
4/12/2020 Understanding Darcs/Print Version - Wikibooks, open books for an open world

https://en.wikibooks.org/w/index.php?title=Understanding_Darcs/Print_Version&printable=yes 1/29

Understanding Darcs/Print Version

Getting Started

Understanding how to use the darcs commands can be a lot easier if you have a rough idea how things work.
We're not asking you to learn about patch commutation algebra (yet), but one thing you should at least be
comfortable with is the anatomy of a darcs repository.

e idea of the diagram is as follows: the stuff on the le in yellow is you. at's what darcs calls the working
directory. e stuff in grey, on the other hand, is part of that mysterious _darcs directory if you've played
around with darcs before. is can be broken down some more. e pristine tree (middle) is exactly like your
working directory, except only representing the last saved state. It's not essential to darcs's operations, but it
makes things run more efficiently, and is perhaps useful for understanding how things work. Finally, the right-
most portion is the set of patches. Patches are what makes darcs… well… darcs. Darcs thinks in patches. Almost
every darcs operation somehow involves (darcs) juggling some patches around behind the scenes. Enthusiastic
darcs users find that this makes life easier in a number of ways. For example, accepting patches to your code
becomes an extremely natural thing to do - you just let darcs apply them and in they go. But before we get to
that, let's tackle a small set of essential commands.

Say you have a directory with some files in it. When you run darcs init to initialise the repository, you get
an empty new darcs repository. Your working directory might contain files, but darcs does not know about them
yet.

Anatomy of a darcs repository

Essential commands

init

https://commons.wikimedia.org/wiki/File:Darcs-repo-anatomy.png

4/12/2020 Understanding Darcs/Print Version - Wikibooks, open books for an open world

https://en.wikibooks.org/w/index.php?title=Understanding_Darcs/Print_Version&printable=yes 2/29

darcs add tells darcs to keep track of a file or directory that was only in your working directory. It creates or
adds to a special temporary patch which we call the pending patch (will be represented in blue). Note that it
does not affect your pristine tree whatsover! e idea is that we haven't saved your work (which is what the
pristine tree is for). We've only told darcs that we might conceivably want to save it later on.

Note that the pending patch is different from all the other patches. It is really a representation of (some) things
you have not yet converted into a real darcs patch.

e darcs whatsnew compares the working directory against the pristine tree (theoretically, against the set
of patches) and displays what has changed between them. If there is anything in the pending patch, it also
displays the contents of that.

add

whatsnew

record

https://commons.wikimedia.org/wiki/File:Darcs-repo-init.png
https://commons.wikimedia.org/wiki/File:Darcs-repo-add-before.png
https://commons.wikimedia.org/wiki/File:Darcs-repo-whatsnew.png

4/12/2020 Understanding Darcs/Print Version - Wikibooks, open books for an open world

https://en.wikibooks.org/w/index.php?title=Understanding_Darcs/Print_Version&printable=yes 3/29

e darcs record command is how you save your work. It copies your chosen changes from the working
directory to the pristine tree, and more importantly, creates a new patch representing those changes. Changes
can also come from the pending patch, and these changes will also be propagated into the pristine tree.

Making Changes

e record command takes the changes which only exist in your working directory (or the pending patch) and
updates the pristine tree. e result of a record operation is a new patch.

e replace command is useful for explicitly telling darcs to replace one word with another (for example, a
variable name, if you are a programmer).

Note that because of the underlying patch theory, replace only works if the new word doesn't already exist in the
file. Darcs will helpfully let you know if you try to replace something you cannot. Also, there is a switch for
forcing the replacement, but the resulting patch is not a clean darcs-replace patch, but a combination of that, and
what you would have goen if you had edited the file in a text editor. In short, forcing darcs to replace when it
really doesn't want to can lead to counter-intuitive results.

We saw add in the last chapter. What about the other file-related commands?

Editing files

record makes new stuff old

replace for renaming tokens

Playing with files

https://commons.wikimedia.org/wiki/File:Darcs-record-before.png
https://commons.wikimedia.org/wiki/File:Darcs-record-before.png

4/12/2020 Understanding Darcs/Print Version - Wikibooks, open books for an open world

https://en.wikibooks.org/w/index.php?title=Understanding_Darcs/Print_Version&printable=yes 4/29

add, unsuprisingly, adds a file or directory to the list of files that darcs is paying aention to.

mv lets you rename a file or put it in a different directory. is command updates the pending patch with a move
command.

You might think that remove gets rid of a file, but actually all it does is to remove it from the list of files that
darcs is paying aention to. You probably just want to delete the file instead (eg: with rm). Darcs will notice and
record the change next time you darcs record that file. So what's the remove command good for? It might
be handy if you want to just remove the file from darcs, without actually geing rid of your physical copy. is is
most useful when you've accidentally used darcs add on a file you don't want darcs to pay aention to.

Working With Others

darcs get makes a copy of an entire darcs repository. Note that we only get the recorded patches (and
pristine tree), not any of the pending stuff.

add tells darcs to pay attention

mv for moving or renaming

you don't need remove

e commands

get

https://commons.wikimedia.org/wiki/File:Darcs-repo-add-before.png

4/12/2020 Understanding Darcs/Print Version - Wikibooks, open books for an open world

https://en.wikibooks.org/w/index.php?title=Understanding_Darcs/Print_Version&printable=yes 5/29

darcs pull copies from some other repository patches that you do not have. e patches are applied to your
pristine tree and working directory. is may cause changes to be merged. Note that darcs push does the
same thing, but in the other direction.

Darcs send is sort of like push, only it doesn't actually apply the patches anywhere. Instead it generates a
handy email to the person or people who own the repository. If it can't figure out who owns the repository, it
will let you send to any email address you want. Note that you can also pass the -o command to "send" into a

pull/push

send

https://commons.wikimedia.org/wiki/File:Darcs-repo-get-before.png
https://commons.wikimedia.org/wiki/File:Darcs-pull-before.png

4/12/2020 Understanding Darcs/Print Version - Wikibooks, open books for an open world

https://en.wikibooks.org/w/index.php?title=Understanding_Darcs/Print_Version&printable=yes 6/29

file, rather than a mail.

Apply is what you do to a patch that somebody darcs sends to you. You can also use it for the files you
generated via send -o. Note: push is actually just apply in disguise, but with all the boring work of copying
files over being done for you.

Put enables to copy a local repository to remote location (for instance, via ssh). ink of put as the opposite of
get.

So you pulled a patch and you got a conflict. What do you do? See the chapter Dealing with conflicts

Reviewing Your Work

e whatsnew command allows you to get an overview of what unrecorded changes you have made on your
working copy.

is way you can get an idea of what needs to be saved.

Changes gives a changelog-style summary of the repo history

apply

put

Dealing with conflicts

whatsnew

changes

https://en.wikibooks.org/wiki/Understanding_Darcs/Dealing_with_conflicts
https://commons.wikimedia.org/wiki/File:Darcs-repo-whatsnew.png

4/12/2020 Understanding Darcs/Print Version - Wikibooks, open books for an open world

https://en.wikibooks.org/w/index.php?title=Understanding_Darcs/Print_Version&printable=yes 7/29

reverted
something by
mistake? Try
unrevert

Using this command you can get an output like that produced by the diff command. Allowing you to save
changes in a plain old (yet very common) format.

Note that darcs does not depend on the diff binary.

Undoing Mistakes
ere are many ways to get rid of things: remove, rollback, revert, obliterate, unpull, unrecord… One would
almost think too many. Only three of these are very important. In order of gravity, they are revert,
unrecord, obliterate. You can also see them as being part of this table of symmetries:

recency task anti-task

more recent whatsnew
(i.e: add, remove, mv, editing a file) revert

recent record unrecord
less recent pull unpull (aka obliterate)

Don't worry too much about this table. Surely it will make sense later on.

Anyway, here is a brief comparison of all the different ways you can get rid of stuff. Each one has its place, even
the weird ones, like rollback.

e simplest of these commands is revert. All reverting does is to get rid of stuff you
have not recorded yet. You can think of revert as being the "opposite" of whatsnew.
Revert gets rid of stuff that is new.

diff

e big three

revert only removes what's new

https://commons.wikimedia.org/wiki/File:Darcs-repo-changes.png

4/12/2020 Understanding Darcs/Print Version - Wikibooks, open books for an open world

https://en.wikibooks.org/w/index.php?title=Understanding_Darcs/Print_Version&printable=yes 8/29

Unrecord does something quite different from revert. Whereas revert gets rid of stuff that is new, unrecord
removes a patch, but here's the important part, makes the stuff in it new again so that you can choose to re-record
or revert it at your leisure.

Unrecord should only be used if you recorded something, realised you made a mistake, and want to record it
differently (note also amend-record). Note: only use unrecord if you are sure that your repository is the only one
that has that patch in it!

Note that the picture above gives a somewhat more accurate depiction of what unrecord does - it removes a
patch and the corresponding modifications from the pristine tree. e fact that something is new again is just a
natural consequence of this fact.

Obliterate was deliberately named to be scary. Obliterate can be seen as unrecording a patch (thus making its
stuff new again) and then reverting it. In other words, obliterate totally wipes a patch out! Typically: you would
use obliterate to go really far back in time. Say, "hmm, all that stuff I've been working on for the past three
months was prey stupid". Obliterate is the answer there.

unrecord makes things new again

obliterate is unrecord + revert

https://commons.wikimedia.org/wiki/File:Darcs-repo-revert.png
https://commons.wikimedia.org/wiki/File:Darcs-repo-unrecord.png
https://commons.wikimedia.org/wiki/File:Darcs-repo-obliterate.png

4/12/2020 Understanding Darcs/Print Version - Wikibooks, open books for an open world

https://en.wikibooks.org/w/index.php?title=Understanding_Darcs/Print_Version&printable=yes 9/29

Unpull and obliterate are exactly the same command and is only named this way to reflect its usefulness for
undoing a pull.

Rollback is not a command that you can expect to use very oen. e situation is this. You've got a patch you
want to get rid of, but people have been telling you that you shouldn't obliterate or unrecord patches that are
already in other people's repositories. So what do you do? One solution is to fire up your text editor and make
exact opposite changes as the ones in the patch (and then record, etc). Another solution is to generate a rollback
patch, which does the same thing. It creates a patch that does exactly the opposite of another patch.

Some users just find it easier to go the text-editor route.

Despite its geing-rid-of-things style name, remove is not really an undo kind of command. Its job is the
opposite of add's: it tells darcs not to pay aention to a file any longer. But as we mentioned in the previous
chapter, most of the time you don't even need darcs remove. Simply telling your computer to get rid of the
file in your working directory is good enough for darcs to notice it is gone.

But... but... I just want to go back to the state of my repository from two weeks ago!

obliterate is probably what you want. See above.

Dealing With Conflicts

For the moment, the best place to go for dealing with conflicts is the conflicts FAQ on darcs wiki (hp://darcs.ne
t/FAQ/Conflicts).

Introduction to Patch eory

Other ways to get rid of things

unpull is obliterate

rollback

remove doesn't belong here

estions and objections

Handle your conflicts at home

Resolving conflicts

Math and computer science nerds only

http://darcs.net/FAQ/Conflicts

4/12/2020 Understanding Darcs/Print Version - Wikibooks, open books for an open world

https://en.wikibooks.org/w/index.php?title=Understanding_Darcs/Print_Version&printable=yes 10/29

(e occasional physicist will be tolerated)

Casual users be warned, the stuff you're about to read is not for the faint of heart! If you're a day-to-day darcs
user, you probably do not need to read anything from this page on. However, if you are interested in learning
how darcs really works, we invite you to roll up your sleeves, and follow us in this guided tour of the growing
eory of Patches.

e darcs patch formalism is the underlying "math" which helps us understand how darcs should behave when
exchanging patches between repositories. It is implemented in the darcs engine as data structures for
representing sequences of patches and Haskell functions equivalent to the operations in the formalism. is
section is addressed at two audiences: curious onlookers and people wanting to participate in the development of
the darcs core. My aim is to help you understand the intuitions behind all this math, so that you can get up to
speed with current conflictors research as fast as possible and start making contributions. You should note that I
myself am only starting to learn about patch theory and conflictors, so there may be mistakes ahead.

One difference between centralized and distributed version control systems is that "merging" is something that
we do practically all the time, so it is doubly important that we get merging right. Turning the problem of version
control into a math problem has two effects: it lets us abstract all of the irrelevant implementation details away,
and it forces us to make sure that whatever techniques we come up with are fundamentally sound, that they do
not fall apart when things get increasingly complicated. Unfortunately, math can be difficult for people who do
not make use of it on a regular basis, so what we aempt to do in this manual is to ease you into the math
through the use of concrete, illustrated examples.

A word of caution though, "geing merging right" does not necessarily consist of having clever behaviour with
respect to conflicts. We will begin by focusing on successful, non-conflicting merges and move on to the darcs
approach to handling conflicts.

Let us begin with a lile shopping. Arjan is working to build a shopping list for the upcoming darcs hackathon.
As we speak, his repository contains a single file s_list with the contents

1 apples
2 bananas
3 cookies
4 rice

Note:the numbers you see are just line numbers; they are not part of the file contents

As we will see in this and other examples in this book, we will oen need to assign a name to the state of the
repository. We call this name a context. For example, we can say that Arjan's repository is a context , defined
by there being a file s_list with the contents mentioned above.

What is the theory of patches?

Why all this math?

Context, patches and changes

https://en.wikibooks.org/wiki/User:Kowey

4/12/2020 Understanding Darcs/Print Version - Wikibooks, open books for an open world

https://en.wikibooks.org/w/index.php?title=Understanding_Darcs/Print_Version&printable=yes 11/29

Arjan makes a modification which consists of adding a line in s_list. His new file looks like this:

1 apples
2 bananas
3 beer
4 cookies
5 rice

When Arjan records this change (adding beer), we produce a patch which tells us not only what contents Arjan
added ("beer") but where he added them, namely to line 3 of s_list. We can say that in his repository, we have
moved from context to context via a patch A. We can write this using a compact notation like or using
the graphical representation below:

Starting from this context, Arjan might decide to make further changes. His new changes would be patches that
apply to the context of the previous patches. So if Arjan makes a new patch on top of this, it would take us
from context to some new context . e next patch would take us from this context to yet another new
context , and so on and so forth. Patches which apply on top of each other like this are called sequential
patches. We write them in le to right order as in the table below, either representing the contexts explicitly or
leaving them out for brevity:

Sequential patches

https://commons.wikimedia.org/wiki/File:Darcs-ag-initial.png
https://commons.wikimedia.org/wiki/File:Darcs-ag-patchA.png

4/12/2020 Understanding Darcs/Print Version - Wikibooks, open books for an open world

https://en.wikibooks.org/w/index.php?title=Understanding_Darcs/Print_Version&printable=yes 12/29

with context sans context (shorthand)

All darcs repositories are simply sequences of patches as above; however, when performing a complex operation
such as an undo or exchanging patches with another user, it becomes absolutely essential that we have some
mechanism for rearranging patches and puing them in different orders. Darcs patch theory is essentially about
giving a precise definition to the ways in which patches and patch-trees can be manipulated and transformed
while maintaining the coherence of the repository.

Let's return to the example from the beginning of this module. Arjan has just added beer to our hackathon
shopping list, but in a sudden fit of indecisiveness, he reconsiders that thought and wants to undo his change. In
our example, this might consist of firing up his text editor and remove the offending line from the shopping list.
But what if his changes were complex and hard to keep track o? e beer thing to do would be to let darcs
figure it out by itself. Darcs does this by computing an inverse patch, that is, a patch which makes the exact
opposite change of some other patch:

Definition (Inverse of a patch):

e Inverse of patch is , which is the patch for which the composition makes no
changes to the context and for which the inverse of the inverse is the original patch.

So above, we said that Arjan has created a patch which adds beer to the shopping list, passing from context
to , or more compactly, . Now we are going to create the inverse patch , which removes beer from the
shopping list and brings us back to context . In the compact context-patch notation, we would write this as

. Graphically, we would represent the situation like this:

Inverses

4/12/2020 Understanding Darcs/Print Version - Wikibooks, open books for an open world

https://en.wikibooks.org/w/index.php?title=Understanding_Darcs/Print_Version&printable=yes 13/29

Patch inverses may seem trivial, but as we will see later on in this module, they are a fundamental operation and
absolutely crucial to make some of the fancier stuff -- like merging -- work correctly. One of the rules we impose
in darcs is that every patch must have an inverse. ese rules are what we call patch properties. A patch
property tells us things which must be true about a patch in order for darcs to work. People oen like to dream
up new kinds of patches to extend darcs's functionality, and defining these patch properties is how we know that
their new patch types will behave properly under darcs. e first of these properties is dead simple:

Arjan was lucky to realise that he wanted to undo his change as quickly as he did. But what happens if he was a
lile slower to realise his mistake? What if he makes some other changes before realising that he wants to undo
the first change? Is it possible to undo his first change without undoing all the subsequent changes? It sometimes
is, but to do so, we need to define an operation called commutation.

Consider a variant of the example above. As usual, Arjan adds beer to the shopping list. Next, he decides to add
some pasta on line 5 of the file:

Commutation

https://commons.wikimedia.org/wiki/File:Darcs-ag-inverse.png

4/12/2020 Understanding Darcs/Print Version - Wikibooks, open books for an open world

https://en.wikibooks.org/w/index.php?title=Understanding_Darcs/Print_Version&printable=yes 14/29

e question is how darcs should behave if Arjan now decides that he does not want beer on the shopping list
aer all. Arjan simply wants to remove the patch that adds the beer, without touching the one which adds pasta.
e problem is that darcs repositories are simple, stupid sequences of patches. We can't just remove the beer
patch, because then there would no longer be a context for the pasta patch! Arjan's first patch takes us to
context like so: , and his second patch takes us to context , notably starting from the initial context : .
Removing patch would be pulling the rug out from under patch . e trick behind this is to somehow change
the order of patches and . is is precisely what commutation is for:

To understand commutation, you should understand why we cannot keep our original patches, but are forced to
rely on evil step sisters instead. It helps to work with a concrete example such as the beer and pasta one above.
While we could write the sequence to represent adding beer and then pasta, simply writing for pasta
and then beer would be a very foolish thing to do.

Put it this way: what would happen if we applied before ? We add pasta to line 5 of the file:

1 apples
2 bananas
3 cookies
4 rice
5 pasta

Does something seem amiss to you? We continue by adding beer to line 3. If you pay aention to the contents of
the end result, you might notice that the order of our list is subtly wrong. Compare the two lists to see why:

Why not keep our old patches?

https://commons.wikimedia.org/wiki/File:Darcs-ag-pre-commute.png

4/12/2020 Understanding Darcs/Print Version - Wikibooks, open books for an open world

https://en.wikibooks.org/w/index.php?title=Understanding_Darcs/Print_Version&printable=yes 15/29

 (wrong!) (right)

1 apples
2 bananas
3 beer
4 cookies
5 rice
6 pasta

1 apples
2 bananas
3 beer
4 cookies
5 pasta
6 rice

It might not maer here because it is only a shopping list, but imagine that it was your PhD thesis, or your
computer program to end world hunger. e error is all the more alarming because it is subtle and hard to pick
out with the human eye.

e problem is one of context, specifically speaking, the context between and . In order for instructions like
"add pasta to line 5 of s_list" to make any sense, they have to be in the correct context. Fortunately, commutation
is easy to do, it produces two new patches and which perform the same change as and but with a
different context in between.

Exercises
Patch is identical to . It adds "beer" to line 3 of the shopping list. But what
should patch do?

One more important detail to note though! We said earlier that geing the context right is the motivation behind
commutation -- we can't simply apply patches in a different order, because that would get the context all
wrong. But context does not have any effect on whether A and B can commute (or how they should commute).
is is strictly a local affair. Conversely, the commutation of A and B does not have any effect either on the
global context: the sequences and (where the laer is the commutation of the former) start from the
same context and end in the same context.

Now that we know what the commutation operation does, let's see how we can use it to undo a patch that is
buried under some other patch. e first thing we do is commute Arjan's beer and pasta patches. is gives us an
alternate route to the same context. But notice the small difference between and !

The complex undo revisited

4/12/2020 Understanding Darcs/Print Version - Wikibooks, open books for an open world

https://en.wikibooks.org/w/index.php?title=Understanding_Darcs/Print_Version&printable=yes 16/29

e purpose of commuting the patches is essentially to push patch on to end of the list, so that we could
simply apply its inverse. Only here, it is not the inverse of that we want, but the inverse of its evil step sister

. is is what applying that inverse does: it walks us back to the context , as if we had only applied the pasta
patch, but not the beer one.

https://commons.wikimedia.org/wiki/File:Darcs-ag-post-commute.png

4/12/2020 Understanding Darcs/Print Version - Wikibooks, open books for an open world

https://en.wikibooks.org/w/index.php?title=Understanding_Darcs/Print_Version&printable=yes 17/29

And now the undo is complete. To sum up, when the patch we want to undo is buried under some other patch,
we use commutation to squeeze it to the end of the patch sequence, and then compute the inverse of the
commuted patch. For the more sequentially minded, this is what the general scheme looks like:

https://commons.wikimedia.org/wiki/File:Darcs-ag-commute-inverse.png

4/12/2020 Understanding Darcs/Print Version - Wikibooks, open books for an open world

https://en.wikibooks.org/w/index.php?title=Understanding_Darcs/Print_Version&printable=yes 18/29

Exercises

Imagine the opposite scenario: Arjan had started by adding pasta to the list, and
then followed up with the beer.

1. If there was no commutation, what concretely would happen if he tried to
remove the pasta patch, and not the beer patch?

2. Work out how this undo would work using commutation. Pay attention to the
line numbers.

Every time we define a type of patch, we have to define how it commutes with other patches. Most of time, it is
very straightforward. When commuting two hunk patches, for instance, we simply adjust their line offset. For
instance, we want to put something on line 3 of the file, but if we use patch to insert a single line before that,
what used to be line 3 now becomes line 4! So patch inserts the line "x" into line 4, much like inserts it into
line 3.

Some patches cannot be commuted. For example, you can't commute the addition of a file with adding contents
to it. But for now, we focus on patches which can commute.

Note: this might be a good place to take a break. We are moving on to a new topic and new (but
similar) examples

We have presented two fundamental darcs operations: patch inverse and patch commutation. It turns out these
two operations are almost all that we need to perform a darcs merge.

Arjan and Ganesh are working together to build a shopping list for the upcoming darcs hackathon. Arjan
initialises the repository and adds a file s_list with the contents

Commutation and patches

Merging

https://commons.wikimedia.org/wiki/File:Darcs-complex-undo.png

4/12/2020 Understanding Darcs/Print Version - Wikibooks, open books for an open world

https://en.wikibooks.org/w/index.php?title=Understanding_Darcs/Print_Version&printable=yes 19/29

1 apples
2 bananas
3 cookies
4 rice

He then records his changes, and Ganesh performs a darcs get to obtain an identical copy of his repository.
Notice that Arjan and Ganesh are starting from the same context

Arjan makes a modification which consists of adding a line in s_list. His new file looks like this:

1 apples
2 bananas
3 beer
4 cookies
5 rice

Arjan's patch brings him to a new context :

Now, in his repository, Ganesh also makes a modification; he decides that s_list is a lile hard to decipher and
renames the file to shopping. Remember, at this point, Ganesh has not seen Arjan's modifications. He's still
starting from the original context , and has moved a new context , via his patch :

https://commons.wikimedia.org/wiki/File:Darcs-ag-initial.png
https://commons.wikimedia.org/wiki/File:Darcs-ag-patchA.png

4/12/2020 Understanding Darcs/Print Version - Wikibooks, open books for an open world

https://en.wikibooks.org/w/index.php?title=Understanding_Darcs/Print_Version&printable=yes 20/29

At this point in time, Ganesh decides that it would be useful if he got a copy of Arjan's changes. Roughly
speaking we would like to pull Arjan's patch A into Ganesh's repository B. But, there is a major problem!
Namely, Arjan's patch takes us from context to context . Pulling it into Ganesh's repository would involve
trying to apply it to context , which we simply do not know how to do. Put another way: Arjan's patch tells us
to add a line to file s_list; however, in Ganesh's repository, s_list no longer exists, as it has been moved to
shopping. How are we supposed to know that Arjan's change (adding the line "beer") is supposed to apply to the
new file shopping instead?

Parallel patches

https://commons.wikimedia.org/wiki/File:Darcs-ag-patchB.png

4/12/2020 Understanding Darcs/Print Version - Wikibooks, open books for an open world

https://en.wikibooks.org/w/index.php?title=Understanding_Darcs/Print_Version&printable=yes 21/29

Arjan and Ganesh's patches start from the same context o and diverge to different contexts a and b. We say that
their patches are parallel to each other, and write it as . In trying to pull patches from Arjan's repository,
we are trying to merge these two patches. e basic approach is to convert the parallel patches into the
sequential patches , such that does essentially the same change as does, but within the context of b.
We want to produce the situation

Converting Arjan and Ganesh's parallel patches into sequential ones requires lile more than the inverse and
commutation operations that we described earlier in this module:

1. So we're starting out with just Ganesh's patch. In context notation, we are at
2. We calculate the inverse patch . The sequence consists of moving s_list to shopping and

then back again. We've walked our way back to the original context:
3. Now we can apply Arjan's patch without worries: , but the result does not look very

interesting, because we've basically got the same thing Arjan has now, not a merge.
4. All we need to do is commute the last two patches, , to get a new pair of patches . Still,

the end result doesn't seem to look very interesting since it results in exactly the same state as the
last step:

5. However, one crucial difference is that the second to last patch produces just the state we're looking
for! All we now have to do to get at it is to ditch the patch, which is only serving to undo
Ganesh's precious work anyway. That is to say, by simply determining how to produce an which
will commute with , we have determined the version of which will update Ganesh's repository.

Performing the merge

https://commons.wikimedia.org/wiki/File:Darcs-ag-gpull-unknown.png

4/12/2020 Understanding Darcs/Print Version - Wikibooks, open books for an open world

https://en.wikibooks.org/w/index.php?title=Understanding_Darcs/Print_Version&printable=yes 22/29

e end result of all this is that we have the patch we're looking for, and a successful merge.

Merging is symmetric

https://commons.wikimedia.org/wiki/File:Darcs-merging.png
https://commons.wikimedia.org/wiki/File:Darcs-ag-gpull.png

4/12/2020 Understanding Darcs/Print Version - Wikibooks, open books for an open world

https://en.wikibooks.org/w/index.php?title=Understanding_Darcs/Print_Version&printable=yes 23/29

Merging is
symmetric

Concretely, we've talked about Ganesh pulling Arjan's patch into his repository, so
what about the other way around? Arjan pulling Ganesh's patch into his repository
would work the same exact way, only that he is looking for a commuted version of
Ganesh's patch that would apply to his repository. If Ganesh can pull Arjan's
patch in, then Arjan can pull Ganesh's one too, and the result would be exactly the
same:

Definition (Merge of two patches):

e result of a merge of two patches and is one of two patches and , which satisfy the
relationship

e merge definition describes what should happen when you combine two parallel patches into a patch
sequence. e built-in symmetry is essential for darcs because a darcs repository is defined entirely by its
patches. Put another way,

To be written

The commutation with inverse property

https://commons.wikimedia.org/wiki/File:Darcs-ag-merge-symmetry.png

4/12/2020 Understanding Darcs/Print Version - Wikibooks, open books for an open world

https://en.wikibooks.org/w/index.php?title=Understanding_Darcs/Print_Version&printable=yes 24/29

Prior to darcs
1.0.6, changes
were also called
patches, but we
decided it was too
confusing.

e definition of a merge tells us what we want merging to look like. How did we know how to actually perform
that merge? e answer comes out of the following property of commutation and inverse: if you can commute
the inverse of a patch with some other patch , then you can also commute the patch itself against .

Note how the le hand side of this property exactly matches the relationship demanded by the definition of a
merge. To see why this all works,

To be written

definition of inverse has no effect
inverse of an inverse
inverse composition property
definition of commutation
definition of a merge
commutation with inverse property if and only if

Intermediary Patch eory

Before moving on, we would like to make one very minor point clear: in the day to
day operation of darcs, we talk about pulling and pushing patches, and of recording
and reverting changes. is is just a user interface convention. In patch theory
terms, all of these are just patches. e patches which you pull and push are named
patches, patches which contain a name and a list of unnamed patches. So in fact,
when you pull a single named patch from somebody else's repository, you are pulling
a sequence of potentially many primitive patches. What does this mean for merging?

In the last chapter, we saw that dealing with simple, non-conflicting merges consists mainly of making an
inverse patch and commuting that inverse with the other side's patches. Let us now explore a slightly more
complicated scenario, where we have to merge against a non-conflicting sequence of patches. We do this with a
variant of the darcs hackathon shopping list. As usual, Arjan and Ganesh are working together to write the
shopping list. ey both start from a common file shplst containing

apples
bananas
cookies

As before, Arjan inserts "beer" in line 3 of shplst and records the change. He then decides to add another item on
the end of the list, this time, "pasta" and records his second change. In darcs notation, Arjan has brought us from
an initial context , to a new context with beer in it, and then to yet another context with pasta as well..

FIXME: will be fleshed out: i want to show what happens when Ganesh pulls two patches in

Definitions and properties

It's all patches

Merging a sequence of patches

4/12/2020 Understanding Darcs/Print Version - Wikibooks, open books for an open world

https://en.wikibooks.org/w/index.php?title=Understanding_Darcs/Print_Version&printable=yes 25/29

Patch eory and Conflicts

Up to now, we have only dealt with merging patches that do not conflict with each other. e next question of
interest is how darcs should behave when they do.

Consider the previous darcs hackathon example, where as usual, Arjan decides that the shopping list needs some
beer. In this scenario, Ganesh decides that you can't live on apples and cookies alone and records a patch adding
"pasta" to the s_list file. Now he wants to know what Arjan is up to, and so pulls the beer patch into his
repository, but oh no! Arjan and Ganesh's patches conflict! How should darcs behave here?

e darcs answer is that both patches cancel each other out so that neither of them has any effect. e resulting
shopping list has neither beer nor pasta. is might sound alarming, but it's not as bad as you might think. Darcs
does not silently delete your code. Aer canceling the two patches, it adds a third patch into your working

Sequences of patches

Permutivity

Conflicts

https://commons.wikimedia.org/wiki/File:Darcs-ag-conflict.png

4/12/2020 Understanding Darcs/Print Version - Wikibooks, open books for an open world

https://en.wikibooks.org/w/index.php?title=Understanding_Darcs/Print_Version&printable=yes 26/29

directory which indicates both sides of the conflict so that you can select the one that you want. So any
resolution you apply is a third patch which depends on the two conflicting ones. If you did darcs whatsnew
on Ganesh's repository at this point, what you would get is something like this:

v v v v v v
beer

pasta
^ ^ ^ ^ ^ ^

It is intuitively obvious that Arjan's patch conflicts with Ganesh's, but intuition is useless if it does not translate
into actual Haskell code. e first issue is thus that of knowing that we have a conflict in the first place.

All of this boils down to commutation. We have a conflict if commutation is not defined for the two patches. Let
us briefly revisit the merge process described in the previous chapter. When Ganesh tries to pull Arjan's patch in,
he tries to adapt the patch to his context by performing the following sequence: invert his own patch, apply
Arjan's patch , commute the inverted patch with Arjan's patch, and discard the evil step sister of his inverted
patch. As we know, inverting patches is easy. Ganesh's patch is inverted into something which remove 'pasta'
from line 3 of the s_list file. On the other hand, when we try to commute that against Arjan's patch, we have a
failure.

Why? Simply because it is how we define commutation between the two types of patches. For instance, both
Ganesh's and Arjan's patches are hunk patches. e commutation of two hunk patches of the same file is
defined in darcs using Haskell code very similar to the following (simplified from PatchCommute.lhs):

commuteHunk :: FileName -> (FilePatchType, FilePatchType) -> Maybe (Patch, Patch)
commuteHunk f (p1@(Hunk line2 old2 new2), p2@(Hunk line1 old1 new1))
 | line1 + lengthnew1 < line2 = Just ...
 | line1 + lengthnew1 == line2 && nonZero = Just ...
 | line2 + lengthold2 < line1 = Just ...
 | line2 + lengthold2 == line1 && nonZero = Just ...
 | otherwise = Nothing
 where nonZero = lengthold2 /= 0 && lengthold1 /= 0 && lengthnew2 /= 0 && lengthnew1 /= 0
 lengthnew1 = length new1
 lengthnew2 = length new2
 lengthold1 = length old1
 lengthold2 = length old2

Only four cases are defined. e first two cases cover the situation where the p1 occurs in an earlier part file
than p2 (even bumping up against it as in the second case). e laer two cases cover the reverse situation (p2 is
in earlier part of the file than p1). However, the case where p1 and p2 overlap simply does not fall into one of
these possibilities. us we have a conflict on our hands.

Now that we know we have a conflict, we now need to deal with this conflict in a sane manner. We not only
want to deal with the conflict at hand, but deal with it in a way which allows the conflict to propagate cleanly
across an entire sequence of patches. Well, darcs is based on commutation, so in order to keep things running
smoothly, we need to make sure that things continue to commute. So, we're going to define a secondary forced
commutation operation that we only use when there is a conflict.

How do we know we have a conflict?

Forced commutation

https://en.wikibooks.org/wiki/Understanding_Darcs/Patch_theory

4/12/2020 Understanding Darcs/Print Version - Wikibooks, open books for an open world

https://en.wikibooks.org/w/index.php?title=Understanding_Darcs/Print_Version&printable=yes 27/29

Recall the definition of commutation from the previous chapter:

e forced commutation is going to do something similar, but with a very odd twist. Instead of patches and
 performing the same change as their respective ancestors and ; forced commutation is going to give us

patches, each of which makes the change that the other patch does. at is, normal commutation wants to do
roughly the same thing as , but forced commutation makes it do the same thing as .

operation effect of effect of
normal commutation
forced commutation

As a side note, we're going to need a lile terminology to keep ourselves from tripping over our tongues. It's not
very convenient to always talk about one patch making the same change as another patch, which is something
we will be referring to a lot. So let us compress things a lile bit. Instead of saying that patch makes the same
change as , let us simply say that the effect of is . It is the same idea, but with slightly smoother
terminology.

Let us see what the implications of this are for Ganesh and Arjan. We want to commute the inverse of Ganesh's
patch () against Arjan's patch. Since the two patches conflict, we have to resort to forced commutation,
which produces two patches and with the following bizarre properties:

the effect of is ; it removes Ganesh's "pasta" from the shopping list.
likewise, the effect of is ; it adds Arjan's "beer" to the shopping list.

Effects

Forced commutation in merging

https://commons.wikimedia.org/wiki/File:Darcs-merging-forced.png

4/12/2020 Understanding Darcs/Print Version - Wikibooks, open books for an open world

https://en.wikibooks.org/w/index.php?title=Understanding_Darcs/Print_Version&printable=yes 28/29

is is all very convenient, because if I may remind you, what we're really aer is cancelling out the patches. If
we do the standard merging technique of simply removing (so we don't add the beer aer all), we will have
successfully undone Ganesh's pasta patch. e merge is complete!

But wait! We can't just leave things undone. How is the poor developer supposed to know if there is a conflict, if
darcs handles them by undoing things? e answer is that we're not going to stop here. Undoing the conflict is a
very important first step, as we will see in further detail below. Look at it this way. We know there was a conflict,
because of the way commutation was defined, and we know which patches were involved in the conflict. So
whenever this happens, we first undo everything, and then inspect the contents of the conflicting patches, and
use that to create a new conflict-marking patch.

FIXME:insert image here showing the conflict-marking patch

:TODO: introduce this section

Marking the conflict

Darcs 2

The exponential merge problem

https://commons.wikimedia.org/wiki/File:Darcs-ag-conflict2.png

4/12/2020 Understanding Darcs/Print Version - Wikibooks, open books for an open world

https://en.wikibooks.org/w/index.php?title=Understanding_Darcs/Print_Version&printable=yes 29/29

Unfortunately, the darcs 1 merge algorithm has the property that certain merges -- merges that people have
experienced in real life -- are exponential in time with respect to the size of conflict (in number of conflicting
patches). is leads to the problem that some users have experienced where users would do a darcs pull and
inexplicably, darcs would just sit there and hang…

So how does the new darcs 2 fix this problem? What's going on under the hood?

e notion of conflictors is essentially that we would special patches that contain a list of patches they conflict
with

See also Haskell/GADT and http://wiki.darcs.net/Ideas/GADTPlan

Retrieved from "https://en.wikibooks.org/w/index.php?title=Understanding_Darcs/Print_Version&oldid=3371490"

This page was last edited on 5 February 2018, at 12:30.

Text is available under the Creative Commons Attribution-ShareAlike License.; additional terms may apply. By using this site,
you agree to the Terms of Use and Privacy Policy.

Conflictors

Use of Generalised Algebraic Datatypes to improve code safety

Current research

https://en.wikibooks.org/wiki/Haskell/GADT
http://wiki.darcs.net/Ideas/GADTPlan
https://en.wikibooks.org/w/index.php?title=Understanding_Darcs/Print_Version&oldid=3371490
https://creativecommons.org/licenses/by-sa/3.0/
https://wikimediafoundation.org/wiki/Terms_of_Use
https://wikimediafoundation.org/wiki/Privacy_policy

