

(
b22 −

Q

2g11

))2

−P2 + Q2

4g2
11
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Input Conductance (cont)

Now note that the numerator can go negative only if the first
two terms are smaller than the last term. To minimize the
first two terms, choose GL = 0 and BL = −

(
b22 − Q

2g11

)

(reactive load)

Nmin =

(
g22 −

P

2g11

)2

− P2 + Q2

4g2
11

And thus the above must remain positive, Nmin > 0, so

(
g22 +

P

2g11

)2

− P2 + Q2

4g2
11

> 0

g11g22 >
P + L

2
=

L

2
(1 + cosφ)
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Linvill/Llewellyn Stability Factors

Using the above equation, we define the Linvill stability factor

L < 2g11g22 − P

C =
L

2g11g22 − P
< 1

The two-port is stable if 0 < C < 1.
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Stability (cont)

It’s more common to use the inverse of C as the stability
measure

2g11g22 − P

L
> 1

The above definition of stability is perhaps the most common

K =
2<(Y11)<(Y22)−<(Y12Y21)

|Y12Y21|
> 1

The above expression is identical if we interchange ports 1/2.
Thus it’s the general condition for stability.

Note that K > 1 is the same condition for the maximum
stable gain derived earlier. The connection is now more
obvious. If K < 1, then the maximum gain is infinity!
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