Dark Internet

Mail Environment
Architecture and Specifications

June 2018

| would like to dedicate this project to the National Security Agency. For better or worse, good or evil, what
follows would not have been created without you. Because sometimes upholding constitutional ideas just isn’t
enough; sometimes you have to uphold the actual Constitution. May god bless these United States of America.

May she once again become the land of the free and home of the brave.
Ladar Levison

Please Note

This is a preliminary draft. We anticipate updated revision(s) will be published later this year. To find
the latest version of this document, provide feedback, or contribute to the development effort,
please use the links below.

Dive https://darkmail.info/spec

Discuss https://darkmail.info/forums

Develop https://darkmail.info/code

https://darkmail.info/spec
https://darkmail.info/forums
https://darkmail.info/code

COME NS ettt ettt e e etteete e bt et e e b e eabeeab e st e bt e b e ebeeabeeat e et b et e e bt e bt er b e et b eaat e st eatenbeeabeeateerseetsebeenreenseerseerseersenteenes 3
FIQUIES ottt ettt ettt ettt et e te et e s ete et e s eteesessesaesessess s essesaesessesassess et st essess b essess et essess s easessseasesseseasets et ensessetensessebentesseaensereans 1
OVEIVIBW .ttt ettt ettt b bttt st b bt e e et s s b et ettt a et s e b et et e s e bt e st se s b et et etatatataesesetas 12
Pt 2 ADSTIACT ...ttt et eteeae et et e ete et e s e eseeueesee st eat et ensessesseeseestentent e sensesseesesateneent et eetenseeseeaeentententestensessesaeene 14
Pt 2: TEIMINOIOGY w.vuetieieieiecieiei ettt st s ke s et st s e bt se b et et s bt s b et s besaesetsaets 15
Y WOTAS ...ttt ettt ettt ea et et eae st et et e e s et et e st et et ees et esess et eseas et esens et esens et eses s et et eas et eseas et esens et eaens et eseeseseannsenerennane 15
AACTOTS ettt ettt ettt et e et e et e e b e etbeebe e ba e b e easeeaseesseess e b s esbaerseeas e bt e b s e b e erbeeabeer b e bt e b s e s e eabeerseetbetsebaebeereeaseerseeaseeseetaenreennes 15
ACCOUNT IMOAES ...ttt ettt ettt s st s s s e s e s e s e s et e e e s ee s e s e s et e e s s esses et es s saeasasseses et et s e easanasseseseseneen 16
SIS ottt t et te et et ete et et ete et et ets et et e et et et ets et et ets et et ets et et esteseabess et et esseteesersetebesseteseesetetensereebenseretens 16
=L 1.0 17
Part 3: SYSTEM ATCRITECIUTE ...ttt ettt ettt s s et eae st et ess s et ess et et essnsesenssesessesesensasesenseseseneas 21
DESIGN GOQIS ...ttt ettt ettt ettt ettt ettt a et et a st ete ettt e ettt eab et eae ettt eat et etea st et eas et et eas et eteas et eseas et eteas et eteanene 22
OPETALIONAI DITECLIVES ...ttt ettt ettt ettt ea et et s s et et ea s et eses s et esessesesentesesessesesensesessesesessnsesessnsesensnsesenssesenens 23
FUNCHIONAI COMPONENLS ...ttt ettt ettt ettt ettt et se et et eas s eteas et et eas et esess et esessesesens et esenseseseaseseseesesesnasesesnanene 24
TTANSPOM .ttt ettt ettt et et et et et e e beeteeseessessessessebeeseessessessessassassaesaessessessessesbens e beessessessessensensebeeseersersessensenbenseerens 25
IMESSAGE ODJECE ...ttt ettt ettt ettt et ete st et ese et s eae et et eteas et eteas et ete st eana bt ete st eteas et ereanane 25
ClASSIC EM@IT AGENTS.....ooeieeeeeeieeeteeeeeeteeeet ettt ettt ettt et s et ete st et eas et et ese et et easesesentesesesses et ensesesensesesensesesensesesessesesensesesensans 26
PrIVACY PrOCESSING AGENTS ..ottt ettt ettt ettt e e teste st et e e aeseete b e s e s e sassesaesassesessassessasassesassessessssesseseasassessasansesessasseseasanes 27
OrganiZation PrIVACY AGENTviuiieiieeieiceieieetetet ettt ettt bbb s s b e tese s esess s esasa s ebessesesessesesessesesessesesessbesensesesessane 27
USET PrIVACY AGENT ...ttt ettt ettt et s et st et e s s et ese s et asessebase s esesessesassssesasessebessssesasessesassesesessssesesessesessesesessssesas 27
SIGNET ROIMEVAI SOIVICES ..veeeeeeeeeetee ettt ettt ettt et eteat et ete st s esess et et eas s eseas et esensesesenseseseasesesensesessnsane 28
Part 4: MaNAGeMENT RECOTA........ccuiuiuiiiieieieteeretetetee ettt ettt ettt bbbt ettt s s s b et sebebesebetesessesase b s esesesesessssasasasesebeseseseteseseses 29
I ETOAUCTION ettt ettt et e et et e eae s s e et et eete s e s e sesaeentsatentensesesesaaentsnsentessesensesseaneestententensessensaeneensentensensensesseenen 29

TEXE RECOTAS vttt ettt ettt ettt et et e st e s et e st e s et es s es st esses s et esses st ensss et essos st asseseasessesesessonsesensossesensonsesensensesenson 30
SOUNITY ettt ettt ettt et et et et et et e st ese e b e st esaebassesaesassesaesassesaesassassesassasaesassasaesassasaesassasaesassessesassasaesensasaesessassesassassesessansesansans 30
EXPITATION ..ttt ettt ettt et et et e s ete et easete et essetsete st ete et e st esa et ensets et essete et e st eteesesseseebessets s estets et ensessebenseseetentereetenes 31
FIRIAS ettt ettt et et et et e e e s et e s et e e e s et eat s e s et s et entes et e st e s et e st ese s entene s entese s entenesenteneas et eneenenteneese s eneenensene 31
DETINITIONS .ttt ettt et s et e st e e e s et e s es e e s e e e s et ese s et eees et eses st sees st eaeseaseseseasesan st eaes st eseneaseaenssesessasenan 32
DS CTIPHIONS ..ttt ettt ettt et ettt et e e st ete b et e et e s b eseebessasae s e s es s e s e s ase e s e e b e st et e b e st et et e st ek et esa e s e b ess et e b ensesebensesabessesaesensereeranran 32
EXQINIPIES. ..ttt ettt ettt ettt ettt ettt et et e ettt e et et eaea b et eae et et esea b et eae bt esen s et eten s et eseat et eaens et eaeat et ereaseseanaseterennene 38
Part 5: SIGNETt DAta FOMMIAT ..ottt ettt ettt b e b et essesaebesseseesessessesessessasassasaesassassesessansesesansasenns 40
GEOUPINGS . ..euveeeeteereeteteeteteeteteteteetesteseesasseseesesseseesassassasassassesassassesassassesassassesessassesassassesassasses s sassesessassesansassessssensesssessesansassessesessasssas 40
LRSS ettt ettt e e e et et et et e e u e e s e aeeat et et et et eaa e s e e atent et et e s eseeaeeatentent et et eeaeeseeneententennestensesseeneeneeneennens 40
Y DS ettt ettt ettt ettt et e st e st e et e e s e et e st e b e b e s e et e e s b e st e s b e b e b e s e es e e st e Rt eR b e s b e s e eReeRees e e Rt essen b e s e b e esteseestesbes s et eeseestestentessenseeseeseeseereeneas 40
IV OGITIIS ettt e e et e e e e e te s e e e e et e e e s e teseeaeaeeneeeeaaeseeseaseseeseesemeeseaaeaeeseeaemteseaseneesenseneeneseneeeeeseteneeeeeeneenenaeneenenes A1
AL BGOMIOS .ttt ettt ettt ettt ettt et e st e b e s s ete b ess et e b essese s asses s s esses e s esses s s ess e s e s esses s b esseseebea b e s s et enbese et enbe st esesesseseberseresanes 41
FIOIA TA@NEITIEIS ettt ettt ev e e et et et et et e eueesesaeenesaeetee et eeseeseeneeseent et easeesesseeneeseententenseesensaesesatenteneensessenaeenes 42
RBINGES .ottt ettt et et et e et e e e et e e st e st e s se b e et aesaestessassassaaseesaaseestassesbensar s e et eassestessesbas s e s e es e st estessesbenbesaetaeseestessentensaseases 42
RESEIVEM. ettt et et et e et e e e e s e e st e ee st et eea e s eeseeseententease st eesesseeseesteneensent e seeseestententease st esaeeseestententensesteesesnesaes 42
OTAEIING .ttt ettt ettt ettt ettt et t e s eae s et e st et esess et esess et eseasas et ess et essasesesessesesensesesess s et easeseseas et et esseseseaseseseasesetensesesnasane 43
BINATY LAYOULS ..ottt ettt ettt ettt et ettt e et e st essese s ete et essessesensessesensessesessessesessessesessessesessensesessessesensessesesseseesens 43
SIGNET HAMEN ...ttt ettt ettt et et s et et at et et e et s te st et eat s eae et et et e et s eaeat et et e et s eaea st ete st etens et ereanene 43
FIEIA Ty POS. e teeeeeteeeeeteeeeteeeeeeeeteeeetete ettt et ettt et s ettt e st et et eas s et ea s et et eas et esent et es s et et eseas s et eeset et eas et esens et eaeas et etens et etensenene 44
CTYPIOGIPNY ettt a s bbb st s s st s e s st s s s s s s et e s e s s s s s s s s se s et e st e s s A e st s b s s e s e aesese b e s s nenenaes 45
SIGNING KBYS .ttt ettt ettt ettt ettt e s s ete et ess et e b esseseesessess s esseseesessessesassessesessessesessessesensessesanbessesessessesessessesesensesesanes 45
ENCTYPHION KBYS .ttt ettt ettt ettt s s et b b e se e s e s s e e et et esesesesesasesentat bt esesesebesesesennasnsaes 46
SIGNMATUIES .ttt ettt ettt et e et et et ete et essess s e st essesessesa s esseseesessess s assese s assessebessese b ess et e b essese b ensese b ensersesensetesenseseans 46

SPIIEEING vttt ettt ettt ettt et a et b et bt et a e e e e bbbt ettt et e A e A e e as bbbt et et eteaeeeasasa b bt e s eseseteaetens 47

FINGEOIPIINTS oottt ettt ettt at et ettt et et eseete s e st ese b essessebessessesessessebessessesasbessesassessebensessesessessesessessessssensesesenseseans 47
CrYPLOGIAPRIC SIGNELS ...ttt ettt b et at bt s s b etess e b et e sbesesessesessstesesessesesessebeseasesesessesessaseseaneseseas 48
OrGANIZATIONAL SIGNELS ...ttt ettt ettt ettt et e et ete et et ese st es et easesesensesessssesessnsesesensesessnsesessesesessasesesnnnas 48
UST SIGNEES... ceeetiteteeieteteeet ettt ettt et et et e st et et eseeses s eseesessesaesassest et et assesassassesassassessesassessesessesaesessesassassesaesassesaabessessesensassesansan 51
FUIT SIGNOES <.ttt ettt ettt ettt et et et e s et e st et et e et et esenseseseas et esensesesensesesensesesensesesensesesensesesens et essesesesnnsesernnsane 54
COMIMION FIRIAS ettt ettt a et eu e st e s et e s e s et esase st esasentenaasenseseasensestesensensasensentasensentasesentesensentesesones 54
Distinct OrganizatioNal FIEIAS.........o.ovoeieeeeeeeeeeeeeee ettt ettt ettt ettt ete s s etess et eseas et esensesesensesesensesesensesenn 59
DISTINCE USEI FIRIAS ..ttt ettt sttt ettt b bbbttt e s et eseas 62
SPCIAI FIBIAS ..ttt ettt ettt ettt et et e b bt ab e b eae et e s eab b et e et et eseteabeseae et e s ete et b etsa b et essaseteae et esernaes 65
SIGNATUTE FI@IA ..ottt ettt ettt ettt et eae st e s e s s et et e et et essases et easesesensesessesesessnsesess s et essnsesessesesessnseresensas 66
[AENEIFIADIE SIGNELS ... ettt ettt ettt ettt as s as s st es et eseseseasaeasasas ettt eseseseseasasanesaseseee 66
DOTIVATIVE FOTMNIES .ttt ettt et e ae et e st e st eeaeeseeseeasesssesssesstesaeessesasesasesasensseseenseensesssenssensseseessesnsesssesasesssenseensens 67
SIGNEt SIGNING REQUESTES ...ttt ettt ettt ettt et e s et e b essese b essesesbessesasbesses e sassesassasseseesansesesassesasansasenns 68
OrGANIZATIONA] PrHIVALE KEYSveeeeeeeeeeeeteeee ettt ettt ettt ettt eas st es s est et esesseseasssesesensesesensesesensesessesesensnsesensana 68
USET PTIVATE KBYS ettt ettt ettt ettt ettt essese b ess et e b essese b esses s besbesasasseseesessessesessessesessessesassensesensensesenns 68
ENCIYPLEA PrIVALE KEYS.....o ettt ettt ettt ettt ettt eseses s et esess et etensesesesses et ensesesensesesensesesensesesensenens 68
USQQE ..eieiiieeiieieettetet et et testeete et e st es b e s e b e esa et eesa et s e st assasseas e et e as e e st astesses b e s e s e eR e et s e st e R s eR b e s e s e s e estes e et s erter b e b eesaaseestessentensenseesaesaeseeseareas 68
ROTBEION <.ttt ettt ettt et s et et se b et e st b e s asa s et asee s et as s s et aseeseses s s et asessesas st et asaesebasessesassesesesaesesessasesassnsans 68
REOVOCATION ..ttt ettt sttt ettt sttt b e bt s ettt et ettt bbb neae s 68
VAIIATION -ttt ettt a Rt e At A et E et s et ettt a e st ettt taeananeas 68
EMCOGING ottt ettt ettt a bbbt b ettt a e e et b bbb e A et e e e e e b e bbb et e s et et e e e as e bbbt et et et et easanesanasans 69
BIMAIY ettt ettt ettt e et s e st e et et e s b e s b e b e b e ke ete e st e st e st e s b e b e b et e et s esbestes s e b e et et e ese et s e st esses b e bebeessesserterserteseeseeseeseersenes 69
JAVASCIIPE ODJECE NOTATION.cviieveictctctcee ettt ettt ettt b bbbttt s e e bbb et s e b etesessasesese s s et esesesesessanananans 69
PrivVACy ENNGNCEA MESSAGE.......oeeieeeieeeeeeeeteeeeteeeet ettt ettt ettt ettt ettt et et ese st et eseas s esesses et essesesessesesensesessasesessnsesesnasesens 69

Part 6: Message Data FOrMAt (D/IMIME)coeuieiiiieieteteteteteteteeeees sttt s sttt ettt ssssese bbbt esesesessssasssasesesesesesesesess 72

I T OAUCTION <ttt ettt ea e e e ea e et et eete et esseesesaeentsatentensessessesseentensentessensensesseaneentententensensensaeneeneentensensensenaeenes 72
HISTOTICAI CONTEXT ettt ettt ettt ettt a et et se s et es e st e st esesseseasessestesessentesesentenessentesessentenessessesessensensasensensssensons 72
LEAKAGE. ...ttt ettt ettt ettt ettt et ettt et et ea b et A e a bt eaeat et eaeat et eAea s et eae s et eeenseseten s et eaeat et eaens et eaeat et ereaseseanatererennane 73
ALGOTIERIMIS ¢ttt ettt ettt et es et ettt s s asas et et e s e s e s et et eaeasas e bbbt e s et e s e s easeeesas ettt et et eteseaereanasase st et eseras 74
REQUITEA BASEIINE ...ttt et ettt ettt et et eae st et e s et et ese st et et easesesensesessnseseaens et eaensasetensesens 74
AEETNATE BASEIINES ..ottt ettt et et es et et eae et et ese s e et esessentesesentesssentesessentesessentesessentensasentenessensenessentonens 74
Y DS ettt ettt ettt tt et et et et e st e et e et e e beesb et et et e et e et s et s e s b e st e b e be et e et s et s esbesterb et e b et e estesbestes b e b e et et e et s esbessess e beeteessersesbertensenteeseeraesaeraans 74
IIESSAGES ... ettt ettt et et et et et e et e et e esa e st e st e s b e b e ssaeseeseesbas s e s s e b et e et e es s e Rt e st e b e b e es e e Rt eRtessesseRben b et aestestessestens e s et aeseeseensensensanseases 75
D=1 t= I 0T 1 4 = | SOOI 77
IMESSAGE HEAR ...ttt ettt ettt et et e st et e s e as s eseas et esent s esenses et easesesensesesenseseseatesesensesetensesesensans 77
CRUNKS ottt ettt et e s s e st e e et et et e sessessesaeeneententensessessesseententensensansensasesssestentensensonsessesseenesasensonsonsessessesnesnns 77
SPECANIZEA PAYIOAAS ...ttt ettt ettt ettt ettt ese et e st e et et eten s et eae et et eaent s ete s et eaens et eanes et enssenennana 78
ENCIYPTEA CRUNKS ...ttt ettt ettt as et et as s etes s b et sasesesessesetessesesessseseasesesensesesenssesenssens 79
SIGNATUTE PAYIOAAS........oceieeeeeeieeeeeeeee ettt ettt ettt et et s st esese s et eas et et ess s et essas et ese s esens et et essasesensesesenssetenssesensaes 82
KBYSIOTS ..ttt ettt ettt ettt ettt ettt ae et et e sttt e sttt e ae et e aeae et et eae b et e et et et eab et ebe st s et eaeet et eas s esessseseas et eaeassereassetn 82
CRUNKS ..ttt ettt s s bbb bttt e b st s s e s e bbb e b et et esesesessasa s e bbb e s e b et et et easaess e b e bbb e b et et et eesesasa bbbt et esetetetereaes 82
EMVEIOPE ...ttt ettt ettt ettt ettt et ae et et at et et a bt et e et et ete st et ea e et s eAe ettt e et s et e et s eteas s eaeas et eteas et eteasesene 84
IVLEEAAATA .ottt e et et e e et et e eue et eeaeeatea e et et et eea e se e st e st et et et eeaeeseeatentene et et eeaeeseeseent et eane st eeaeesesaeeneeneennent 84
DISPIAY ettt ettt ettt et a et ettt et e ettt e et ete et et eAe e st etea st et e st s ebe et s eseats et eas et etess et eteas s eaeateseseastern 85
FN =Tl =] 1 C OSSOSO 85
SIGNATUIES ...ttt ettt ettt ettt et ettt e bbb ese s s e b et ss s e s e s s s s esese st e s e s e s s e s et e s b e b e s e e s e b esea s e b e s easebese st ebesesb et eseeteb et easeseseasebeseatesesenes 85

B IANNESS ..ttt ettt s et R et et £ et e Rttt s et et e ettt a e s sesees 86
TrANSTEI ENCOTING ...oivititieieieiiietetetetetetetett ettt ettt st ettt ettt s s et b e b e b e s et et ese e assbase s besebeb et eassssssses b s esebesesesesessasenssasesesesa 86
Part 7: Dark Mail Transfer PrOtOCOI (DIMTP) ..ottt teaee sttt esessss st s sesesetesesensnsnsasesesesesenesessaens 87

PROTOCOI IMOTEL ...ttt ettt ettt et et e s et sa e et e sentesess e st esesentesessentesessentesssentesessentesessentesessonsesessonsenens 87

HISTOTICAI COMTEXT «oneeeeeeeee ettt ettt ettt et e s s e et ae s e s s e e et ataeseseeea et sasssseseseseeasasansnsnses 88
LINE BASEA PrOTOCO ...ttt ettt ettt st s et e tese st e st esesseneesessestesessentesssentesesseseenessensenessentensesensensesensenens 89
COMMANAS BNA REPIIES ...ttt ettt ettt ettt et etete et et ese st es et easesesess et essssesesensesesensesessnsesessesesessnsesennnsa 90
IV TEANSACTIONS ..ttt ettt ettt et e st eu e s et esees e tesessenteseesententesentestesenseseesensensesensensesensentosensentosessentesesontesesones 92
ODJECES ettt ettt ettt ettt ettt et a et ettt aea et et ettt e At et e A e et et eteat et eAea bt eten bt et eas et etens et etent et eaeetesetent et etensererennane 92
DBIIVEIY .ttt ettt ettt et ettt a ettt ettt ettt a e e e bbb et et et et et et eaeasasas ettt es et et eaeteasasasas st 92
CACIING ettt ettt ettt ettt et et et e et et eae et et et e ettt e at et e A et et eteat et etea bt eaea st et eat et etens et eteat et eaentesetentetetensererennane 92
QoY T aT=Te (] 1 OO 93
LTI CATES ettt et ettt ee et et eae et et e s e et et eae et et eae st e e es et et es et et en et et eae st et es et eneese e enees et et es et e eenesteneeneneenens 94
SINGIE PrOOCOI MOAE......eeeeeeeeeeeee ettt ettt ettt ae s et as s et eas s et essas et ens s esens s et ensesesessesesenssetensnsesensees 95
DUBI PTOOCOI HOSES ..ottt ettt et ettt e s s s s e en e e te st sssessesaessesssentensonsensansessesstensensonsessensesssensentonsonsessessessesaes 95
THINEOULS ettt ettt et et e et e et e e st e st ess e e s eessesasesatesasenseeseenseessasasesssessseseessesasesasenasenssessessasssesssesasesssesasessessesssena 97
TOIIMINATION «ceeeeeeeeeeee ettt ettt e e e et e et e b e et e eatesatesatesatesssenssesseeaseensastasssesssenseensssntesssenssenssanseanseessesnsessensensesnsesnsenns 98
GlODAI COMMANGAS ...ttt ettt ettt ettt s et et es s e s e s est e s e sestes et es s et st ens ot sesensossesentensesessensesensossesensonsesensensanan 99
[| =1 TSRO 99
EHLO ettt ettt ettt et ettt et et et et e st e s e e b e st e s e e s e st e R e et as b e R e e b ar s e Rt ehent e s e et en b e Rt et e st e st et arte st e s et ese et e teseetanseneesantane 100
IVIODIE. ...ttt ettt ettt ettt et ettt et a ettt b et b et b et e b st s et b et b e a bt snese e 100
R ET e ettt ettt ettt ettt ettt e et et et et et et e s e et e st e s e e b et e st et e st e s e s e st e Rt et an s e R e s an s e s e esa st e R e e s en b e R e et ent e st esente st s entes e et entene et anteseesensentesantans 101
INOOP ...ttt ettt ettt sttt s b et et e b et et eb et e st et et eae s b e st e st eben s e st se st e st ebeat e st ssent e st ese s e st b et e st e s et e st sbe b e st ebetentebentene 101
HELP ..ttt ettt ettt ettt ettt bbbt b e e b st e b bt b st e s h s et b bt e b st s e b aebenetesen 102
QUIT ettt ettt et et ettt et et et e et e e seessessessess e s aeseeseessessessensess e s aessessessessesbensens e seessessesseabensensenbeesaeteersersersenbeteereereas 102
Message TranSTEr COMMANAScooveveverereeeeeececeeeeeet ettt ettt et e sttt esesesess s sesesesesesesessssssssessesesesesesessssssasssasesesesesesesssenenen 103
IVAALL .ottt ettt et e e et e et e et e e e e s be e beessaesseessaess e saesbaessaesseasseassesssesssesseesseaes e ssensaesseenbeeaseerseaseeassersa et aerseerseessenreereanes 103
RO P T ettt et e e et e et et e e ae e e at e e —te e at e e tte e ate e —te e at e ettt ettt eate e et e atteeateeateeateeateetteeateenareerteeraeaaes 104

SigNet TraNSTEr COMMANGASouieieiiieeeeereteeeee ettt sttt ettt st sessssssssesesesesesesetessssssssssasesesesesesessssasssssasasesesesesessssaenen 107
SN T ettt ettt ettt et e et e e e ae e e eaaeeeab e e ea b e eaabeeeabeeaa bt e et e eaabeeeabeeaaateeabt e et e e et s e eatseeabeeeateeerateerbbeeraseeatseertseenteeenteeenteeerreens 107
HIST ettt ettt ettt ettt ettt b et b et h et h bRt b et b st e bbb st et b et e b e s et ettt e benetesen 110
VREY ettt ettt ettt sttt sttt s e b et a Rt b et ea et b et eb et enenes k|

RESPONSE COURS......uvveeeteeeeeeteee ettt ettt ettt e st e s et ese et et ess st et essas et ese et esessasesesensesessesesessnsesesens et essnsesesensesessasesessnsesesnnseseananas 112

PTOTOCOI EXEENSIONS ...ttt ittt ettt ettt et sttt e bttt bbbttt st st bt et et et tatacsesesesens 112
SIZE ettt ettt et et b ettt e et t et e et e et b et b eaatebe e be et e eateatt et s et e et e eateatbeass e bt e bt erteeabeerseeasetsenseenreenseenseerrennes 113
BINARY .ttt ettt sttt s s b e e et A e AR a st e s ARt s b n st na et eneres 113
UNICODE ...ttt ettt es e st st b e s s e st ae b e et s et e s es s s s s e et st e e s ae st sesesensesesensesenanras 113
PIPELINING ..o ecvteteete ettt ettt ettt ettt et eete et e etaeeateeseeeseenseeaseesseessessenssenseenseesseesseasserssenssesseesseessenssenteenssenseesseessenssenssensenn 113
SURROGATE ...ttt ettt ettt et es s b st s e e es s e st s s st ae b ea s seta e e st s s et e s s et e s s eeaesesnsesenassas 113

Part 8: Dark Mail ACCESS PTOtOCOI (DIMAP)ooveeeeeeeeeeeeeeeeete ettt ettt et et et es s sssssasassssesesssssesesesessnsasassnes 114
Part 91 GIODAI LEAGET ...ttt ettt ettt ettt ettt esete st e s ess et s ese st esess s ebess et eseaseseseasetesessesesessasesensaseseans 115
Part 10: DK Ml AIlIENCE ..ottt ettt a ettt a st e aessseseses s sssssassssesesesesssssssansnsases 116
Pt 195 TRFCAES ettt ettt et et et et et e et e s esaesnesatententessensesseesesntententensessessessesstententonsensessensesatentontonsessesnesnsenns 117

TRITATS ettt et et e et e e e e eeaeea e e st et et et e s eesesaee st satent et et et eeseeneeatentent e tea e a et eeaaent et et et easeeneeseeneent et et enesnesaeenes 117
VBMUEBS .ttt e et e et e et e et e e et e e aeeesaee e aeseaaessasssesassessseesseseasssesassensaeasssesaeerateeaseeaaeensee st e eaaseeenbeeenbeeenreeerreeeraeas 17
VBCEOTS ettt ettt ettt ettt et b et e b b et e b et e bt b et e bt b et e bt b et e st b et Rt b et e bt b et e bbb et b et e st b et eneebe e ens 120

IMITIGATION STTATEGIES ...ttt ettt ettt ettt et e e et e b essese s essesessessesssassesessesseseesassessasansesessassessasansesensanes 122
IMESSAGE PTOTECTION ..ottt ettt ettt ettt ettt et ete et esseteetessessetassessebassessesassessesassassetassessesassessessssassesessassesnssasens 122
ACCOUNT IMOAES ...ttt ettt ea et et ae st et e s e st et ese st et es s st et ess st et et sss et esenseseasssesessnsesesensesesensesesensesenenseseaensans 123

AEACK VCEOT MITIGATION......oeeeeeeee ettt ettt ettt ettt ettt et eae s e s ess s esessasesessseseasaseseasesesesssesenssesennes 124

NETWOTK PACKET CAPTUIE ...ttt sttt ettt s s s s s s st eseses s ssssesesesesessssssssssnsesesessssnsssssssssesesssssssssnsasasas 124
FOTWAIA SECTECY ...ttt ettt ettt ettt ettt et s et et e as et et eas st et essas et essetesessasesessasesesseseseas et eseaseseseasesesensesesensesesn 125

Signet and KeY MaNAGEMENTc.cieveievirireteteteeieeeetete ettt sttt et et es bt aesssess st et esesesesesesessssssasasesesesesesessanssasasesesesesesesesesas 125

Basic Management @Nd OPEratiON..........c.ouicioueueieeeeeeeee ettt ettt ettt ae st es s eseas s eseas et eseaseseseasesesensesesenseseran 125
Part 12: Attacks @Nd MiItIGAtIONScveuiieieeiiieeieetee ettt ettt ettt e b st beseasesesessesese st esessssesessasesessasesesessesesnaseseas 131
Part 13: KNOWN VUINEIADIITIESouveeieeeeeeteeeeee ettt ettt s et et es e te b esesaessessesessensesssessssesensensasons 132
Pt 122 CTRAIES ettt ettt e et e e e st et et et e s e saesssestentensessensessssssententensessessessesseeneententensensessessesnssntontonsonsesenses 133

AUULNIOT oottt ettt et e s et et e st e s e st es e eae st es s ea s st es s es e st es s ea e st es s ea e Rt es s es e Rt es s e s e st es s eaeates s et eatentea et enten et enteaetentensetens 133

LAAAE LOVISOM ettt ettt ettt ese et et es et e esse e e e es et eseese s entasessensesesseasesestensesensensasensensasestensssentensssensenessensens 133

COMETIDULOTS ettt ettt ettt e st et e b e st e st e st et e st e s e et assessssesses st essese s ensesessensessssessensssensensasensenssenes 133

DAV CTOCKET ceetetieeeeteee ettt et et et et et e sa e et s s e et et easensesseasesasentensensonsessessesssentontensessesseesesssententonsensessensesasentonsensensessesnen 133

UNNAMEA CONIIIDULOTS ..ttt ettt et et st e et satent et esesessessesssententonsensessessesnsentontonsessessessesnsentonsonsesessesnen 134

AEETIDUTION <ottt ettt et et e e s eeaeea e e st et et et e s eeaesseeneeatent et esesesaaaseeseententensensesseenesatententenenseeneeneenes 134
PATT 51 REFEIEIMCES .ottt ettt e et et ese et e tes e setesesentesess et es et et eseesentenesentenessenteneeseneeneesentenessensenessentenessens 135
APPendixX A: DAta TYPE IACNTLIFIEIS . ..e.eeeieeiieeeeeeeeeee ettt s ettt b bttt sessaeas st esesesessssssasssasasaseseseseaens 138
AppendiX B: COMMON ENCOAINGS.......cuoiiieeeieeeeeteteet ettt ettt ettt ettt e es s et ss s esessesesess s esessasesessesesesssesessesesensasesan 139

BASEOAUTT ENCOTING......ovvieeeeeeeeeeeeeeee ettt ettt ettt ettt s et et ess et et en st et ensesesens et esensesesensesessnsesessnsesenenseresensans 139

Notes on implementing base64url encoding without padding..........c.c.ooeveviiieieiiceeeeeeee e 139
IMUIIPTECISION INEEGETS ..ttt ettt ettt ettt ese et ese st e s e s et et essaseseseesesessasesesensesesensesessssesessnsesessnsesesensesensasans 140
RAAIX64 CONMVEOISIONS ...eeveeieeeeeeeteteeteeteeeteeteeteesesseesesseeseetesessessessesssententessessessessesseensorsensessessessessesstensonsossessessessesossonsessessesseseon 141
ENCOAING BINATY IM RAAIX 64 .eeevevieeeeeeeeeeeeete ettt ettt eae et et eases et ess et et essesesenssesensesesessesessnsesesensesesensesennnsans 142
DCOAING RAAIX-67 ..ottt ettt ettt ettt ettt ettt s a et e s ess et et ess st et ess et et eas s eseasesesens et essasesesneseseseasesesensesesnasens 143
EADSA POINT FOMMATt .ottt ettt ee e et et et este st esseesesaeententensessessessesseaseententesensensesaeententensessessessesssensensensessensessessenne 143
ST VOIS ettt ettt e et e s e et e e beebe e b e e saesss e seessaessaessaess e ssesseasseesseasseasseassessserseessaessaassesssassasnseensaasseessenssenssesanns 143

SAMIPIE KBY .ttt ettt ettt ettt as s ettt et e st et eaeae s et e et et et eat et et eat s et e et s eteat et ereas et et ens et eaens et eaennene 143

SIGNATUTE ENCOGING...oiiititititctcte ettt ettt ettt bbbttt s s s as bbb e s e s et et essssassses b b ebesebesesessssesasebeseseseteseseseaen 144
ApPendiX C: What NEEAS DOINGooveuiiereeeeeeeeeeeteeeeetetee ettt ettt ettt et et st et ease s e e as et eseasaseseas s esessesesesssesessesesessesesensesesensesesn 145

10

Figure 1 Traditional EMail HaNAIING ATCRITECIUTEoevveeeeeeeeeeeeeeee ettt sttt s ettt s et aeanan 21
Figure 2 Proposed Email HaNAIING ATCRItECEUTEovveeeeeeeeeeeeeee ettt ettt ettt ettt eseteaeseas 22
Figure 3 DIME FUNCLIONAl COMPONENT......c.oieeeieeeeeeeeeteeee ettt ettt ettt ettt sens et st et ets s et ess st esesssesens s esenseseseasasesensesesennas 25
FIGUEE 4 DIME TTANSPOTT ...eouvititiietieeteteeieteteet ettt teste s ettt st etese s et ese b esessesesesssesessesesesssesesses et essesesessesesessesessssesessssesessasesesessesesnas 25
Figure 5 DIME MESSAGE ODJECTeoeeeeeeeeeeeeeeee ettt ettt ettt eae et et eas s et ese et et eaensesess s esessesesensasesessesesennas 26
FIQUre 6 SIGNEt LOOKUP SEIVICES ...ouivieieieieereteteteteteeeettetet ettt sttt ettt st et es et et s e s easssasasas st es et et eseasesasasaseseteseseseseaesnaen 28
FIGUEE 7 POLICY DiSPOSIHIONS......ocvevieeeeteeieeetceeeteteeeetete ettt et ettt e s ese s esess s et eseesesessssesessnsesessesesessnsesesensesensnsesensesesensasesensesesenees 37
FIGUIE 8 = SIGNET GIOUPINGS ..oveeveeieieeteietieteeteteetete e teteete vt estete b eseesesbessesessessesaseseesasassesaesassesassassesesassesasessessesessesansensesaesansessasansas 41
FIGUIE 8 IMESSAGE SITUCTUIE ...ttt ettt ettt ettt ete e st et et esbese s esseseebessesesessesaesesseseesassasaesassassesesassesessansaseans 76
FIQUIE 9 = AULROT SPOOTING ...ttt ettt et et s e ss st s et et et et esesessssasasssssesasssesesesesessasasassnes 118
Figure 10 = Service PrOVIAEr SPOOTINGovovevevereeeeeecececeeeeteee ettt ettt ettt et es et et esesessssasassssesesesesesesesssnasasasasanes 118
Figure 11 = MeSsSage CONEENT DISCIOSUTE.........c.eueeveveeeeeereeeeeeteeeeeet ettt s et etessesesessesesessesesessesesensesesensesesssesessssesenssesesssesenens 119
FIGQUrE 12 = Metadata DiSCIOSUTEc.ouiieieeeieiceceeeetete ettt ettt ettt et b et st et se s seas s ebeasbesess et esessesessasesessasesesnasesessasesesnns 120
Figure 13 = BasiC MeSSage PrOTECTIONc.icviueeieieeeeteeeteetet ettt ettt ettt ettt ettt e e ese s essete s essetesbessesensessesensessesesessesensensesensens 123

1

OVERVIEW

This document is divided into sections that will introduce the reader to the Dark Internet Mail Environment (DIME)
terminology, architecture, security, data formats, and protocol specifications.

PART 1: ABSTRACT

The Abstract serves as a short introduction to this document.

PART 2: TERMINOLOGY

The Terminology section defines all DIME-specific terminology as well as other industry standard terms, acronyms and
key words used throughout this document.

PART 3: SYSTEM ARCHITECTURE

The System Architecture section introduces DIME, discusses the design goals, and then provides an illustrated guide to
the functional components of a complete DIME-enabled mail handling environment.

PART 4: MANAGEMENT RECORD

The Management Record section describes the DNS record used to enable DIME support, advertise policies and provide a
cryptographic trust anchor for an organizational domain name.

PART 5: SIGNET DATA FORMAT

The Signet Data Format section describes the data format for user and organizational signets.

PART 6: MESSAGE DATA FORMAT

The Message Data Format section describes the format used to encrypt messages and protect the data they carry.

PART 7: DARK MAIL TRANSFER PROTOCOL (DMTP)

The DMTP section details the unauthenticated protocol specification for message transfers and signet lookups. It provides
connection standards, command syntax, and certificate requirements.

PART 8: DARK MAIL ACCESS PROTOCOL (DMAP)

The DMAP section details the authenticated access protocol specification used within the DIME ecosystem.

PART 9: GLOBAL LEDGER

The Global Ledger section details the implementation and use of a distributed immutable reflective ledger for signets.

12

PART 10: DARK MAIL ALLIANCE

The Dark Mail Alliance section details the creation of the Dark Mail Alliance (DMA) and describes its function and
oversight responsibilities, including the processes used to manage DIME infrastructure projects.

PART 11: THREATS

The Threats section details the threats to the privacy functions of DIME and provides a discussion of security

considerations not covered elsewhere.

PART 12: ATTACKS AND MITIGATION

The Attacks and Mitigation section details attack scenarios, and provides strategies DIME actors can employ to mitigate
specific vectors.

PART 13: KNOWN VULNERABILITIES

The Known Vulnerabilities section will detail any known vulnerabilities as they are discovered.

PART 14: CREDITS

The Credits section provides attributions to the people that helped immensely with this document.

PART 15: REFERENCES

The References section provides a detailed bibliography for the references used throughout this document.

13

PART 1: ABSTRACT

This document provides the reader with an overview of the Dark Internet Mail Environment (DIME) along with detailed
specifications for the data formats and protocols needed for a successful implementation. As revealed in the Overview,
these chapters cover the following: Terminology, System Architecture, the Management Record, the Signet Data Format,
the Message Data Format, the Dark Mail Transfer Protocol, the Dark Mail Access Protocol, the Global Ledger, the Dark
Mail Alliance, a discussion of Threats, Attacks, and Mitigations incorporated into the system design plus a disclosure of
any Known Vulnerabilities.

DIME strives to create a secure communications platform for asynchronous messaging across the Internet. The key
design element which differentiates DIME from traditional Internet electronic mail (email) is the use of end-to-end
encryption. The incorporation of encryption directly into the protocols ensures the secure and reliable delivery of email,
while providing for message confidentiality, tamper protection, and a dramatic reduction in the leakage of metadata to
processing agents encountered along the delivery path. To the extent possible, we have made DIME resistant to
manipulation, but a secure system is only as strong as its weakest link. The goal with DIME has been, wherever possible,
to make the security of the system depend on the complexity of a user’s password, and the strength of their endpoint’s
defenses.

This document should serve as an implementation and deployment guide. Our goal is to collect and present, in a singular
place, all of the current DIME specifications, standards and best practices. The intended audience is system builders
(software developers, integrators), system operators, security researchers and protocol designers. However, this
document should provide anyone who reads it with an understanding of the details necessary to design, implement and

deploy a secure system that conforms to DIME’s strict user-centric requirements for privacy protection.

14

PART 2: TERMINOLOGY

A number of other terms are used throughout this document which have been taken from related specifications or
developed out of colloquial usage. We have attempted to collect the terms with special or unusual means throughout this
document and provide definitions for them here.

KEYWORDS

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL", “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”,
“MAY”, “OPTIONAL", “EXPERIMENTAL"” and “ASSIGNED” are used throughout this document and are to be interpreted
using the definitions provided below. [KEYWORD]

MUST This word, or the terms "REQUIRED” or "SHALL", assert that the definition is an absolute
requirement of the specification.

MUST NOT This phrase, or the phrase "SHALL NOT", asserts that the definition is an absolute
prohibition of the specification.

SHOULD This word, or the term "RECOMMENDED", asserts that there may exist valid reasons in

particular circumstances to ignore a particular item, but the full implications must be
understood and carefully weighed before choosing a different course.

SHOULD NOT This phrase, or the phrase "NOT RECOMMENDED", asserts that there may exist valid
reasons in particular circumstances when the particular behavior is acceptable or even
useful, but the full implications should be understood and the case carefully weighed
before implementing any behavior described with this label.

MAY This word, or the term "OPTIONAL", asserts that an item is truly optional. One vendor
may choose to include the item because a particular marketplace requires it or because
the vendor feels that it enhances the product while another vendor may omit the same
item. An implementation which does not include a particular option MUST be prepared
to interoperate with another implementation which does include the option, though
perhaps with reduced functionality. In the same vein, an implementation which does
include a particular option MUST be prepared to interoperate with another
implementation which does not include the option (except, of course, for the feature the
option provides).

EXPERIMENTAL This word describes elements of the system which are still in active development.
Specifications for experimental functionality will likely change in the future and those
changes MAY break implementations built using the experimental specifications
provided here.

ASSIGNED This word is used to describe identifiers associated with data format and protocol
extensions which have been reserved by individuals, or organizations currently in the
process of developing functionality associated with the keyword, but have not
submitted specifications for their effort.

ACTORS

15

When discussing a simple mail transaction, four distinct actors are involved. For this document, an actor is narrowly
defined by the cryptographic key associated with the actor. In reality, any of the individual actors below could represent
multiple people sharing a single email address, or multiple hosts working collaboratively to support DIME for a single
organizational domain.

Author The cryptographic identity associated with the creator of a message.

Origin Represents the author’s service provider and the hosts responsible for
providing DIME network services on the author’s organizational domain.

Destination Represents the recipient’s service provider and the hosts responsible for
accepting a DIME message on behalf of the recipient.

Recipient The cryptographic identity associated with the recipient of a message.

ACCOUNT MODES

Security is a flexible term. To accommodate the different types of DIME users, and their radically different needs, the
concept of an account mode has been created. Each mode represents a defined point along the security-functionality
spectrum, and is designed to easily communicate to user’s how an account operates. The primary differentiators

between each mode are where message encryption (or decryption) occurs, and where a user’s private key is stored.

Mode Definition
Trustful In this mode, the server handles all privacy issues on behalf of the user. This
requires a user to trust the server. The assumption is that accounts operating in
this mode will send messages using the Simple Mail Transfer Protocol (SMTP)
and receive messages using the Post Office Protocol (POP) or the Internet Mail
Access Protocol (IMAP). Webmail systems which handle the encryption
functions server-side are also considered to be operating in trustful mode.
Cautious In this mode, a server is only used to store and synchronize encrypted data.
This includes encrypted copies of a user’s private keys, and encrypted copies
of messages. This mode is designed to provide a user experience comparable
to email today, while dramatically minimizing the amount of trust placed in the
server. Webmail systems which perform encryption inside a user’s browser are
considered to be operating in cautious mode.

Paranoid In this mode, a server will never have access to a user’s private keys
(encrypted or decrypted). This mode is designed to minimize the amount of
trust a user is required to place in their server, at the expense of functionality.
This mode does not support webmail access, and does not allow the user to
access their account from multiple devices without the assistance of an
external method for synchronizing their key ring.

SIGNETS

16

Signets are broken into two distinct classes: “organizational” signets, which are associated with a domain name, and
“user” signets which are associated with an email address. An email address is defined as a mailbox, or local part, in
combination with a domain name. Each actor is associated with a signet. The Author and Recipient are associated with
user signets, while the Origin and Destination are associated with organizational signets. While it is not a technical
requirement, the assumption is that organizational signets will have long lifespans, and that user signets will be rotated

frequently.
Category Definition
Organizational Signet This signet category holds the public keys associated with a domain name.

Optional fields can be used to provide information associated with domain,
such identity information, or access information which allow for the auto
configuration of user clients. Every DIME-enabled domain will have a unique
organizational signet, thus an organization with multiple domains will control
multiple organizational signets. Subdomains may have a unique organizational
signet or rely on the organizational signet of the parent domain. The private
keys associated with organizational signets are used to sign user signets,
access message envelope information, and sign outbound messages.

User Signet This signet category holds the public keys associated with an email address.
Optional fields associated with a user signet can be used to provide identity
information, or advertise other properties associated with an email address.
Every email address is associated with a unique user signet, although a single
user who controls multiple email addresses can control multiple user signets.
The private keys associated with a user signet are used to decrypt incoming
messages and sign outbound messages. Access to a user’s current signing key
is required to rotate a user signet, and thus publish new public keys for an
email address.

The signet data format defines a number of optional fields which have the capable of dramatically increasing the size of
a signet. For efficiency, it is possible to extract and store the relatively small portion of a signet required for
cryptographic purposes. Because the subset of cryptographic fields have been separately signed, it is possible split a full
signet, while retaining the ability to cryptographically validate the resulting core signet.

Type Definition

Core Signet The core signet represents the required cryptographic fields associated with a
signet. Core organizational signets are self-signed, while core user signets are
self-signed by the user, and then counter-signed by the organization.

Full Signet A full signet includes a complete core signet, including its signatures, along
with a number of optional “informational” fields. A full organizational signet is
terminated by a second self-signature, while a full user signet is terminated by
a second organizational signature.

TERMS

-
~N

For the reader’s benefit, we have attempted to provide definitions for any additional terms used throughout this

document that are unusual, or carry with them specific meanings in the context of this document.

Terminology ' Definition

Actors

See the Actors section above for definitions of the different actors: Author,
Origin, Destination and Recipient.

Alternate Name (AN)

The Alternate Name or Alt Name field supplies additional domains associated
with an X.509 certificate.

Advanced Persistent Threat (APT)

Advanced Persistent Threats are organized groups capable of continuous,
extremely sophisticated attacks which are capable of devoting significant
resources to achieve success.

ASClI

American Standard Code for Information Interchange

Attacker

Any unauthorized party attempting to gain access to message data (content,
metadata, etcetera).

Certificate Authority (CA)

Certificate Authority whose signature asserts the validity and trustworthiness
of an X.509 certificate.

Consumer

A consumer is a general term used to refer to both a signet resolver and a
Message Transfer Agent, or a generic client application capable of sending
commands to a server.

Common Name (CN)

The Common Name is the field which provides the domain name associated
with an X.509 certificate.

Distinguished Encoding Rules (DER)

The Distinguished Encoding Rules are a binary encoding for X.509 certificates.

DIME

The Dark Internet Mail Environment loosely refers to the collection of format,
protocols, and software used to facilitate the automated encryption of email.

DMAP The Dark Mail Access Protocol is the authenticated protocol used to
synchronize keys, submit signet signing requests, access messages and submit
outgoing messages.

D/MIME The Dark Multipurpose Internet Mail Extensions is the encrypted message
format used to encapsulate and protect MIME messages within DIME.

DMTP The Dark Mail Transfer Protocol is the unauthenticated protocol used to

retrieve signets and transfer messages across organizational boundaries.

Domain Name System (DNS)

The Domain Name System resolves an arbitrary a string of letters and numbers
into the numeric IP address needed to access the hosts associated with the
given name.

End-to-End Encryption

Data encrypted between two endpoints, typically the author and recipient.
Note that for users in the Trustful account mode, the server is the endpoint.

Fingerprint

Core Fingerprint. A SHA-512 hash generated from required cryptographic
portion of an organizational or user signet.

Full Fingerprint. A SHA-512 hash generated from the cryptographic and
informational portions of an organizational or user signet.

Ephemeral Fingerprint. A SHA-512 hash generated by combining the

18

current core user signets for two email addresses.
Root Fingerprint. A SHA-512 hash generated from the required cryptographic
portion of the first signet in a user’s current chain of custody.

Host

The computer associated with an IP address returned by a DNS name
resolution and reachable using TCP/IP. This document assumes a host is a
single computer, but it is worth noting that a single host IP address could reach
more than one physical computer.

Internet Protocol (IP)

The Internet Protocol is a packet based, routable network of interconnected
computers.

Key Ring

The private keys associated with a user’s current and former signets.

Key Store (KS)

An authoritative source for organizational and user signets is referred to as a
Key Store. Typically, the Key Store is the DMTP host responsible for supplying
signets, although the term itself is independent of the protocol and transport
used.

Management Record

The DNS record used to enable DIME support, advertise policies and provide a
cryptographic trust anchor for an organizational domain name.

Man in the Middle

A type of attack commonly associated with cryptographic communication
channels where a perpetrator sits between two victims, emulating each party
to the conversation and fooling the endpoints into thinking they are directly
connected. This type of attack allows the perpetrator to monitor and/or
manipulate the conversation.

MDA Mail Delivery Agent (sometimes referenced as Message Delivery Agent), the
MDA is responsible for delivering messages to a recipient’s message store.

MitM See Man in the Middle above; MitM is a type of attack where a perpetrator sits
between two victims to intercept and/or manipulate a conversation.

MS The Message Store holds all of the messages associated with a user. The
message store is sometimes referred to as a mailbox.

MSA The Message Submission Agent is the message handler responsible for
transferring a message from a user’s device to the origin host associated with
an organizational domain.

MTA The Mail Transfer Agent (sometimes referenced as Message Transfer Agent) is
the handling agent responsible for transferring messages between
organizational domains.

MUA The Mail User Agent is a fancy way of referring to a user’s email client, the
MUA allows users to send and receive messages.

OCSP The Online Certificate Status Protocol is used to check with a Certificate
Authority and find the real-time revocation status of an X.509 certificate.

OPA The Organization Privacy Agent handles DIME specific cryptographic operations

on behalf of an organizational domain.

Organization

The service provider, corporation or entity associated with a domain name.

Organizational Domain

A domain name which excludes any subdomain. An organizational domain is
comprised of a top-level domain extension plus a single additional name
typically associated with an organization.

PA

See OPA and UPA, the Privacy Agent is responsible for DIME specific

19

cryptographic operations.

PFS Perfect Forward Secrecy involves protection by an ephemeral key specific to
the session or message and that the ephemeral key will remain secure if an
associated long-term key is compromised in future.

POK The Primary Organization Key is the key responsible for organizational level
signing operations, which includes signing organizational signets, signing user
signets, and signing outbound messages.

RR A Resource Record refers to the result of a DNS query for a particular domain
name.

SR See Signet Resolver, the resolver retrieves the signet for a domain name or
email address and performs the validation required to authenticate the result.

Signature Signatures are created using EdDSA and the Twisted Edwards curve (and

birational equivalent of Curve25519) commonly known as Ed25519. The
Ed255219 curve is defined as:

X* +y? =1 (121665/121666)X*y?

Signet Resolver

The signet resolver is responsible for translating a domain name or email
address into a signet, and is analogous a DNS resolver which translates a
hostname into an IP address. Specifically, a signet resolver locates the
authoritative server for a signet, retrieves it and then cryptographically
authenticates the signet.

Signet Ring The collection of organizational and user signets that have been retrieved and
authenticated by a user’s signet resolver.

SMTP The Simple Mail Transfer Protocol (SMTP) is the traditional protocol used for
the submission and transfer of messages.

SNI The Service Name Identifier is a TLS extension which allows a single IP address
to host TLS services for multiple domains using different X.509 certificates.

SOK The Secondary Organization Key is similar to a POK, and can be used to sign
user signets and sign outbound messages.

TCP The Transmission Control Protocol is the network protocol used to ensure the
reliable delivery, sequencing and reassembly of IP packets.

TLS Transport Layer Security refers to a protocol used to provide an encrypted
channel between two hosts connected using TCP.

TTL The Time to Live refers to amount of time a DNS result is considered valid.

UPA The User Privacy Agent is responsible for the cryptographic operations
associated with an email address and on behalf of a user.

User A person or collection of people represented by a single email address; note

that the term is used throughout this document in a manner that is distinct
from how it is used in reference to access control systems.

20

PART 3: SYSTEM ARCHITECTURE

Internet electronic mail (email) is a federated system of written communication which often requires messages to transit
through a series of independent services. Email privacy is made challenging by the need to disclose handling information
to stations along this path. In addition to the usual protection of content, a design goal for secure email must be to limit
the meta-information that is disclosed so that a handling agent only has access to the information it needs to see. The
Dark Internet Mail Environment (DIME)" achieves this with a core model having multiple layers of key management and
multiple layers of message encryption. The system architecture modularizes functionality and that modularity permits a
variety of implementation and deployment strategies. The data formats are transport agnostic and should permit transit
over alternative infrastructure message transfer services using protocols independent of DIME. Integration with these
alternatives is encouraged, with mechanisms provided for extending functionality and supporting protocol alternatives.

The essential challenge in email privacy is protection against compromised handling agents. Simple wiretapping of transit
channels is reasonably well protected against by Transport Layer Security (TLS) [TLS]. However, TLS operates over only
one Transmission Control Protocol (TCP) hop and email often travels through a significant number of these hops. Every
transfer agent, including the immediate submission and delivery agents associated with the author and recipient(s), may
become compromised [IMA]:

6 SMTP 0 |

SMTP /6\ IMAP
\ MSA | MTA MTA | MDA | MS /6

Origin Destination

Author _*_J \ L L) RECIpIent

MTA = Message Transfer Agent
MDA = Message Delivery Agent
MSA = Message Submission Agent

MS = Message Store (aka Mailbox)

SMTP = Simple Mail Transfer Protocol
IMAP = Internet Message Access Protocol

) =Mail Message
Figure 1 Traditional Email Handling Architecture

When a handling agent is compromised, the attacker could use the breach to gain access to keys, metadata, message
content or all three. Hence, mechanisms to protect each are needed. DIME builds upon email’s classic distributed
architecture, but incorporates end-to-end encryption for the protection of private information. Each party responsible for
handling a message is associated with an encryption key, and private information is encrypted for that key.

1 Perhaps sending a message through this service could be called “dropping a dime”?

21

To facilitate automation of the encryption process organizational mail servers provide encapsulated public key
information using an encoded data format. The result is a data object called a “signet.” The signet object is retrieved by a
signet resolver from the mail host associated with a recipient’s email address:

1
S v |

MTA | MDA | MS

Origin Destination
Author \ A A J Recipient

MTA = Message Transfer Agent
MDA = Message Delivery Agent
MSA = Message Submission Agent

MS = Message Store (aka Mailbox)

DMTP = Dark Mail Transfer Protocol
DMAP = Dark Mail Access Protocol

) =Mail Message
(=) =Signet

Figure 2 Proposed Email Handling Architecture

DESIGN GOALS

The goal of DIME is to provide a messaging system capable of protecting user privacy. This definition is ambiguous. For
clarity, privacy is more precisely defined as the ability to control access to confidential information. In the context of
email, confidential information is synonymous with information about a message, in addition to the actual message.

The term security is frequently has also been frequently abused. In our context security is used to discuss the
mechanisms a user has to ensure the privacy of a message, and limit the potential for leakage. More security is
equivalent with less information exposure, and a greater degree, or increased level of effort, required to breach the
protections guarding confidential information. Encryption is the primary mechanism used to secure information, and
ensure the privacy of confidential information.

22

These definitions led to specific deficiencies within the current email infrastructure, and its ability to ensure the security
of confidential information. End-to-end encryption appears to ensure the protection of user privacy, but to ensure its
ubiquitous use, the following technical goals were identified:

1. Automate key management, including the: creation, rotation, discovery and validation of keys.

2. Transparently encrypt and sign email messages to ensure confidentiality and author non-repudiation.
3. Resist manipulation by Advanced Persistent Threats (APTs).

4. Link security to the complexity of a user’s password, and the strength of an endpoint’s defenses.

5. Minimize the exposure of metadata to handling agents and service providers.

6. Give control back to the user.

OPERATIONAL DIRECTIVES

The core operational directives for DIME were developed to simplify the adoption of an email system protected by end-
to-end encryption, minimize the information exposed to the minimum required for the system to function, and generally
provide a protocol framework which is capable of protecting user privacy. At a high level, these core operational
directives are achieved through the following elements:

¢ Ahandling agent only sees information about its immediate neighbors - the agent from which the message
came and the agent to which it goes next. This specifically means that while the a message transits the open
Internet, it travels inside a TLS tunnel, and the only information visible to (origin, MTA/MSA) host and target
(destination, MTA/MDA) host.

e Author and recipient mailbox addresses are encrypted and then embedded within the message object. The origin

host only sees the author mailbox address and the destination host only sees the recipient mailbox address.

e The origin host does not see the recipient mailbox address and the destination host does not see the author

mailbox address unless the author and recipient are controlled by the same organization.

e Only the author and recipient can decrypt an entire message. The origin host and destination host only have

access to their portion of the encrypted envelope and to the overall message structure.

e Messages are tree structured and content encryption is per leaf with independent keys for each leaf, permitting
access to individual parts of the message without having to process other parts. This is especially helpful for
clients with limited resources and/or bandwidth when accessing messages in a remote message store. It also
permits other handling actions, such as the validation of message signatures, without needing to download the
entire message through the use of tree signatures.

e Validation of signet (keys) is accomplished without the use of a formal CA construct, and no single source of
information is automatically trusted. The basic validation model is to obtain a signet from a credible primary
source and then confirm it with another pre-authenticated source. The two pre-authenticated sources currently
available are a management record signed using DNSSEC or a TLS certificate signed by a recognized Certificate

23

Authority (CA). Both can be cryptographically traced by a signet resolver back to a trusted key that is shipped
with the resolver.

e To the extent possible, layers of encryption have been used to mitigate the potential harm a nefarious actor can
accomplish with the breach of a single piece of the DIME architecture.

e Public conveyance can be over a variety of transport services. This greatly lowers the barriers to DIME adoption.

This document provides a description of DIME’s abstract network service architecture. An abstract network service
architecture is distinct from any particular software design that might implement it, or specific scenarios that might
derive from it. In particular, implemented software modules might combine or separate abstract network components.
For example, the user agent and the message store might be implemented together. Alternatively, the user agent might
be split between a simple user interaction module and a remote user ‘semantics’ module. (This is, in fact, the usual
method of providing webmail user services; the variant of webmail that has the server download code to the user’s
browser dynamically is actually a small operational distinction that does not affect the model.)

FUNCTIONAL COMPONENTS

DIME’s additions to the classic email architecture entail a few security-related modules, which are available to authors
and recipients. The basic architecture has four categories of components:

e (lassic email agents
e Privacy processing agents
e Key stores and signet resolvers

e Encrypted message objects

24

uPA |—| KR |> \—| KS }»

MUA

T

4‘ DNS ‘

i =

l MTA |

{ MSA or MDA

MUA- User Agent PA- User or Org Privacy Agent
MS - Msg Store

MSA- Submission KR- Key/cert Resolver & cache
MDA - Delivery KS- Key/cert Server

MTA- Transfer KL- Key/cert Global Ledger

Figure 3 DIME Functional Component

TRANSPORT

DIME can be adapted to a variety of message transport or transfer services, with the choice of channel creating trade-
offs between wiretapping and traffic analysis protection, balanced against scaling and interoperability requirements.
Using Simple Mail Transfer Protocol (SMTP) to transport messages would ensure maximum reach but would have
provided limited protection. The relatively similar Dark Mail Transfer Protocol (DMTP) is designed to provide similar reach

(if adopted) with less metadata exposure.

DHATF,
CABIL,
T

e .":_.!d'_}.-"l

b

e

Figure 4 DIME Transport

MESSAGE OBJECT

In terms of handling and protection, each message is encrypted with an ephemeral key accessible by the author and one
recipient. The basic message protection model then encrypts each component, called a chunk, to a distinct, ephemeral
symmetric key; this includes encrypting each part of the message content (and attachments), with different keys, to

25

permit separable handling and protection. Access to keys is limited to essential actors: author, origin (submission server),
destination (delivery server), and recipient. For example, the origin needs to see information about the destination, but
not about the recipient. Messages are decrypted only when the information is needed. A chunk has one or more
encrypted key slots. For each actor permitted to decrypt a chunk, there is a separate slot, with its own copy of the
symmetric key; the key is encrypted to the actor’s signet. A chunk that can be processed by three actors will have three
copies of the symmetric key associated with that chunk. The representation of a message is a tree-structured object:

Wrapper | Next-Hop Handling, Tracing (Unencrypted)

Envelope Origin (AOR)
Destination (4DR)

Content | Header| Common To, From, Date, Subject (4R}
Other Msg-ID, In-reply-to,... (4R)

Body MIME structure (40DR)
MIME Content (4R}

A: Author O: Origin
R: Recipient D: Destination

Figure 5 DIME Message Object
The basic structure is:

Wrapper surrounding the entire message

Next-Hop transit handling information, in cleartext, for the currently-active transport

Envelope, with Origin and Destination information, separately encrypted

Meta, including a the commonly used header fields separated from the remaining header fields
Message content, including the body (and possibly attachments) [IMF]

® Signatures, including an author and an origin signature

The envelope has a further sub-structure, with each portion being independently encrypted, in order to permit
selectively hiding information. The meta section contains headers such as the To, From, Subject and Date traditionally
included with messages sent using SMTP [SMTP].

CLASSIC EMAIL AGENTS

The traditional email user and handling agent functional components are present in DIME. These are:

MUA - Mail User Agent

MSA - Message Submission Agent
MDA - Mail Delivery Agent

MTA -Mail Transfer Agent

MS - Message Store

26

Messages in the Message Store (MS) have the content leaf nodes encrypted, with the structure in the clear. This permits
selectively accessing leaves, which is needed by resource-limited devices, or clients accessing a remote message store
over high-latency/low throughput connections.

PRIVACY PROCESSING AGENTS

DIME message processing semantics and cryptographic functions are handled by two additional system modules: the
Organization Privacy Agent and the User Privacy Agent.

‘ ORGANIZATION PRIVACY AGENT

The Organization Privacy Agent (OPA) interfaces with a user’s email agent and the rest of the Internet. It facilitates user
key management and creates a domain-name based package around the personal addressing and content of messages.
It creates a secure transit channel that hides all information about the message using transport layer security, and
provides access to the envelope information needed for immediate handling. This is accomplished through three

functions:

Signing: The authenticity of a user’s signet or the source of an arbitrary message is asserted by a cryptographic
signature generated by the Organization.

Encryption: The Organization wraps and unwraps the full user email address, so that only the associated domain
name is visible to the handling agent.

Channel: The message is transmitted over a channel protected by TLS so that only a message structure is visible
during transit. TLS is responsible for providing perfect forward secrecy against network eavesdroppers.

It is worth emphasizing that the message object is encrypted separately from the encryption used for encrypting the
transmission channel. Thus, even if a TLS channel is compromised, the only information gained by the attacker is the
message structure. Likewise if the organizational encryption key is compromised, without the ability to compromise the
TLS tunnel, nothing is gained. For a complete discussion of different potential scenarios see the Attacks and Mitigation
section.

USER PRIVACY AGENT

The User Privacy Agent (UPA) provides the cryptographic functions required by a user’s email agent. It facilitates key
management, the retrieval of signets for recipients, alerts interactive users to potential signet issues, and facilitates the
automatic encryption of messages. Because the encryption process can occur automatically it is possible for the UPA to
reside on the server, or the user’s device. Assuming the UPA resides on the user’s device, it performs the following:

Encryption: The message envelope is encrypted for transit, to be unwrapped as necessary by handling agents along
the way. As such the author address and the recipient domain are visible to the origin host, while the
recipient address and author domain are visible to the destination host.. Only the UPA for the author and

27

the recipient are able to see both pieces of the envelope. Similarly, only the UPA for the author and

recipient are able to access the message content chunks.

SIGNET RETRIEVAL SERVICES

Signet lookup and retrieval services are provided by a purpose-built Key Service (KS), modeled after the Domain Name
System (DNS) architecture [DNS]. A Privacy Agent (PA) makes the request to a local signet resolver that in turn locates
and queries the appropriate authoritative KS. Lookups use tailored Resource Records (RR) provided by a DNS resolver to
locate the KS and validate the retrieved signet.

ORG SIGNET

\s\

ORG SIGNATURE

E USER SIGNET

l&.

DNS

KEY STORE

e

Figure 6 Signet Lookup Services

DIME avoids using a classic Certificate Authority (CA) mechanism for validating the signet’s association with a name or

address. It does this with a simpler, two-level mechanism:

® An organization with a domain name certifies individual users. The organization’s signet is available through (at
least) two mechanisms (an authoritative KS and confirmed using the management record signed using
DNSSEC). The combination serves as relatively independent confirmation. If the management record lacks a
DNSSEC signature, then validation is performed using the global-ledger or by confirming the TLS certificate
supplied by the authoritative KS. Only the latter requires that a TLS certificate be signed by a recognized CA.

® Auser signet supplied by the organization KS pairs key information with a user email address. It includes a
variety of other attributes. Unlike a classic CA-based certificate, a DIME signet is not automatically trusted.
Rather the evaluator of it treats it as input, then seeks to confirm the signet using another source, such as the
organizational signet signature, or if the signet ring holds a previously authenticated result, by linking the Chain
of Custody signature with the previously authenticated user signet.

28

PART 4: MANAGEMENT RECORD

A Dark Internet Mail Environment (DIME) management record is published in the Domain Name System (DNS) system
and serves as the cornerstone for a DIME-enabled organizational domain. The management record advertises policies
and hostname information and provides the cryptographic trust anchor for all DIME related functionality. The existence of
a management record determines whether messages addressed to a particular domain should be sent using the DIME
protocols, or as “naked” messages using the Simple Mail Transfer Protocol (SMTP). Organizational domains lacking a valid
management record must be considered “legacy” and Mail Transfer Agents (MTAs) should apply any applicable policies
regarding the delivery of naked messages.

INTRODUCTION

The management record is used, primarily, by signet resolvers and MTAs, which we collectively refer to as consumers. A
signet resolver will use the management record to locate an organization’s Key Service (KS) and validate organizational
signets, while an MTA may retrieve a management record when it needs to deliver messages across organizational
boundaries.

The only required field, and the primary purpose for a management record, is distributing the Primary Organizational Key
(POK). The POK is a public key used for organizational signing operations, and whose corresponding private key is
required to sign the organizational signet. The management record may also provide signatures for Transport Layer
Security (TLS) certificates. If the management record has been signed using DNSSEC [DNSSEC], the TLS field signatures
may be used to validate TLS certificates, in addition to, or in lieu of, a Certificate Authority (CA) signature. If the
management record lacks a valid DNSSEC signature, then organizational hosts must still present an TLS certificate signed
by a recognized CA.

A management record may also stipulate the signet expiry and refresh periods for a domain, advertise its policy in
regards to the accepting/sending messages from legacy domains, and dictate how subdomains should be treated by
DIME services. The management record may also provide addressing information for an organization’s mail servers.

LOCATION

Signet resolvers must search for the management record using the “DIME” QTYPE [TBD] first. If the request fails, a
resolver must also query the target domain using the “TXT” QTYPE [TXT]. When searching for a resource record using the
“TXT” QTYPE a resolver must prefix the target domain with “_dime” to avoid conflicts with other uses for the TXT QTYPE
[SRV]. The fully qualified domain name for a management record stored using the TXT QTYPE would be

“_dime.example.tld,” if the organizational domain was “example.tld.”

Signet resolvers attempting to locate the applicable management record for email addresses using a subdomain, such as
“user@sub.domain.example.tld,” must use an increasingly specific search pattern. Starting with the base organizational
domain, resolvers must continue by working towards the specific subdomain supplied until they encounter a
management record with the “subdomain” policy field equal to the value “strict,” or the resolver reaches the specific

29

fully qualified subdomain under consideration. For the domain “sub.domain.example.tld,” a resolver must begin by
requesting the DIME resource record for “example.tld” or if necessary, using the TXT QTYPE and the name
“_dime.example.tld.” Unless a subdomain policy of “strict” is encountered, a resolver must continue by searching for the
DIME record using “domain.example.tld” or a TXT record using “_dime.domain.example.tld.” As the final step in our
example, a resolver must search for a DIME resource record using the fully qualified domain or a TXT resource record
using “_dime.sub.domain.example.tld.”

If the final search does not return a valid management record, and the nearest ancestor domain returned a management
record with a subdomain policy of “explicit,” then a signet resolver must assume the subdomain lacks DIME support and
consider it a legacy domain. Alternatively, if the nearest ancestor management record supplied a subdomain policy of
“loose” then the domain must be considered DIME-enabled, and the ancestor organizational signet and management
record must be applied to the target subdomain. The increasingly specific query process ensures management records

associated with ancestor domains may assert control over subdomains.

TEXT RECORDS

Operational considerations must be made if the management record is published using the TXT QTYPE. The DNS rules
regarding TXT records stipulate that individual strings have a maximum length of 255 characters. As such, management
records that exceed 255 must be split across strings. For optimal compatibility, management records must not split
individual fields across strings.

While most DNS resolvers allow responses up to 4096 octets using UDP, a handful of non-conformant, but widely
deployed DNS implementations truncate DNS responses over UDP at 512 octets (primarily Cisco PIX/I0S
implementations). Organizations seeking to interoperate with the widest variety of consumers should ensure their

management records have an overall length less than 512 octets.

The authoritative DNS servers for management records should support DNS queries using TCP so that resolvers

experiencing problems with UDP responses being truncated may retrieve management records using TCP.

SECURITY

Internet email, like all domain name centric network services, depends upon the reliability and security of the global DNS
system. Without DNS, email would cease to function, so despite its shortcomings?, the DIME security model is dependent
upon the reliability and security of the DNS system. For this reason we strongly recommended organizations deploy

2 DNSSEC only provides protection against tampering. It does not prevent attackers from blocking DNS responses
entirely, and it does not protect the confidentiality of DNS queries, or the results. By tracking which domains a victim
requests the management record for, an eavesdropper is able to track which domains a victim is corresponding with. This
deficiency is one of several that will make it difficult to reduce the leakage of metadata beyond the organizational
domain level.

DNSSEC to prevent the manipulation of DNS responses for their domain.? Consumers encountering a domain protected by
DNSSEC must authenticate the entire signature chain, between the root DNS server key and the target domain. If the
signature chain fails to validate, a consumer must discard the name server response and immediately notify the user a
fatal error occurred with potential security implications.

An attacker could also manipulate unsigned management record responses, substituting the “pok” and “dx” field values
to facilitate Man in the Middle (MitM) attacks on domains lacking DNSSEC protection. Attacker could also initiate
downgrade attacks against unsigned domains by replacing valid responses with a “name error” [DNS]. The “name error”
response may trick a systems into sending a naked message over SMTP that otherwise would have been encrypted as a
D/MIME message and sent securely over DMTP.

If a management record is protected using DNSSEC, no other validation paths are required. A management record
protected by DNSSEC is considered a pre-authenticated verification source. Authenticating organizational signets using
signed management records is the preferred form of validation. If the management record is unsigned, a domain will
need to support another pre-authenticated validation source or risk having their organizational signet trigger a warning,
or be rejected outright by some consumers. Consult the Validation section of the Signet Data Format specification for a
complete discussion of possible pre-authenticated validation sources.

EXPIRATION

The expiry value in a management record dictates how long an organizational signet should remain valid, even after the
management record has been removed. To prevent attackers with control over the DNS servers for a domain from
causing a domain to downgrade into legacy mode prematurely, a resolver must never reduce the amount of time
remaining for a cached signet because a smaller “expiry” value was retrieved during a refresh attempt. This rule must
only be applied to the expiry value; all other fields may be overwritten by an updated management record even if the
resolver ignores the expiry value. This rule should only be applied until the amount of time corresponding to the
difference in expiry values has lapsed.

FIELDS

Management records provide information using fields, with each field being comprised of a name/value pair. The table
below is provided to indicate the properties associated with each field. The table specifies which fields are required,
recommended, or optional, what the type of value each field provides, and whether a default value is applied when the
field is absent.

3 Because the number of domains protected by DNSSEC remains a relatively small percentage, and because
organizations will benefit significantly from DIME, even if their own management record is unsigned, we have decided
not to make DNSSEC a prerequisite.

Management records should use the short version of a field name when specifying values, but may use the long version.
Consumers must be capable of parsing and recognizing fields using the long name. Management records must always
use the lowercase field names and enumerated values. Consumers must ignore fields using the improper case.

A field is properly defined as a name followed immediately by an equal sign (ASCII value ox3d) and the desired value. A
field ends when the first space (ASCII value ox20) or semicolon character (ASCIl value ox3b) is reached. A field value may
also end because the boundary for a management record is reached, and only the last field value may end without a
terminating character. Tab characters (ASCIl ox09) must be treated as spaces, and extraneous whitespace, if discovered,
must be ignored.

A single field definition must not span multiple TXT record strings. This means every string must end with either a space
or semicolon, with the exception of the last one. This requirement ensures resolvers which concatenate TXT strings
together are processed the same as resolvers which automatically insert whitespace between TXT strings.

Fields may be defined in any order. Fields which allow multiple values must specify every value as a fully formed field,
using the complete name/value sequence defined above. If an additional value is encountered for a field which does not
support multiple values, a resolver must use the first valid field value encountered. Resolvers that encounter additional
instances of unique fields may optionally warn users, or silently ignore them.

DEFINITIONS

Management records must only use the fields defined below. If a consumer encounters a management record with an
unrecognized field name, or encounters a name without a value, it must reject the entire management record and notify
the user a fatal error occurred. If the consumer is searching for a subdomain management record, and encounters an
ancestor with an invalid management record, the invalid record should be ignored completely, and consumers should

continue searching as if the invalid manage record was never encountered.

Name Short Disposition ' Multiple Default (Where Applicable)

primary pok Required Yes Armored Public Key

tls tls Recommended Yes Armored Signature

version ver Optional No Numeric 1
refresh ref Optional No Numeric 1
expiry exp Optional No Numeric 30
syndicates syn Optional Yes Hostname Literal

deliver dx Optional Yes Hostname Literal

policy pol Optional No Enumerated mixed
subdomain sub Optional No Enumerated mixed

DESCRIPTIONS

PRIMARY (pok)

32

The primary field provides the POK, or more specifically, the public key used to authenticate signatures supplied by a
domain’s organizational signet. Signet resolvers must ensure the organizational signet they retrieve for a domain name is
signed using a POK value found in the management record. While it is possible for a domain to provide multiple POK
values in a single management record, a signet resolver must ensure all of the signatures provided by a signet were

created using the same private signing key, and that all of the signatures are valid.

If an organization rotates their organizational signet, they should leave the POK used by the previous organizational
signet in their management record until the expiry period has lapsed, and any signing keys unique to that signet are no
longer in use. This may require resigning messages or user signets. Alternatively, if an organizational signet is rotated,
but the former private key has not been compromised, a the previous POK value may be removed from the management
record and published as a Secondary Organizational Key (SOK).

All of the POK values must be valid base64 strings precisely 44 characters in length, otherwise a management record
must be rejected and the user notified. The field value once decoded must be precisely 33 octets. The decoded octets
must begin with the value {ox40}, which indicates the remaining 32 octets represent a compressed Ed25519 public key.
[PGP-EdDSA] The public key must be in the compressed little endian format defined by the Ed25519 paper and used by
the Ed2s519 reference implementation [EADSA].

The following is an Ed25519 public key, provided in hexadecimal form:

Qpup: 0x3£f098994bdd916ed4053197934e4a87c80733a1280d62£8010992e43ee3b2406

If this same public key was prefixed with an octet value of {ox40} and then converted to a base64 value, the resulting
POK field would appear in a management record as:

pok=Q0D8J1ZS92RbtQFMZeTTkqHyAczoSgNYvgBCZLkPuOyQG

TLS (tls)

The X.509 certificates for DMTP hosts may be validated using the signatures provided by the TLS field. The value for a
TLS field represents a 64 octet Ed25519 signature expressed in the form SIG = (R || S), where SIG represents the 64 octet
signature created by concatenating the compressed R and S values generated using the EdDSA algorithm and the private
key associated with a published POK value. To verify a TLS field, consumers must supply the X.509 certificate, in the
binary Distinguished Encoding Rules (DER) format, and confirm the signature validates against a POK value provided in

the same management record, using the EdDSA algorithm [EdDSA].

The TLS field value is generated by encoding the 64 octet Ed255219 signature using baseé4. If a conventional base64
implementation is used, then the 2 trailing pad characters must be stripped off to yield the correct value. Resolvers must
reject the entire management record if one the TLS values provided is not a valid base64 string precisely 86 octets in
length.

If one, or more, values are provided in the DIME management record, then the TLS certificate received while connecting

to a DMTP host must match one of the provided values. This requires organizations using multiple certificates to sign and

33

provide signatures for all of the certificates used to protect DMTP connections. If an organization is unable to provide TLS
signatures in the management record for all of the X.509 certificates in use, it must remove all of the TLS field values
from the management record and obtain a signatures for its X.509 certificates from a recognized CA instead.

If a consumer encounters a DMTP host using a certificate that does not match any of the provided TLS field signatures, it
must cleanly shutdown the TLS connection and disconnect, treating the connection attempt as a failure. If the threshold
for connection failures has not been reached, and additional hostnames are available the consumer should continue onto
the next host until it discovers one using a certificate with a valid TLS field signature.

Management records protected by DNSSEC which also provide TLS field signatures may use self-signed certificates. If the
management record is not protected using DNSSEC, but still provides a TLS field signature, a consumer should ensure the
certificate matches one of the available signatures first, followed by the validation rules required by TLS v1.2 [TLS], which
require X.509 certificates to be signed by a recognized CA.4 Consult the section of the DMTP specification for a complete

discussion of TLS certificate validation rules for DIME.

If a TLS certificate generated the following signature values, provided here in hexadecimal form:

R: 0x56f90ccaf98e2102637bd983fdblocl31dfd27ed82bfddde5606e0d756aed3366
S: 0xd09c4fallb527f038e0f57£2201d82f2ea2c9033265fabcebd89e854baeblbd04

Then the corresponding TLS field would appear in a management record as:

tls=VvkMyp]jiECY3vZg/2xbBMd/SftgrI9N31YGANdAWrtM2bQnE+hFSfwOOD1fyIB2C8uoskDMmX
6bOtInoVLrmGOBA

SYNDICATES (syn)

The syndicate field provides the fully qualified domain name of an alternate host authorized to provide signet
information for a domain name. The value must be a valid hostname literal and not an IP address. If an IP address is
provided as the value, a consumer must reject the management record entirely and notify the user. If the value is a valid
hostname literal, but does resolve into a valid IP address, or the DMTP connection attempt fails, then the consumer
should ignore value. Consult the section of the DMTP specification for additional details on how hostname literals should

be used by a signet resolver.

If a domain was syndicating signets to “syndicate.example.tld” then the syndicate value would appear in a management
record as:

4 DNS-Based Authentication of Named Entities (DANE) [DANE] provides similar functionality, but lacks widespread
deployment. The primary functional difference is DANE records only support the publication of complete certificates, a
public key or a hash value. DIME uses the POK and cryptographic signatures to validate certificates. DANE also requires
(by specification and not function) the deployment of DNSSEC, while DIME decided to classify DNSSEC support as a strong
recommendation.

34

syn=syndicate.example.tld

DELIVER (dx)

Provides the fully qualified domain name for authoritative signet lookups, and for delivering encrypted D/MIME
messages®. The value must be a valid hostname literal and not an IP address. If an IP address is provided, a consumer
must reject the entire management record and notify the user. If the value is a valid hostname literal but does not
resolve into a valid IP address, or the connection attempts fail, then the consumer should ignore the value.

If a domain, which supports single protocol mode DMTP connections on the host “dmtp.example.tld,” then the

corresponding delivery value would appear in a management record as:

dx=dmtp.example.tld

If a consumer is unable to establish a DMTP single protocol mode connection with any of the hosts provided as deliver
field values, or if the management record does not include the deliver field, then a consumer must use the mail exchange
(aka “mx”) record for the target domain instead. When attempting to setup a DMTP connection to host found in a mail
exchange (aka “mx”) record, consumers must use dual-protocol mode. For additional details on the processing multiple

values, connection failures, and the different the protocol modes, consult the section of the DMTP specification.
VERSION (ver)

The version field controls how a management record should be parsed and validated. Only a single value for this field,

“"_n

1,” is considered valid. If a consumer encounters a different value for this field, then the management record format has
changed and a consumer must assume the changes are incompatible with this specification. As a result, consumers must

“"_n
1

reject management records which supply a value other than “1” with a fatal error. For management records which

explicitly stipulate the management record version, the field must appear as:

ver=1

REFRESH (ref)

The refresh value controls how often a resolver should check whether a cached signet is current. The value is expressed
in days. If the field is missing from a management record, then a resolver must assume the refresh period is 1 day. A

5 The decision to provide this information in the management record, rather than use a SRV record, was made
because the latter would allow arbitrary port numbers. We felt that delivery hosts should be locked to a specific port,
which allows network administrators to detect and/or block nefarious deployments. We also felt the port needed to be
lower than 1,024 because binding to ports in this range requires elevated permissions on the most widely deployed
operating system. Port 26 was chosen because it is currently unused, and because of its proximity to port 25 (which is
used by SMTP).

35

signet only needs to be refreshed if the period has expired, and a user receives a message, or attempts to send a
message to a recipient which will require the use of the signet. The complete refresh field, if provided explicitly should
appear as:

ref=1

EXPIRY (exp)

The expiry value controls the number of days a signet must be considered valid, even if the resolver is unable to refresh
the cached signet value. Consumers should continue using cached signets for signature validation, and message
encryption up to the number of days specified in the expiry value, starting with the last successful refresh or retrieval of
the signet. Signet resolvers should apply the expiry to management records as well, and ensure they continue treating
domains as DIME-enabled, even if a management record is removed, for the number of days specified as the expiry
value in the last successful retrieval. Note that management record refresh periods must not reduce the amount of time

a domain is considered DIME-enabled when it retrieves updated management records. See the section above for details.

If the expiry field is missing a default value of 30 day must be applied. If a management record contains an explicit
refresh value larger than the expiry value, then the refresh value should be used as the expiry value. An expiry value of
30 or higher is recommended for domains with no plans of returning to legacy mode. If the default expiry value was

specified explicitly by a management record, it would appear as:

exp=30

POLICY (pol)

Provides the policy applied when transferring messages between origin and destination domains. Message acceptance
and delivery must conform to the advertised policy when one of the organizations involved is DIME-enabled. D/MIME
messages must be rejected when the delivery does not conform to the policy, or if the organization does not have a
valid management record. In the absence of an explicitly defined policy field, resolvers must apply a default policy of
mixed. If a resolver encounters a management record with a policy value that does not match one of the three
enumerated values, then the entire management record must be rejected. The table below illustrates the appropriate

outcome for a message between two domains with each of the possible policy dispositions.

36

Figure 7 Policy Dispositions

The formal definitions for each of the enumerated policy values are:

e Experimental. This organizational domain will be sending both D/MIME and naked messages. Destinations with
policies of experimental or mixed should accept both, while those with a policy of strict must reject naked
messages. If a domain does not have a management record available then this organization supports the
delivery of naked messages. Organizations with a policy of experimental should publish valid signets for all
DIME-enabled addresses, or the appropriate error code for valid addresses which are not yet DIME-enabled.
Senders with a policy of mixed or experimental may choose to deliver naked messages if they encounter an
experimental policy for the destination and the recipient addresses does not have a valid signet available.

¢ Mixed. A mixed policy domain should send D/MIME messages to DIME-enabled domains, and naked messages to
legacy domains. Likewise, a mixed policy domain will accept naked messages from legacy domains and D/MIME
messages from DIME-enabled domains. Domains in mixed policy mode must ensure they only accept D/MIME
messages from other DIME-enabled domains advertising a policies of strict or mixed.

While mixed policy domains must send D/MIME messages to experimental policy domains by default, they may
choose to send a naked message if the signet resolution process for a recipient fails with a permanent error
code. Signet resolutions resulting in temporary errors should be retried. Likewise a mixed policy domain must

accept both D/MIME and naked messages from domains with a policy of experimental.

e Strict. This domain must only accept D/MIME messages and must only send D/MIME messages. If a strict domain
encounters a recipient domain without a management record or if signet resolution fails, the send attempt must

also fail.

A policy field value of “mixed” would appear in a management record as:

pol=mixed

37

SUBDOMAIN (sub)

Determines whether a resolver should apply the management record to subdomain addresses. In the absence of an
explicitly defined subdomain field, resolvers must apply a default value of mixed. If a resolver encounters a management
record with a subdomain value that does not match one of the three enumerated values, then the entire management
record must be rejected.

The formal definitions for each of the enumerated subdomain values are:

e Explicit. Subdomains must provide a management record and organizational signet. The absence of management
record results in a subdomain being classified as legacy.

e Mixed. Subdomains may supply a management record and organizational signet, which are used instead of the
parent domain. If the management record is missing, the values and organizational signet of the parent should
be applied to the subdomain address.

e Strict. Subdomains must always use the management record and organizational signet of the parent domain
which supplies this value.

A subdomain field value of “mixed” would appear in a management record as:

sub=mixed

EXAMPLES

At a minimum, all legal DIME management records must provide a POK value. All other values are optional, with default
values being applied in the absence of a version, refresh, expiry, policy and subdomain field. In the absence of a deliver
field, a domain’s mail exchange (aka “mx”) DNS record is used to supply the DMTP host. As a result a simple, but valid,
DIME management record might look like:

pok=0Q0D8JiZS92RbtQFMZeTTkgHyAczoSgNYvgBCZLkPuOyQG

DIME management records should specify values for the recommend field TLS, so that resolvers may validate DMTP
connections using the TLS provided upon connection. A simple DIME management record which provides a signed TLS

value might look like:

tls=VvkMypjiECY3vZg/2xbBMd/SftgrIN31YGANAWrtM2bQnE+hFSfwOOD1fyIB2C8uoskDMmX
6bOtInoVLrmGOBA pok=QD8JiZS92RbtQFMZeTTkgqHyAczoSgNYvgBCZLkPuOyQG

A complicated DIME management record, with all of the fields specified, might look like:

tls=VvkMypjiECY3vZg/2xbBMd/SftgrIN31YGANAWrtM2bQnE+hFSfwOOD1fyIB2C8uoskDMmX
6bOtInoVLrmGOBA pok=QD8JiZS92RbtQFMZeTTkgqHyAczoSgNYvgBCZLkPuOyQG pol=mixed
sub=strict dx=dmtp.example.tld syn=mirror.example.tld ref=1 exp=30 ver=1

38

The same complicated DIME management record could also use semicolons as the field delimiter, which would result in it

looking like:

tls=VvkMyp]jiECY3vZg/2xbBMd/SftgrI9N31YGANdAWrtM2bQnE+hFSfwOOD1fyIB2C8uoskDMmX
6b0OtInoVLrmGOBA; pok=QD8J1iZS92RbtQFMZeTTkgHyAczoSgNYvgBCZLkPuOyQG;
pol=mixed; sub=strict;dx=dmtp.example.tld;syn=mirror.example.tld;ref=1
exp=30;ver=1

39

PART 5: SIGNET DATA FORMAT

This specification details the format and semantics for the signet data format. The Dark Internet Mail Environment (DIME)
uses the signet data format to transfer cryptographic information for use in encryption and signing operations. A signet
carries with it signatures which must be evaluated by the consumer when determining whether to accept the validity of
a signet for an organization or user identity. In addition to the required cryptographic information, a signet may be used
to advertise information about the signet owner, or information used to facilitate other non-cryptographic functions
commonly supported by DIME implementations.

The signet data format requires a small number of “cryptographic” fields containing public keys and signature data. Only
the fields required to facilitate the sending and receiving of encrypted email are required. However the signet
specification has also defines a number additional “informational” fields, whose use is entirely optional, but allows for
the distribution of various fields along with a signet. These optional fields are designed to provide biographic information,
facilitate optional functionality, and improve the overall user experience.

The signet data format also provides a mechanism for providing an unlimited number of “undefined” fields. Undefined
fields provide an arbitrary name and data value, and like the informational fields, are entirely optional. If provided, the
undefined fields may be used to carry arbitrary data items. Undefined fields may provide information which is useful in a
specific context, or to facilitate functionality unrelated to DIME.

GROUPINGS

‘CLASSES

Signets are broken into two distinct classes: “organizational” signets, which are associated with a domain name, and
“user” signets which are associated with an email address. An email address may defined as a mailbox, or local part, in
combination with a domain name. Every signet carries a number of data elements organized into individual units called
“fields.” This specification details a number of “defined” fields, which are all associate with a unique numeric type
identifier and used to carry data which conforms to the provided validation rules. Signets may also carry with them an
unlimited number of “undefined” fields, which use a single numeric type identifier, with each undefined field providing its

own arbitrary name and value.

TYPES

There are two signet types, with the type primarily used to communicate whether a signet consists of the cryptographic
fields, or a combination of the cryptographic fields and the informational fields. A “cryptographic signet” indicates that a
signet only contains the cryptographic fields, while the term “full signet” indicates both the cryptographic and
informational fields are included in a signet. Since the informational fields are entirely optional, it is possible for a signet
resolver to request what is technically defined as a full signet, but only receive a cryptographic signet.

40

MODIFIERS

The term “root signet” is a modifying term, which refers to the first cryptographic signet in a chain of custody. The class,
user, and the type, cryptographic, are implied because the chain of custody is built using cryptographic signets, and
because only user signets provide custody signatures. Unless specified, root signet references are for the root signet
linked to a user’s current signet. The term “identifiable” is also a modifier and is used to indicate that a full or

cryptographic signet includes the identity fields.

Organizational Signet

 at
User Signet

Cryptographic
- Signet

Full
Signet

)

«

«

Cryptographic Fields

1 to 15

Informational Fields

Common Fields

16 to 127

Distinct Fields

128 to 250

Special Fields

251 and 252

16 to 253

Cryptographic

» Signet -

Full
Signet

»

Identifiable &« Identifier Fields » Identifiable
Signet 254 and 255 Signet
J L
Figure 8 - Signet Groupings
CATEGORIES

Signet fields are broken up into three field categories, with each category associated with a range of numeric field

identifiers. Fields always appear in order, and are broken into the categories: “cryptographic,” “informational,” and

41

“identity.” The informational are further subdivided into three subcategories, the “common” fields, which consists of
fields shared by both signet classes, the “distinct” fields, which are distinct to each signet class, and the “special” fields
which are shared between the classes, but require special processing.

FIELD IDENTIFIERS

The numeric signet field types have been ordered to ensure specific data items are provided in the proper sequence. This
ensures certain carefully selected to create specific security, flexibility, and functional properties. They have also been
divided into ranges, to aide cognition whenever possible.

RANGES

The cryptographic fields occupy the range 1 through 15 and provide public key information, and the signatures used to
assess the validity of a signet. Informational fields occupy the range 16 through 253 and are all optional. The fields 254
and 255 are the identity fields.

Field Ranges Category

1-15 Cryptographic Fields
16 - 253 Informational Fields
254 - 255 Identity Fields

The informational fields are broken into 3 subcategories. Field identifiers shared by organizational and user signets are
called “common” and occupy the range 16 to 127. Fields in the range 128 to 250 will always be different, or “distinct,”
between organizational and user signets. All of the common and distinct fields are variable length value fields, using a 2
octet length parameter.

The undefined field identifier, 251 {oxFB}, and the image field identifier, 252 {oxFC}, are grouped together in the “special”
subcategory, because both fields use unique binary layouts.

RESERVED

The unused field identifiers in the cryptographic portion of a signet are reserved for future use. Parsers encountering a

signet with a field type that falls outside of these ranges must reject the signet as invalid.

For organizational signets, fields o {oxo0}, and 5 {oxos} through 15 {oxoE} are reserved for future use. All organizational
signets conforming to this specification must ensure they only provide fields in the ranges: 1 {oxo1} through 4 {ox04} and
16 {oxoF} through 255 {oxFF}.

For user signets, fields o {oxo0}, and 7 {oxo7} through 15 {oxoE} are reserved for future use. All user signets conforming
to this specification must ensure they only provide fields in the ranges: oxo1 through oxo6 and oxoF through oxFF.

42

ORDERING

All fields within a signet must be sorted according to their single octet numeric type, and appear in then appear in
ascending order. If a consumer encounters a signet which does not conform to this field order, or if a signet parser
encounters a unique field multiple times, then the signet must be considered malformed. If either error occurs among the
informational fields, then a parser may choose to discard the informational fields and only retain and use the
cryptographic signet.

Undefined fields all carry the same numeric identifier, which is used for each undefined field a signet carries. These
undefined fields should be sorted lexicographically by codepoint using the name parameter. However a consumer must
not assume this sort ordering has been applied, and act accordingly when searching for a specific undefined field.

Parser implementation which encounter multiple instances of an undefined field with an identical name parameter must
only return the first occurrence of the name by default. A parser may provide an alternative method of returning all of
the undefined fields matching a particular name using an alternate interface, for use by functionality which explicitly
expects to encounter multiple values for the same undefined name.

BINARY LAYOUTS

The signet data format is a binary schema, which relies on numeric values to convey information and facilitate parsing.
The binary values defined by this specification will always use network byte order, which is defined as a big endian
representation, requiring the most significant byte to be stored in the smallest address, and the least significant byte be
stored in the largest address. Implementations running on little endian systems will need to convert the values to ensure
proper processing.

SIGNET HEADER

All signets must start with a 5-octet header. The first 2 octets provide a magic number indicating the data type. Signets
conforming to this must set the first 2 octets to 1776 {oxo06Fo} for organizational signets, and 1789 {ox06FD} for user

signets.

The remaining 3 octets are used to provide the length of the remaining binary signet data, without the 5 octets used by
the object header. Since the length parameter is 3 octets, signets have a technical limitation of 16,777,220 octets or
16,777,215’ for the signet data plus the 5 octets for the header. Signet resolvers and parser implementations conforming

to this specification must be capable of handling signets up to their maximum possible size.

6 The decision to use a big endian number encoding is not final yet. We may still switch to using a little endian
encoding.

7 16,777,215 = 27* =1

43

Signet parsers must reject signets with unrecognized magic numbers, and generate an error when they encounter object
headers that begin with an unrecognized identifier. The signet format has been designed to allow for future revisions of
this specification to add new defined fields without breaking existing implementation. As a result, the only time the
magic number will be altered is when it becomes necessary to alter the cryptographic fields or make an alternation that
is incompatible with the current format.

[2 octet] [Magic Number]

[3 octets] [Signet Size]
[variable] [Signet]
FIELD TYPES

Signet fields always begin with single octet numeric type identifier, and may provide values using one of three different
layouts. This specification provides the correct layout for all 255 possible type values. The possible layouts are a fixed
length signature field, a variable length value field, which is used by all of the defined fields which don’t provide
signatures, and an undefined field layout designed to provide a variable length name in addition to the variable length

value.

While parsing signets conforming to signet data formats, a parser must ignore any fields with unrecognized type codes. If
an unrecognized field is encountered, it must use the defined field, variable length value layout provided below. With the
exception of the required cryptographic fields identified by this specification, and the image field, all other variable length
value fields must use a 2 octet length parameter. This scheme will allow parsers to ignore unrecognized fields and
continue processing the signet, although a parser may issue a warning message. Future signets specifications which

continue using the magic numbers provided by this specification must ensure backwards compatibility.

Parsers adhering to this specification must be able to identify and validate all of the required cryptographic fields
described in this revision. An implementation must also be able to parse the length all fields. Parsers should be capable of
validating all of the optional field values, but must be ensure fields they properly validate the value of every field whose

value is used.
SIGNATURE FIELDS

Fixed length fields are used to provide cryptographic signatures. When encountering signature field, the single octet type

must always be followed by a 64 octet signature.

[1 octet] [Type]
[64 octets] [Signature Value]

DEFINED FIELDS

Defined fields use a single octet to provide a field type, which is immediately followed by a length parameter that is 1, 2
or 3 octets. The scheme allows defined fields to provide a variable length value. The number of octets used by the length
parameter is determined by field category. Defined cryptographic fields must use a 1 octet length parameter (unless they

are a signature field, in which case they use the fixed length format above). All of the informational fields in the common

44

and distinct ranges, and the signet identifier field use the defined variable length value layout provided here, with a 2
octet length parameter. The image field is the only field which provides a 3 octet length parameter.

For defined fields holding a variable length value, the minimum valid length is o, while the maximum valid length is
determined by the number of octets used by the length parameter. Implementations must be able to handle a value
length of 0, and must treat these fields as being the functional equivalent of omitting the field entirely.

[1 octet] [Type]
[variable] [Length]
[variable] [Value]

UNDEFINED FIELDS

The undefined field layout has been designed for flexibility, allowing implementations to create fields with variable
length names and values. Undefined fields are indicated by the single octet type parameter, which will indicate
undefined fields using the value 251. The type parameter is followed by the length of the name encoded as a single octet
length value. The name value follows the length parameter and must be comprised of valid characters from the UTF-8
encoding standard. Names must always be at least 1 character in length, and should always begin with a capital letter.
Name values must be constructed without the use of whitespace characters, and may use up to 255 octets. The name
parameter is followed by the value length parameter, which is provided using 2 octets. Implementations must accept
undefined fields with a length value of 0. The maximum length of an undefined field value is 65,535 octets. Values may
include binary data, with octets of any possible 8 bit value, and signet parsing implementations must be capable of
handling binary data in undefined field values.

Implementations should be capable of handling invalid undefined fields where the length of the name is o, or where the
name value includes invalid UTF-8 sequences or whitespace characters. Implementations responsible for signet creation
must remove these invalid undefined fields, and consumer implementations must never use the value of an undefined

field with an invalid name for any purpose. Implementations may choose whether to provide users with a warning when

invalid name values are encountered.

[Min 1 [Ma x] [Optional]
[Type 1 0 1 1 1 1]
[Length 1 [1 1 [1 1 I 1
[Name 1 I 0 1 I 255 1]
[Length] [2 1 I 2 1 I]
[Value] [0 1 [65535] []
CRYPTOGRAPHY
‘SIGNING KEYS

All public signing keys must begin with the value 64 {ox40}, and then be followed by 32 octets which represent a
Ed25519 public key. [PGP-EdDSA] The public key must be in the compressed little endian format defined by the Ed25519

45

paper and used by the Ed25519 reference implementation [EdDSA]. A decompressed public key must represent a valid
point on the Twisted Edwards curve:

X2 + y? =1 (121665/121666)x%y?

[ENCRYPTION KEYS

All encryption key fields must provide an uncompressed public key, which represents a valid point on the secp256k1
curve. Public encryption keys are provided using an uncompressed format, where the two coordinates representing the
point, or P = (X, y), are provided as concatenated big endian integers. Each coordinate must be aligned to an 8 bit
boundary, and prefixed with the a format identifier consisting of a single octet with a value of 4 {oxo4} [PGP-ECC]. This
may also be expressed as Kpub = 0x04 || x || y, with the value Keu represents a serialized public key provided with a
signet.

SIGNATURES

When encountering a signature field, it is important to note precisely what data must be used to generate, and then
validate a signature. A given signature must always be taken over every field which precedes it. The fields must be
provided in ascending order, according to their numeric field identifier, and the native binary encoding form. This
description encompasses all of the octets which precede a signature, including field identifiers and length parameters,
with two exceptions: the 5 octets used by the signet object header, and the 1 octet used by a signature’s field identifier.
Note this exception only applies to the current signature field. If a signet includes signatures with lower numeric field

identifiers, they are included in their entirety in the current signature.
All signatures must be created and validated using the EdDSA® algorithm and the Twisted Edwards curve:
X2 + y2 =1 (121665/121666)x2y>

This particular Twisted Edwards curve is more commonly known by the colloquial name Ed25519, and is birationally
equivalent to the Montgomery curve colloquially known as Curve2s519° [EdDSA]. This signing algorithm generates two
parameters as output, the R and S, which are compressed into 32 octets each, using a little endian encoding scheme
defined in the EADSA paper and used by the Ed25519 reference implementation. These parameters are expressed as

SIG=(R]|S), where SIG represents the 64 octet signature value supplied by the signet signature fields.

8 Specifically, the parameters for EADSA are: b = 256; H is SHA2-512; q is the prime 225 - 19; the 255 bit encoding of
F2*5 -1 is the usual little endian encoding of { o, 1, ..., 225 - 20}; £ is the prime 2?2 +
27742317777372353535851937790883648493; d = -121665/121666 &4; and B is the unique point (x, 4/5) € for which x is
positive. This collection of parameters is known colloquially as Ed25519-SHA2-512. [EdDSA]

9 Curve2s519 is the Montgomery curve v2 = U3 + 486662u2 + u over the same field. The equivalence is x =
\/486664u/v andy = (u-1)/(u + 1) [EdDSA]

46

SPLITTING

A signet may carry up to 3 organizational signatures. These signatures are provided between each of the field categories,
and are generated using all of the signet fields which precede them. This allows a signet resolver, or Privacy Agent (PA)
to split a signet, and extract a subset of the fields, while a retaining signet object that remains cryptographically
verifiable.

A full signet may be extracted from an identifiable full signet by removing the identity fields. Alternatively a
cryptographic signet is obtainable from a full signet by removing the informational fields.

Signet resolvers may choose to split full signets and only store the cryptographic signet when encountering excessively
large signets. Alternatively, a PA may split stale signets and retain only the cryptographic signets when encountering a
new organizational or user signet.

Signet resolvers should store at least the cryptographic signet in a user’s Signet Ring to facilitate chain of custody

verifications in the future. Storing the full signet, along with storage of the identity fields is optional.

Key Servers (KS) must ensure they store all of a user’s cryptographic signets between a user’s current root signet and
their current signet. This information is need by the DMTP signet history command (see) and is used by a signet resolver

to validate the chain of custody between a stored user signet, and a current user signet.

FINGERPRINTS

Several different types of signet fingerprints are used by different aspects of the system. All fingerprints are generated
using the SHA2-512 algorithm. A cryptographic fingerprint is used to retrieve a specific signet or verify that a stored
signet is still current. The root and ephemeral fingerprints may be used to manually verify a signet using an alternate
communications channel.

CRYPTOGRAPHIC

A cryptographic fingerprint is used by the DIME protocols and formats to identify a specific signet. This is the type of
fingerprint used by the DIME protocols and supplied in the envelope of an encrypted D/MIME message. Unless otherwise

noted, any reference to a fingerprint will be to a cryptographic fingerprint.

A cryptographic fingerprint is formally defined as a SHA2-512 hash of a cryptographic signet. The fingerprint is taken over
all of the fields which make up a cryptographic signet in their binary encoding form. This includes the signature fields.

Only the 5 octet signet object header must be omitted from a cryptographic fingerprint.
EPHEMERAL

An ephemeral fingerprint may be used by two people in real-time contact, and is generated by concatenating the full
signets for both users, and then generating a SHA2-512 hash over the combination in its native binary form. Only the
signet object header and the identity fields are omitted.

47

To determine which order the full signets should be combined, an implementation must generate a cryptographic
fingerprint for both users, then order them based on the numeric value of the fingerprint output. This ordering is then
applied to the full signets to calculate the ephemeral fingerprint.

ROOT

A root fingerprint is specific to user signets, and refers to the cryptographic fingerprint of the first signet a user’s chain of
custody. This is the fingerprint that a user may supply to others, and is suitable distribution using a static medium like
paper, or posted on a user’s personal website. A root fingerprint is suitable for asynchronous manual verification because
it will remain unchanged until there is a break in a user’s chain of custody.

An individual may verify the current signet for a user by retrieving root signet for a given email address, confirm the root
fingerprint matches the supplied fingerprint, and then validate the chain of custody between the manually verified root
signet and a user’s current signet.

CRYPTOGRAPHIC SIGNETS

A cryptographic signets represents the smallest valid form of signet object, and is a subcomponent of all other signet
forms (full and identifiable). Cryptographic signets are also incredibly small which makes retrievals fast, and storage
efficient. The typical cryptographic organizational signet will be less than 256 octets, while most cryptographic user
signets will be less than 512 octets.™

A cryptographic signet is compromised of the required fields needed to support the end-to-end to encryption of email
messages. This requires providing public signing and encryption keys along with the signatures required to assess their
validity.

‘ ORGANIZATIONAL SIGNETS

The cryptographic fields for an organizational signet occupy the range 1 {oxo1} to 4 {ox04} and are used to provide the
relevant encryption and signing keys associated with a domain name.

Field Label Status Multiples Type
1 Primary-0Organizational-Key Required No Signing Key
2 Secondary-Organizational-Key Optional Yes Signing Key
3 Encryption-Key Required No Encryption Key
4 Organizational-Signature Required No Signature

10 Organizational signets could include multiple secondary signing keys, and user signets could include alternate
encryption keys. This would increase their size beyond 256, and 512 octets respectively, although the size would likely
remain small.

48

PRIMARY ORGANIZATIONAL KEY

Provides the Primary Organizational Key (POK) associated with a domain name, which is a 32 octet compressed Ed25519
public key, prefixed with a 1 octet format identifier. The private key associated with a POK value must also be used to the
organizational signatures signet, and a consumer must independently validate all of the signatures provided by an
organizational signet using the supplied POK value. A consumer must also ensure the POK value supplied by an
organizational signet matches 1 of the POK field values in the management record.

The Primary Organizational Key (POK) is authorized for all organizational signing operations. If an organization chooses to
use their POK for signing user signets and outbound messages, then consumers may validate the signatures using a DNS
query, without retrieving the organizational signet.

When displaying the value of this field, the label “Primary-Organizational-Key” should be used and the key encoded

using base64.

[1 octet] [Type]
[1l octet] [Length]
[1l octet] [Format Identifier]
[32 octets] [Public Key]

The following is an Ed25519 public key, provided in hexadecimal form:

Qpup: 0x3£f098994bdd916ed4053197934e4a87c80733a1280d62£8010992e43ee3b2406

If this same public key was supplied as the POK value by an organizational signet, it would appear as the following

base64 value:

Primary-Organizational-Key: ASFAPwmJIL3ZFulAUx15NOSofIBzOhKAli+AEJkuQ+
47JAY

SECONDARY ORGANIZATIONAL KEY

The Secondary Organizational Key (SOK) field provides an alternative signing key, along with a flags octet to indicate
which potential signing functions the key is authorized to perform. The value holds a single octet flags parameter,
followed by an Ed25519 public key. The SOK field is the only cryptographic field which may be included in the
cryptographic portion of an organizational signet multiple times.

The first octet for this field provides the permissions octet. This octet contains a collection of bit positions, which if
enabled indicate the appropriate operation is authorized. At least one of the first 3 bit positions must be enabled. If any
of the reserved flags have been enabled, the field value must be ignored and any associated signature verification

operations must fail.

[1 octet] [Type]
[1 octet] [Length]
[1l octet] [Permissions]
[1 octet] [Format Identifier]

49

[32 octets] [Public Key]

The bits in the permissions octet authorize the secondary key to sign the listed data types:

[1] [O0x01] [User Signets]
[2 1 [0x02] [Outbound Messages]
[4 1 [0x04] [TLS Certificate]
[8] [0x08] [Software]
[16 1] [0xO0OF] [Reserved]
[32 1] [0x20] [Reserved]
[64] [0x40] [Reserved]
[128 1 [0x80] [Reserved]

The following is an Ed25519 public key, provided in hexadecimal form:

Qpub: 0x3£098994bdd916ed4053197934e4a87c80733a1280d62£8010992e43ece3b2406

When displaying the value of this field, the label “Secondary-0Organizational-Key” should be used. If this public key was
supplied as a SOK value in an organizational signet, and the SOK value was authorized to sign user signets and outbound

messages, it would become the following baseé4 value:

Secondary-Organizational-Key: AiIDQD8J1ZS92RbtQFMZeTTkgqHyAczoSgNYvgBCZ
LkPuOyQG

ENCRYPTION KEY

The encryption key field is used to provide an uncompressed secp256k1 public key. Once an encryption key has been
published as part of an organizational signet, the corresponding private key will be required to access the envelope
information for any D/MIME messages handled by the organization’s mail servers.

The encryption key field provides its public key in an uncompressed format, with the point values that make up the point
P = (x, y), provided as two concatenated big endian numbers, aligned to the 8 bit boundary, and prefixed with the format
identifier oxo4 [PGP-ECC]. The complete public key value is expressed as B = oxo4 || x || y, with the value of B

representing a serialized public key.

The following is a secp256k1 public key, with the values of X and Y provided in hexadecimal form:

X 0x6dfl18fcf75f52c09bd7cb0d56d601£f£f404a8d2fa610£f127c21f51led4bea6233dl
Y = 0x362c92d78981499d09b2102fe7£8a227dd551e23aea5£f£396235bf14af0749b6

When displaying the value of this field, the label “Encryption-Key” should be used, and the binary data encoded as a
base64 string. If the public key provided above were display, it would appear as:

Encryption-Key: AQOEEbfGPz3X1LAm9fLDVLWAfIASoOvphDxJ8IfUeS+piMIE2LJILX
iYFInOmyEC/n+KIn3VUeI661l/z1iNb8UrwdJtg

ORGANIZATIONAL SIGNATURE

50

The organizational signature field provides a 64 octet signature, generated using the signet fields 1 through 3, and the
private portion of the POK. This signature allows a full organizational signet to be split, and the cryptographic signet
extracted, while retaining in a form signet form which can still be cryptographically verified.

‘USER SIGNETS

The first 6 user signet fields make up the cryptographic signet, and provide all of the necessary public keys support the
message encryption functionality provided by DIME. The field definitions are:

Field Label Status Multiples Type
1 Signing-Key Required No Signing Key
2 Encryption-Key Required No Encryption Key
3 Alternate-Encryption-Key Optional No Encryption Key
4 Custody-Signature Required No Signature
5 User-Signature Required No Signature
6 Organizational-Signature Required No Signature

SIGNING KEY

Must provide a valid 32 octet Ed25519 public key in compressed little endian form (see). The corresponding private key is
used to generate a self-signature, which is included in a signet signing request, and becomes the user signature field
(see). The corresponding private key must also be used to create the chain of custody signature when the signet is
rotated (see), and for generating the full and tree signatures included with outbound messages. When displaying the
value of this field, the label “Signing-Key” should be used and the key information encoded using baseé64.

ENCRYPTION KEY

Must provide a valid public key representing a point on the secp256ka curve and prefixed with the format identifier 4
{oxo4} (see). The corresponding private key will be needed to access messages encrypted to this signet, as described in
the next chapter. When displaying the value of this field, the label “Encryption-Key” should be used and the key

converted into a base64 string.
ALTERNATE ENCRYPTION KEY

Alternate key fields must always begin with two octets, the first provides security level claims for the alternate

encryption key, while the second indicates which alternate encryption cipher suite the key should be used with.

The first octet, which provides an indication of what security level applies to the alternate key. These claims must be
treated as advisory unless the following exception is applicable. This because when a UPA is retrieving a signet from a
foreign source, it has no way of determining, verifiably, whether the claimed security level is accurate. A policy of
requiring accurate security level claims within user signet signing requests is recommended for all Key Service (KS)
implementations.

51

This revision specifies two alternate ciphersuites. Which suite the provided value should be used with is indicated by the
second octet. Currently the value 1 {oxo1} indicates an alternate secp256k1 public key, while a value of 2 {ox02} indicates
a public key on the curve colloquially known as Curve41417 [DANGER]. The values 192 {oxCo} through 239 {oxEF} must be
used by non-standard, or experimental ciphersuites. The values 240 {oxFo} through 255 {ox255} must never be used. A
cryptographic signet which supplies an alternate encryption key where the second octet in the reserved range should be
considered invalid, and a warning must be generated, which a user may elect to ignore.

The remaining octets are used to store actual key material, and are dependent upon the indicated ciphersuite. When
displaying the value of this field, the label “Alternate-Encryption-Key” should be used.

SECURITY LEVELS

When a user signet claims a security level for an alternate encryption key, the information must be treated with
skepticism, used carefully, and considered only as an advisory. The exception is when the author and recipient belong to
confined group where the members are trusted to provide accurate security level claims, or they belong to the same
organization and the KS is trusted to ensure a signet provides authentic clearance level claims. For consumers where this
exception does not apply, there is no guarantee a user’s signet is reporting an accurate security level. This policy may
considered useful inside organizations, or confined groups, which handle particularly sensitive materials and want to

allow users to force the specialized handling with enhanced security precautions for specific messages.

Security levels, even in an advisory role, may provide guidance to authors, and allow them to make informed decisions
about the sensitivity of any materials sent. A security level octet uses a bit mask to the values. Only most significant

security level should be considered relevant. The currently defined security levels for private keys are:

[0 1 [0x00] [Unprotected]
[1 1 [0x01 1 [Sensitive]
[2 1 [0x02] [Secret]
[4 1 [0x04] [Top Secret]
[8] [0x08] [Top Secret // Special Access]
[16 1 [0x16] [Top Secret // Extremely Compartmented

Information // Special Access]

The definitions for these security levels is:

e Unprotected. Server side encryption, trustful account mode, requires absolute trust in the service provider.

¢ Sensitive. Client side encryption, cautious account mode, but thin and thick clients are supported, allowing for

web access.

e Secret. Client side encryption, cautious account mode, thin client support is disabled for content protected by an
alternate encryption key, mandating that a thick client be used to access the attachment and display sections of

a message.

52

e Top Secret. Client side encryption, cautious account mode, thin client support is disabled, mandating that a thick
client is always used, multiple devices are allowed.

e Top Secret // Special Access. Client side private key storage, paranoid account mode, mandates that a single
thick client is always used.

e Top Secret // Extremely Compartmented Information // Special Access. Hardware security module must be
used for key storage and encryption, paranoid account mode, mandates the use of a singular purpose built
access device.

SPECIAL ACCESS

The remaining bits in a security level octet are used to indicate a private key is used with special access program. The
recommended policy is for implementations to limit the use of special access program claims, and only allow signets with
these bits enabled when an alternative encryption key has a Top Secret // Special Access clearance or higher. We also
recommend that client implementations only consider the special access bits if the appropriate Top Secret // Special
Access has been indicated, and if the signet conforms to the exception detailed above regarding the trustworthiness of

security level claims. The currently defined special access program labels are:

[32 1 [0x20] [Special Access // Yankee White]
[64] [0x40] [Special Access // Shadow Hunter]
[128 1 [0x80] [Special Access // Underclass Appelbaum]
CUSTODY

When rotating a user signet, this field must contain a 64 octet Ed25519 signature for the first 3 user signet fields. The
signature must use the previous signing key when generating this signature. If this is the first user signet ever created, or
if the private signing key for the previous signet is unavailable, this field must be omitted. Consumers must reject a
signet if the value supplied by this field is invalid. If the field is missing, or empty, then a signet resolver must issue a
security error if a previous user signet is stored in a user’s signet ring. If a previous user signet is available, and this field
is populated with a signature, then a resolver must independently validate the newly retrieved signet contains a valid
chain of custody signatures linking the stored signet with the current one (see). When displaying the value of this field,

the label “Custody” should be used and the signature information encoded using baseé4.
USER SIGNATURE

Must provide a 64 octet Ed25519 signature for the binary data stream comprising the first 4 fields in the user signet,
which validates using the public Ed25519 signing key stored in field 1 (Signing-Key). Consumers must reject a signet if the

Ill

value supplied by this field is invalid. When displaying the value of this field, the label “User-Signature” should be used

and the signature information encoded using base64.
ORGANIZATIONAL SIGNATURE

Must provide a 64 octet Ed25519 signature for the binary data stream comprising the first 5 fields in the user signet,
which validates against the Ed25519 POK, or an authorized SOK found in the associated organizational signet. Consumers

53

must reject a signet if the value supplied by this field is invalid. When displaying the value of this field, the label
“Organizational-Signature” should be used and the signature information encoded using base64.

FULL SIGNETS

A full signet includes a cryptographic signet, plus the optional informational fields. Unlike the required cryptographic
fields which are strictly defined, parsers must ignore unrecognized informational field types. Assuming a full signet is
syntactically and structurally valid, a parser should also ignore fields any invalid content, and use only the valid field
values. All informational fields, except for the last 3, use the variable length value field type, with a 2 octet length

parameter.

This also means that any unrecognized informational field types must also use the variable length value field type and
provide a 2 octet length parameter. This scheme guarantees backwards for any signet object which provides a magic
number defined by this specification. Signet parsers must be capable of separating semantics from syntax, which means
they must be capable of parsing out the length of an unrecognized or unsupported informational field and advancing
over its value. This allows future revisions to add informational fields which are semantically ignored.

The informational fields provided with a full signet have been divided into the following ranges (see _and):

COMMON FIELDS

The two signet types (user and organizational signets) include fields that are common between them. Implementations
must not vary the use of these common fields between the user and organizational signet formats. The following table
lists the currently defined common fields:

Field Identifier |Label Status Multiples Type
16 Name Optional No Text
17 Address Optional No Text
18 Province Optional No Text
19 Country Optional No Text
20 Postal-Code Optional No Text
21 Phone Optional No Text
22 Language Optional No Text
23 Currency Optional No Text
24 Cryptocurrency Optional No Text
25 Motto Optional No Text
26 Website Optional No Text
32 Message-Size-Limit Optional No Text

The common fields defined above are described below. These descriptions will not be repeated in the class specific,

distinct field sections.

NAME

54

Should provide a UTF-8 string of characters containing an organization or user’s preferred name, as they want it
presented. If applicable, when displaying this field, the label “Name” should be used.

ADDRESS

Should provide a UTF-8 string of characters corresponding to an organization, or user’s physical address. When displaying
the value of this field, the label “Address” should be used.

PROVINCE

Should provide UTF-8 string of characters corresponding to an organization or user’s province, or the principal
administrative division of the signet owner’s country. This is more commonly called the state, region, territory, district, or
canton depending on the locale. The contents of this field should not be abbreviated. When displaying the value of this
field, the label “Province” should be used, unless the client is sophisticated enough to consider the locale and supply the

appropriate colloquial term.
COUNTRY

Should provide a UTF-8 string of characters corresponding to an organization or user’s country. The contents of this field

should not be abbreviated.™ When displaying the value of this field, the label “Country” should be used.
POSTAL CODE

Should provide a UTF-8 string of characters corresponding to an organization or user’s postal code. The contents of this

field should not be abbreviated. When displaying the value of this field, the label “Postal-Code” should be used.
PHONE

Should provide an organization or user’s phone number, multiple values may be supplied, separated by semicolons. An
optional identifier may appear at the beginning of a value. If an identifier is provided it must be terminated by the colon
{ox3A} symbol. Identifiers must not exceed 16 UTF-8 characters, must not include a colon or semicolon, or a white space
character. Identifiers which violate these rules should be ignored, and may result in the specific phone number, or the
entire field being ignored. If the identifier is invalid, or missing, a default identifier value of “Phone” should be used.

"o on
+

The phone number field parameter may begin with a plus {ox2B} symbol to indicate an international phone number,

and should be followed by a complete the dialing prefix, country code, and phone number. If the phone number does not

“"oon
+

begin with a plus {ox2B} symbol, it must be a national number. When providing a national number, a portion of the

7 The suggestion has been made to make this a 2 or 3 letter country code and use the alpha-2 or alpha-3 list to
determine the actual country name. This would limit the number of recognized countries and require implementations to
translate the country code into the local language, but would make it possible to programmatically recognize the value.
The jury is still out on this.

55

leading digits may be enclosed inside parentheses “()” {ox28} and {ox29} to indicate they digits are a trunk prefix and
may only be required when calling from a different trunk code. [E123]

The plus “+” {ox2B} symbol may only be used by a phone parameter once, and must be the first character supplied.

o“woon
+

Parentheses “()" {ox28} and {ox29} may only be used when the plus {ox2B} symbol is absent. If the opening
parentheses “(” {ox28} is used, it must be followed by one or more digits and a closing parentheses “}” {ox29}. The

parentheses “()" {ox28} and {ox29} sequence may only be used once in each phone parameter.

A sample phone field, without an identifier, which supplies a national phone number would appear as:

4108546334

While the same phone number could also appear as:

(410)8546334

If this number was provided with an identifier and a second phone value was also provided with an identifier, it could

appear as:

DIRECT: (410)8546334;0FFICE:2024561414

Note the first phone parameter supplies the optional parentheses while the second value does not.
LANGUAGE

Should provide a string of characters containing an organization or user’s preferred language identifier in order of
preference.” A semicolon terminates the string value and provides an optional separator if multiple values have been
provided. The string which follows the semicolon should be considered a secondary language identifier and used if the
preceding value is unsupported. The sequence may repeat until either the signet owner’s list of preferred languages is
exhausted or the length limit for the field value is reached. When displaying the value of this field, the label “Language”
should be used.

The string values provided by this field should appear in form of a language tag, optionally followed by a subtag, which is
typically used to indicate the specific country or region. The language and subtag values must be separated by a dash.
[LANGUAGE] Convention dictates that language tags should be provided in lowercase form [IS0639-1], script codes in
lowercase form but with the first letter capitalized [ISO15924] while regional and country subtags should be provided

using all uppercase letters. [1IS03166-1]

The value may be used to select a signet owner’s preferred language. The value also provides guidance when formatting

dates, times, numbers and currency amounts. When a consumer encounters multiple language identifiers, it should select

12 The language field value is sometimes referred to the “locale” by other protocols and standards.

56

the first fully supported value it encounters. If none of the identifiers are fully supported, a consumer should examine the
list a second time, and discard the subtag when making comparisons, considering only the language identifier. The first
supported language it encounters should be selected. If this field is missing, and a signet has supplied a value for the field
“Country”, then its value may be considered as an alternative.

For user signets where the Language and Country fields are missing, invalid or their values unsupported, a consumer may
fall back to considering the associated organizational signet using the same logic described above. If all of the preceding
logic fails to yield a supported language identifier, then implementations may also consider the organizational domain
and apply the appropriate language preference the domain belongs to a regional or country specific Top-Level-Domain
(TLD). If an implementation is unable to determine the language preference, the default value “en-US” should be used.

Implementations should recognize all 2 character language identifiers established by the I1SO 639-1 standard. [IS0639-1]
Support for the more comprehensive 3 character language tags established by I1SO 639-2 [IS0639-2], the 4 character
script codes established by ISO 15924 [ISO15924], location subtags is optional.

Language tags should be selected and interpreted using the ISO 639-2 registry maintained by the Library of Congress
(LOC) [LOC-LANG], while location subtags, if supported, should be interpreted using the registry maintained by the
Internet Assigned Numbers Authority (IANA). [IANA-LANG]

The following value would indicate the language is English and the country is the United States of America:

en-US

The following, more complicated example, indicates a preference for English, localized for the United States of America,
followed by any available English representation, then any German representation, and finally by any available French

representation.

en-US;en;de; fr

CURRENCY

A sequence of 3 uppercase characters [IS04217] which correspond to the code used by a signet owner’s preferred form
of currency. A semicolon terminates the value, and serves as an optional separator, allowing for multiple currency codes
to be supplied, based on the signet owner’s order of preference. Currency codes should be in preferential order, with the
most preferred appearing first, and the least preferred appearing last. Only 3 character codes should be used, and they
should be interpreted using the A.1 currency codes table maintained by the Swiss Association for Standardization (SNV).
[SNV-CURRENCY] Values which are not included in the A.1 table, or which include an invalid character should be ignored.

Matching 3 character codes with lower case characters is optional.

If the currency field is missing, or the supplied values are invalid, then the following should be applied as the default
currency preference ordering: “USD;EUR;CHF;GBP;JPY;CAD;AUD;CNY;NZD;RUB;BRL;MXN” which was derived by the major

independent national currencies based on trading volume, the size of the country’s population, along with relative

57

strength and stability. This default preference ordering may be overridden if the value of the Country signet field is
recognized, and is associated with a national currency.

When displaying the value of this field, the label “Currency” should be used. The following currency field example
indicates a preference for United States Dollars, followed by Swiss Francs, European Euros, and finally Indian Rupees:

USD; CHF; EUR; INR

CRYPTOCURRENCY

A UTF-8 string which should correspond to a signet owner’s preferred cryptographic currency. The 3 character
cryptocurrency identifying type must be separated from the payment address information by a colon. A semicolon
terminates the cryptocurrency string, and provides an optional separator. If a UTF-8 string follows the semicolon, it
should be interpreted as a less preferred cryptocurrency type presented in the same identifier, colon, value form. The
sequence may repeat until the signet owner’s list of preferred cryptocurrencies is exhausted or the length limit for the
field value is reached. If the field value includes an invalid UTF-8 codepoint, the entire field must be ignored, otherwise if
an individually delimited value is provided without an identifier, or if the identifier is invalid/unrecognized, only the
specifically delimited value should be ignored. When displaying the value of this field, the label “Cryptocurrency” should
be used.

Support for this field is optional, but if an implementation does support it, then the following defined cryptocurrency
symbols must be recognized:

Symbol Name Website

BLK Blackcoin https://www.blackcoin.co/
BTC Bitcoin https://bitcoin.org/

DRK Darkcoin https://www.darkcoin.io/
LTC Litecoin https://litecoin.org/

PPC Peercoin http://www.peercoin.net/
STR Stellar https://www.stellar.org/
XMR Monero https://monero.cc/

XRP Ripple https://ripple.com/currency/

In the event this field is empty, a consumer should assume the preferred cryptocurrency is Bitcoin. The value of this field

should match the following example:

BTC:19gy9ifMJuHoRbVpXBgtf6NTAT6PiDb8SQ

MOTTO

A UTF-8 string of characters corresponding to a signet owner’s motto or vision statement. When displaying the value of
this field, the label “Motto” should be used. The value should be less than 256 UTF-8 characters. Parsers have the option
of truncating the value at 256 characters. The following is a possible motto value, provide as an example:

58

For protection from the forces of evil. Use as directed.

WEBSITE

A UTF-8 string of characters corresponding to a signet owner’s website. The value for this field must be a valid Hypertext
Transfer Protocol (HTTP) Universal Resource Locator (URL) or HTTP Secure (HTTPS) URL. If the field does not contain a
valid HTTP or HTTPS value, it must be ignored. The URL should use HTTPS, although this requirement remains optional.
When displaying the value of this field, the label “Website” should be used.

MESSAGE SIZE LIMIT

A number, represented as a string of digits in text form, with values between o {ox30} and 9 {ox39}. The string
represents the size limit for incoming messages. When provided by an organizational signet, the value applies to all of
the email addresses associated the signet. This includes the target domain, and depending on the subdomain policy in
the management record, any subdomains that might exist. If the field is provided in a user signet, the size limit only
applies to individual email address associated with the signet.

The minimum legal value is 1 megabyte (aka mebibyte). When organizational and user signets both provide legal values
for this field, then the smaller of the two values takes precedence. If the field contains a character which is not in the
range {ox30} through {ox39}, if the numeric value is less than 1,048,576, or if the value is greater than 4,294,967,295, it
should be ignored. When displaying the value of this field, the label “Message-Size-Limit” should be used.

DISTINCT ORGANIZATIONAL FIELDS

The following table lists the defined fields which apply only to organizational signets.

Field Identifier Label Status Multiples
128 Contact-Abuse Recommended No Text
129 Contact-Admin Recommended No Text
130 Contact-Support Recommended No Text
131 Web-Access-Host Recommended No Text
132 Web-Access-Location Recommended No Text
133 Web-Access-Certificate Optional No Text
134 Mail-Access-Host Recommended No Text
135 Mail-Access-Certificate Optional No Text
136 Onion-Access-Host Optional No Text
137 Onion-Access-Certificate Optional No Text
138 Onion-Delivery-Host Optional No Text
139 Onion-Delivery-Certificate Optional No Text
200 Services Optional No Text
CONTACT ABUSE

59

A UTF-8 string corresponding to the email address for the organization's abuse contact. If this field is omitted the mailbox
name “abuse” is combined with the organizational domain name for the signet to derive an abuse contact. This field
must provide a value, or an organization must capable of receiving complaints using the default address. When
displaying the value of this field, the label “Contact-Abuse” should be used.

CONTACT ADMIN

A UTF-8 string corresponding to the email address for the organization's administrative contact. When displaying the
value of this field, the label “Contact-Admin” should be used.

CONTACT SUPPORT

A UTF-8 string corresponding to the email address for the organization's support contact. When displaying the value of
this field, the label “Contact-Support” should be used.

WEB ACCESS HOST

A UTF-8 string of characters corresponding to the DNS name (not IP address) of the web access hostname which offers
Hyper Text Transfer Protocol Secure (HTTPS) and provides web based access to user email accounts. A semicolon
terminates the hostname string, and provides an optional separator. The UTF-8 string which follows the semicolon should
be considered a second web access hostname. The sequence may repeat until either the list of web access hostnames is
exhausted or the length limit for the field value is reached. The final web access hostname may terminate with a
semicolon, but its inclusion is optional. When displaying the value of this field, the label “Web-Access-Host” should be
used.

WEB ACCESS LOCATION

A UTF-8 string of letters or numbers corresponding to a HTTPS resource location for the organizational webmail system.

When displaying the value of this field, the label “Web-Access-Location” should be used.
WEB ACCESS CERTIFICATE

A base64 string which provides the encoded Ed25519 signature for the TLS certificate supplied by the web access host
over HTTPS. A semicolon terminates the TLS certificate signature string, and provides an optional separator. The base64
string which follows the semicolon should be considered a second base64 TLS certificate signature. The sequence may
repeat until either the list of valid TLS certificate signatures is exhausted or the length limit for the field value is reached.
The final base64 TLS certificate signature may terminate with a semicolon, but its inclusion is optional. When displaying
the value of this field, the label “Web-Access-Certificate” should be used.

MAIL ACCESS HOST

A UTF-8 string of characters corresponding to the DNS name (not IP address) of the mail access hostname which offers
connectivity using the Dark Mail Access Protocol (DMAP). A semicolon terminates the hostname string, and provides an

optional separator. The UTF-8 string which follows the semicolon should be considered a second mail access hostname.

60

The sequence may repeat until either the list of mail access hostnames is exhausted or the length limit for the field value
is reached. The final mail access hostname may terminate with a semicolon, but its inclusion is optional. When displaying
the value of this field, the label “Mail-Access-Host” should be used.

MAIL ACCESS CERTIFICATE

A base64 string which provides the encoded Ed25519 signature for the TLS certificate supplied by the mail access host for
DMAP connections. A semicolon terminates the TLS certificate signature string, and provides an optional separator. The
base64 string which follows the semicolon should be considered a second base64 TLS certificate signature. The sequence
may repeat until either the list of valid TLS certificate signatures is exhausted or the length limit for the field value is
reached. The final base64 TLS certificate signature may terminate with a semicolon, but its inclusion is optional. When
displaying the value of this field, the label “Mail-Access-Certificate” should be used.

ONION ACCESS HOST

A UTF-8 string of characters corresponding to the onion hostname for mail access. A semicolon terminates the hostname
string, and provides an optional separator. The UTF-8 string which follows the semicolon should be considered a second
onion access hostname. The sequence may repeat until either the list of onion access hostnames is exhausted or the
length limit for the field value is reached. The final onion access hostname may terminate with a semicolon, but its

inclusion is optional. When displaying the value of this field, the label “Onion-Access-Host” should be used.
ONION ACCESS CERTIFICATE

A base64 string which provides the encoded Ed25519 signature for the TLS certificate supplied by the onion access host.
A semicolon terminates the TLS certificate signature string, and provides an optional separator. The base64 string which
follows the semicolon should be considered a second base64 TLS certificate signature. The sequence may repeat until
either the list of valid TLS certificate signatures is exhausted or the length limit for the field value is reached. The final
base64 TLS certificate signature may terminate with a semicolon, but its inclusion is optional. When displaying the value

of this field, the label “Onion-Access-Certificate” should be used.
ONION DELIVERY HOST

A UTF-8 string of characters corresponding to the onion hostname for mail delivery and signet lookups using the Dark
Mail Transfer Protocol (DMTP). A semicolon terminates the hostname string, and provides an optional separator. The
UTF-8 string which follows the semicolon should be considered a second onion delivery hostname. The sequence may
repeat until either the list of onion access hostnames is exhausted or the length limit for the field value is reached. The
final onion delivery hostname may terminate with a semicolon, but its inclusion is optional. When displaying the value of
this field, the label “Onion-Delivery-Host” should be used.

ONION DELIVERY CERTIFICATE

A base64 string which provides the encoded Ed25519 signature for the TLS certificate supplied by the onion delivery host.

A semicolon terminates the TLS certificate signature string, and provides an optional separator. The base64 string which

61

follows the semicolon should be considered a second base64 TLS certificate signature. The sequence may repeat until
either the list of valid TLS certificate signatures is exhausted or the length limit for the field value is reached. The final
base64 TLS certificate signature may terminate with a semicolon, but its inclusion is optional. When displaying the value
of this field, the label “Onion-Delivery-Certificate” should be used.

SERVICES

Provides a semicolon delimited list of domain level services and protocol extensions support by an organization. The
services field is designed to allow the advertisement of alternate communication protocols or extend the mail protocols
beyond what is defined by this specification.

", n

The text field should provide a semicolon, “;” {ox3b}, delimited list of four character values corresponding to recognized
identifiers. The final value may terminate with a semicolon, “;” {ox3b}, but its inclusion is optional. For example, an
organizational domain which supports the Extensible Messaging and Presence Protocol (XMPP) [XMPP] may advertise

this protocol using the services value:

XMPP

" n

The colon, “:” {ox3a} character, may be used to delineate dependent identifiers within a single value. The complete value
string should be unique, although a protocol identifier may be repeated using a different, unique, collection of dependent
identifiers. For example, if an organizational domain supported multi-user chatrooms [XMPP-CHAT], along with end-to-
end for instant messages (using Off-The-Record (OTR) [OTR]), the services field would be:

XMPP; XMPP:OTR; XMPP:XEP0045

Individual identifiers should all be 3 to 6 uppercase letters, although if a value exceeds 7 uppercase characters, the entire
identifier must be compared as a single token. If any of the identifiers included with a value are unrecognized, the entire
value should be ignored. Identifiers may be evaluated by consumers case insensitively.

For protocols identifiers, the hostname responsible for providing a service may, optionally, be advertising using a
corresponding service record. To find the service record a resolver should query the organizational domain associated
with a signet using the appropriate identifying prefix, and the “SRV” resource record type [SRV]. The hostname
responsible may also be located using a protocol specific mechanism.

When displaying the value of this field, the label “Services” may be used. A may display the identifiers, or choose to
parse the values and display the recognized identifiers using their full names.

‘DISTINCT USER FIELDS

The following table lists the defined user signet fields:

Field Identifier Label NES Multiples Type

| 128 | Title | Optional | No | Text

™ (Gender | optional | No | Text

130 Alma-Mater Optional No Text
131 Alternate-Address Optional No Text
132 Affiliation Optional No Text
133 Supervisor Experimental No Text
134 Political-Party Experimental No Text
135 Resume Experimental No Text
136 Endorsements Experimental No Text
200 Extensions Optional No Text
201 Codecs Optional No Text

TITLE

A UTF-8 string of characters corresponding to a user's job title. A semicolon terminates the 'title' string, and provides an
optional separator. The UTF-8 string which follows the semicolon should be considered the 'title' label. Signet creators
may omit the 'title' label. When displaying 'title’, the label must be displayed, if present, otherwise an implementation
may choose to omit the label, or display the default label value. For 'title' fields without a label the string “Title” should
be used as the default value.

GENDER

A UTF-8 string of letters corresponding to a user's gender. A semicolon terminates the 'gender’ string, and provides an
optional separator. The UTF-8 string which follows the semicolon should be considered the 'gender' label. Signet creators
may omit the 'gender' label. When displaying 'gender’, the label must be displayed, if present, otherwise an
implementation may choose to omit the label, or display the default label value. For 'gender' fields without a label the

string “Gender” should be used as the implied default value.
ALMA MATER

A UTF-8 string of characters corresponding to a user's alma mater. A semicolon terminates the 'alma mater' string, and
provides an optional separator. The UTF-8 string which follows the semicolon should be considered the 'alma mater'
label. Signet creators may omit the 'alma mater' label. When displaying 'alma mater', the label must be displayed, if
present, otherwise an implementation may choose to omit the label, or display the default label value. For 'alma mater'
fields without a label the string “Alma Mater” should be used as the implied default value.

ALTERNATE ADDRESS

A UTF-8 string of valid characters and '@' corresponding to a user's alternate email address. A semicolon terminates an
individual alternate email value, and serves as an optional separator. An additional alternate email address may be
supplied following the semicolon, and the pattern may repeat until all of a user’s alternate email addresses have been
listed or the length limit for the field value is reached. When displaying the value of this field, the label “Alternate-
Address” should be used.

AFFILIATION

63

A UTF-8 string of characters corresponding to a user's organizational affiliation name. A semicolon terminates the
“affiliation” string, and provides an optional separator. The UTF-8 string value should correspond to the name of the
company, organization, or group the user is affiliated with. When displaying affiliation, the value should appear alongside
the label “Affiliation.”

This field is considered experimental and may be altered dramatically, or removed entirely in the future.
SUPERVISOR

A UTF-8 string of characters corresponding to a user's supervisor name. It can be used as a contact when a user is out of
the office. A semicolon terminates the 'supervisor' string, and provides an optional separator. The UTF-8 string which
follows the semicolon should be considered the 'supervisor' label. Signet creators may omit the 'supervisor' label. When
displaying 'supervisor', the label must be displayed, if present, otherwise an implementation may choose to omit the
label, or display the default label value. For 'supervisor' fields without a label the string “Supervisor” should be used as

the implied default value.
This field is considered experimental and may be altered dramatically, or removed entirely in the future.
POLITICAL PARTY

A UTF-8 string of characters corresponding to a user's political party affiliation. A semicolon terminates the 'political
party' string, and provides an optional separator. The UTF-8 string which follows the semicolon should be considered the
'political party' label. Signet creators may omit the 'political party' [abel. When displaying 'political party', the label must
be displayed, if present, otherwise an implementation may choose to omit the label, or display the default label value.

For 'political party' fields without a label the string “Political Party” should be used as the implied default value.
This field is considered experimental and may be altered dramatically, or removed entirely in the future.

RESUME

A UTF-8 string of characters corresponding to a user's resume. A semicolon terminates the 'resume' string, and provides
an optional separator. The UTF-8 string which follows the semicolon should be considered the 'resume’ label. Signet
creators may omit the 'resume' label. When displaying 'resume’, the label must be displayed, if present, otherwise an
implementation may choose to omit the label, or display the default label value. For 'resume' fields without a label the
string “Resume” should be used as the implied default value.

This field is considered experimental and may be altered dramatically, or removed entirely in the future.
ENDORSEMENTS

A binary string corresponding to any endorsements a user may have. Endorsements may be used to build a level of trust
or confidence that a user is of good character. Endorsements generated by users on different service providers may

provide a measure of confidence that a signet is valid when it is retrieved for the first time. The value must begin with a
valid DIME-enabled email address for a signer. The address parameter is by a colon, and is followed by the cryptographic

64

fingerprint, expressed using modified base64, for the signet in a signer’s chain of custody containing the appropriate
public key needed to validate a signature. The fingerprint parameter is terminated by a colon and followed by a 64 octet
Ed25519 signature generated over the signet owner’s root signet and supplied in modified base64 form. An individual
endorsement value is terminated by a semicolon, and may be followed by additional endorsements in the same
“identifier:fingerprint:signature” format.

Any endorsements created by with a signing key that is no longer part of the signer’s chain of custody must ignored. Any
signatures which don’t validate using a signet owner’s current root signet must also be ignored. Invalid endorsements
should be removed the next time the signet is rotated. When displaying the value of this field, the label “Endorsements”
should be used.

This field is considered experimental and may be altered dramatically, or removed entirely in the future.

EXTENSIONS

Provides a semicolon delimited list of optional protocol extensions support by a user’s client. Protocol extensions are
designed to allow extensibility of the underlying protocols and applications. The final extension may terminate with a
semicolon, but its inclusion is optional. The list of extensions should not contain any repeat values, and the values
supplied should use uppercase letters. Consumers must evaluate the list of extensions case insensitively. When

|II

displaying the value of this field, the label “Extensions” should be used.

CODECS

Provides a semicolon delimited list of optional media codecs supported by a user’s client. The final media codec identifier
may terminate with a semicolon, but its inclusion is optional. The list of media codec identifiers should not contain any
repeat values, and the values supplied should use uppercase letters. Consumers must evaluate the list of codecs case
insensitively. When displaying the value of this field, the label “Supported-Codecs” should be used.

SPECIAL FIELDS
The defined special informational fields are:
IMAGE

A binary string corresponding to a user’s or organization's image. This could be used to store a photograph of a user or a
logo for an organization. If a user signet lacks an image, the MUA should display the image provided by the
organizational signet. If both the user and organizational signets lack a valid image, then an MUA should use a default
image depicting a silhouette.

Because the maximum value of the length parameter is 16,777,215, it is critically important that signet creators ensure
the image field does not overflow the 16,777,215 limitation for an entire signet object, dictated by the 3 octet length
parameter in the object header. Consumers must ensure the cumulative length of all fields is less than the 16,777,215
maximum to avoid overflowing the length parameter in the object header. Any signet which appears to exceed this

65

maximum must be rejected, and the user must notified. An overflowing signet length is likely a malicious attempt to
compromise a parser implementation.

Valid images must be in the Portable Network Graphics (PNG) format [PNG], invalid PNG images should be ignored, along
with any image that uses a different format. Image should have a matching width and height, giving them an aspect ratio
of 1. The recommended dimensions for images are: 512x512, 1024%x1024 and 2048x2048. Implementations should restrict
images to 1 megabyte (aka mebibyte). Consumers should be capable of handling signets with images up to 16
megabytes (aka mebibyte), but may ignore image fields larger than 1 megabyte (aka mebibyte). Consumers should
dynamically resize and, if necessary, crop images to dimensions matching the area available to display it.

UNDEFINED FIELDS

Undefined fields allow a specific implementation to defined additional fields at the user or organizational level that are
not already defined in this specification. Undefined fields must be comprised of valid characters from the UTF-8 encoding
standard and provide an arbitrary name and data value that may be recognized by DIME protocol extensions, or simply to
carry arbitrary data for experimentation or use by non-DIME functionality. For additional detail, refer to the section above
entitled Undefined Field Layout.

SIGNATURE FIELD

A full signet includes a second organizational signature following the informational fields. The presence of a full signet
signature in field 253 serves as the technical differentiator between a cryptographic signet and a full signet. It is
technologically possible to have a full signet, with a second organizational signature, even when none of the optional
informational fields provide values.

A full signet signature is an Ed25519 signature taken over the fields 1 through 252 in binary form, and is a required
element of any signet with a value included for an informational field. If a parser encounters a signet with a value for an
informational field, and no full signet signature, it must ignore all of the informational fields, and should generate a

warning.

Organizational signets must provide a full signet signature which authenticates against the POK provided in field 1
(Primary-0Organizational-Key), while a user signet must provide a signature which authenticates against the POK or an
authorized SOK supplied by associated organizational signet. For user signets, the signing key must be the same as the
signing key used to generate the first the first organizational signature. For more information, see the description of sin

the section on Cryptographic Signets.

A parser must also ignore all of the informational field values if a full signet signature is invalid. When displaying the
value of this field, the label “Full-Signet-Signature” should be used with the signature value encoded using base64.

IDENTIFIABLE SIGNETS

66

The following table lists the fields appended to a signet, that when present, make it “identifiable.” These fields are
common to both signet classes, and both signet types:

Type Label Status Multiples Type
254 |dentifier Required No Text
255 Identifiable-Signet-Signature Required No Signature
IDENTIFIER

For organizational signets, this field provides the domain name associated with a signet. This should be the domain name
used to retrieve the management record which authenticated a signet. The “_dime” prefix used when requesting a
management record as a “TXT” resource record must be omitted. For example, the domain “example.com” would supply:

example.com

For user signets, the field provides the complete email address associated with the signet. The value must be UTF-8,
using the Normalization Form for Canonical Composition (aka NFC). Signet resolvers may encounter hosts which accept
the normalized identifier without finding a match, but based on localized matching rules suggest alternate
representations. Resolvers must exercise caution when accepting these aliases to avoid substitution attacks. If a user
enters “User@Example.TLD” then the identifier must be converted into “user@example.com” and result in a request for
the identifier field:

user@example.com

A resolver must ensure the signet it retrieves provides this exact identifier. When displaying the value of this field, the
label “Signet-ldentifier” should be used.

IDENTIFIABLE SIGNET SIGNATURE

Organizational and user signets must contain an Ed25519 signature in field 255, which is generated over the fields 1
through 254 in binary form.

Organizational signets must provide an identifiable signet signature which authenticates against the POK provided in field
1 (Primary-0rganizational-Key), while a user signet must provide a signature which authenticates against the POK or an
authorized SOK supplied by an associated organizational signet. For user signets, the signing key must be the same as
the signing key used to generate the first the first organizational signature. For more information, see the description of s
in the section on Cryptographic Signets.

When displaying the value of this field, the label “Identifiable-Signet-Signature” should be used with the signature value
encoded using base64.

DERIVATIVE FORMATS

67

‘SIGNET SIGNING REQUESTS

TBD

‘ORGANIZATIONAL PRIVATE KEYS
PRIMARY ORGANIZATIONAL KEY

SECONDARY ORGANIZATIONAL KEY

‘ USER PRIVATE KEYS

ALTERNATE USER PRIVATE KEY

‘ ENCRYPTED PRIVATE KEYS

Salting, iterating and encrypting schemes when stored on a server.

USAGE

‘ROTAHON

TBD

‘REVOCATION

Compromised organizational signets revoked by removing the POK from the management record, and then resigning any
objects which relied on a compromised private key.

Compromised user signets are revoked by including an Estoppel entry in a user signet’s chain of custody, as returned by
the history command.

VALIDATION

A signet is only considered valid if there is a primary lookup source and a secondary pre-authenticated source of

confirmation.

The default method for achieving this with an organizational signet is a DMTP retrieval of the full signet, whose signature
is cryptographically verified using the POK found in @ management record signed using DNSSEC. Without DNSSEC, a
tertiary source of confirmation is required. This additional confirmation means the TLS certificate supplied by the DMTP

server must be signed by a recognized Certificate Authority.

68

The default method for achieving this with a user signet, the first time it is requested, is a DMTP retrieval of the full user
signet, and then cryptographically verifying the signatures against the organizational signing keys. Subsequent retrievals
must also provide a valid custody signature, which links the freshly retrieved signet to the previously retrieved signet.

Future plans call for the creation of a global ledger which will act as a non-reputable reflective record for user signets.

Signet resolvers must ensure the organizational signet they retrieve for a domain name is signed using a POK value
found in the management record. While it is possible for a domain to provide multiple POK values in a single
management record, a signet resolver must ensure all of the signatures provided by a signet were created using the
same private signing key, and that all of the signatures are valid.

When attempting to validate organizational signatures for user signets, and messages, a consumer may rely on the
management record POK value instead of retrieving an organizational signet.

ENCODING

Three possible encoding formats are defined by this specification. A parser implementation which converts between the
different encoding formats must ensure that when converted objects into an armored format, they can be converted
back into their original binary representation, or the signatures will be invalidated.

‘BINARY

‘JAVASCRIPT OBJECT NOTATION

‘ PRIVACY ENHANCED MESSAGE

The encoding scheme for user and organizational signets is Radix-64 also known as ASCIl armor. [PGP]

See the transfer encoding section in the D/MIME chapter for a template of the intro text.

How are cryptographic user signets versus full user signets described? Should org primary/secondary keys get a unique
label? The same question must be asked of user private keys and alternate user private keys. When should info be
embedded in a header field, versus being worthy of a new label? I'm assuming, but it might not be true, that each label
corresponds to its own magic number. What about encrypted private keys? Should they be easy to identify over

unencrypted? Just as a comparison:

————— BEGIN RSA PRIVATE KEY-----

Proc-Type: 4,ENCRYPTED

DEK-Info: AES-256-CBC,9DA7F400614C9321FE676C366A2FF18F
..snip...

69

The PEM boundaries for an Organization Signet and Key are:

—————— BEGIN ORGANIZATIONAL KEY-----
Organization-Key-Type: Secondary

————— BEGIN USER KEY-----
User-Key-Type: Alternate

70

71

PART 6: MESSAGE DATA FORMAT

This chapter describes the Dark Multipurpose Internet Mail Extensions (D/MIME) data format. The D/MIME format is an
encryption scheme intended to protect Multimedia Internet Mail Extensions (MIME) [MIME] formatted messages. Like
similar formats, D/MIME relies on cryptographic algorithms to ensure message confidentiality, author authenticity and
non-repudiation. Unlike similar formats, D/MIME also encrypts message headers and envelope information, which makes
it a fully encrypted message format. D/MIME messages are designed to minimize the leakage of metadata while being
handled by transferred and ultimately delivered within a Dark Internet Mail Environment (DIME).

INTRODUCTION

The D/MIME format was created with the goal of protecting routing and delivery information, along with the historical
objective of protecting message content and file attachments. With the D/MIME format, the sending and receiving
service providers only have access to the minimum amount of information they need to fulfill their designated roles. The
sending (origin) host will only know the domain of the recipient while a receiving (destination) host will only know the
domain portion of return-path (origin), not the sender (author).

To facilitate the efficient access of D/MIME messages, the format has been structured into distinct sections, which are
further subdivided into chunks. Each chunk is protected by its own unique ephemeral symmetric key. This will allow
devices with resource constraints (like bandwidth, processing power, or storage space) to decrypt and validate portions
of a message independently without compromising security. This allows a client to avoid downloading, decrypting, and
validating an entire message before accessing its contents. The chunks have been optimized for the most commonly
observed access and usage patterns. One of the primary goals for DIME was to ensure users could continue using
Internet electronic mail (email) in a manner that was similar to how they have traditionally behaved. This meant being

able to access encrypted messages efficiently using a variety of different platforms and devices.

Specific cryptographic primitives have been chosen based on security, context, and reputation. The D/MIME algorithms
are believed to be secure for the usages described in this chapter. To ensure a common baseline, and to facilitate
interoperability between DIME implementations, only one algorithm in each category is mandatory. Extensions are
available which allow the use of alternative algorithms and strategies to be layered on top of the encryption schemes
described below. The primitives selected are Elliptical Curve Encryption (ECC) [ECDH] for asymmetric operations (using
curve secp256ki) [SEC], the Advanced Encryption Standard (AES) [AES] for symmetric encryption, the Secure Hash
Algorithm (SHA2-512) for hash operations, and the Edwards-curve Digital Signature Algorithm (EdDSA) for cryptographic
signing operations (using curve Ed25519). Users may also advertise alternative public encryption keys using the curve
colloquially known as Curve41417 [DANGER].

HISTORICAL CONTEXT

The D/MIME message format draws its inspiration from the OpenPGP [PGP] and Secure Multipurpose Internet Mail
Extensions (S/MIME) [SMIME] formats. Without the research and development efforts invested in the development of
those standards, DIME would not be possible. The changes described in this document draw upon the experiences and

72

the lessons learned by community while implementing, deploying, and communicating with messages protected by
OpenPGP and S/MIME. Readers already familiar with those standards will find this specification easier and more
accessible.

The primary difference between D/MIME and OpenPGP or S/MIME is that it is a fully encrypted message format. D/MIME
protects the envelope and headers of a message, in addition to its contents. Historically, the return path and recipient
address associated with a message have been called the envelope. In the past, the message envelope was transferred at
the protocol level, exposing it to collection by compromised handling agents. D/MIME encrypts envelope information
within the message object, and relies on DIME capable systems to extract and process it. Encryption is used to ensure an
agent only has the information necessary to relay a message to its next hop. This minimizes the amount of information

exposed to the minimum amount necessary for a mail system to function.

D/MIME employs a simple tree like binary structure, with each leaf encrypted separately. This allows a system to access
portions of a message without compromising the remainder. It also allows resource constrained clients to validate
cryptographic signatures, and access pieces without having to download a message in its entirety. Also noteworthy is
that the most commonly needed message headers have been separately encrypted, allowing them to be downloaded
separately and displayed during list operations more efficiently.

Domain Keys Identified Mail (DKIM) [DKIM] is technological parent of another aspect of DIME. To improve security, and
restrict its abuse, DIME systems require that D/MIME messages be signed by the author and then signed again by the
organizational domain. Authors are required to generate a tree signature in addition to a full signature. Cleartext MIME
content is also signed by the author. The organizational domain must also sign the full contents of a message, and may
generate a bounce signature which allows it to verify the origin of a partial bounce.

The final aspect of D/MIME messages which is distinct from OpenPGP and S/MIME is that each message must be
encrypted separately for each recipient. This ensures handling agents can’t determine how many recipients a message is
being sent to, and if the cleartext contents are encrypted using distinct symmetric keys, it will ensure each copy of a

message is uniquely distinct.”

LEAKAGE

Does not mask metadata for two people on the same mail system

13 This is an aspect of D/MIME that would benefit from community feedback. The current plan is to allow a message
which uses the same symmetric keys to be submitted once using DMAP, plus the individual key slot and signature values
for each recipient. The submission server would assemble the pieces, and then the full contents would be transferred
separately between servers over DMTP. Users who want to avoid fingerprinting of the contents would need to submit a
separate copy for each recipient.

73

The structure of a message is still accessible, and must remain so for efficient access by resource constrained MUAs,
which would allow attackers to fingerprint and then track messages if they could compromise the handling agents, or
compromise the TLS connections used during transfer operations

ALGORITHMS

Note the following is always the first layer of encryption applied. Its implementation is required. This wording might need
to be tweaked for flow, now that the alternate section has been added and required versus alternates subsections have
been added.

NOTE!!! We have not defined what KDF standard will be applied to the output of the DH to derive the 48 bytes needed for
the KEK! Should we use a variation of PBKDF#2 with SHA-512 and some defined standards? Should we use bcrypt or
scrypt instead? Research is needed! Leaning towards using scrypt!

Required Baseline

The D/MIME message format relies on 3 cryptographic algorithms for key agreement, encryption and signatures. The
Elliptical Curve Diffie-Hellman (ECDH) [ECDH] key agreement protocol is used to calculate a shared secret. Encrypted
payloads and keyslots are encrypted using the Advanced Encryption Standard (AES) [AES]. Both encrypted and cleartext
data is verified using the Edwards-curve Digital Signature Algorithm (EdDSA) [EDDSA].

The AES key used to protect individual key slots is called the Key Encryption Key (KEK), and is calculated using ECDH and
the secp256k elliptical curve. Each KEK is generated using an ephemeral message key and the public encryption key
stored in the signet of each actor associated with a message (author, origin, destination and recipient). Keyslots are
protected using a 256-bit KEK and encrypted using AES and the cipher-block chaining (CBC) mode of operation. Keyslots
hold randomly generated 256-bit AES keys along with the randomly generated Initialization Vector (IV) needed to access
encrypted payloads. The encrypted message data and the cleartext data for every encrypted chunk payload are signed
using the EdDSA algorithm. Signatures are generated using the Twisted Edwards curve: x* + y? = 1 (121665/121666)x2y?
(collectively called Ed25519) which is birationally equivalent to Curve2ss19.

ALTERNATE BASELINES

We obviously need to settle what the auxiliary cryptographic baseline is. At the moment it is using a Curve41417
[DANGER] public key to perform another ECDH which generates a shared secret, that is then supplied to the KDF (SKEIN
or SHA3) which decrypts the aux keyslot. Aux keyslot and symmetric data segment would use ChaChaz2o (or possibly
Serpent). Signatures would use EdDSA but using the SKEIN or SHA3 message hash function.

TYPES

Magic Number

1847 Encrypted Message
1851 Encrypted Sent Message

74

1861 Encrypted Draft Message
1908 Encrypted Naked Message

MESSAGES

The following diagram is designed to illustrate how a typical Internet electronic mail message (email) [IMF] message is

splitinto D/MIME chunks (note the different user and organizational signature chunks have been combined for brevity):

75

Tvpe Identifiers
M = Message
I = Section

I = Chunk

Access ldentifiers

A = Author

D = Destination
O = Origin

R = Recipient

Message

Envelope

Y

Metadata

Signature

Tracing / Unencrypted

Return-Path: <lavabit.com>

Destination: <whitehouse.gov>

Destination-Key: [CD1Z52B6ZpyfRiUeo63tJFc2Ca)

Received: from lavabit.com (153.31.119.142)
by mail.whitehouse.gov with DMTP id NSHHRIGSDWST
for <whitehouse.gov>; Wed, 4 Jun 2014 13:37:02 -0500

Ephemeral / Unencrypted
Ephemeral-Key: [wREBqUxPadqBzSCodroFYScLOIl]

Origin / AOR

Author: <ladar@Iavabit.com>

Author-Key: [WREBqUxPadqBzSCodroFYScLOI]
Destination: <whitehouse.gov>

Destination-Key: [CD1Z52B6ZpyfRiUeo63tIFc2Ca])

Destination / ADR

Recipient: <obama@whitehouse.gov>
Recipient-Key: [58+FsG1Y3n4SveTfX9PN68KoWS]
Origin: <lavabit.com>

Origin-Key: [VLbfEsXhxtSzHpub1bRW+iyXLR]

Common Fields / AR

Date: Sat, 13 Jul 2013 03:15:42 -0500

To: Barack Obama <obama@whitehouse.gov>
CC: Edward Snowden <edward@lavabit.com>
From: Ladar Levison <ladar@lavabit.com>
Organization: Lavabit LLC <lavabit.com>
Subject: Hey, who turned out the lights?

Other Fields / AR

Message-ID: <51E1D787.2010201@lavabit.com>
References: <6069AA0946F2602B@whitehouse.gov>
In-Reply-To: <6069AA0946F2602B@whitehouse.gov>
User-Agent: Volcano/1.2.8

Thread-Topic: Hey, who turned out the lights?
Thread-Index: AbVQ9wlJIc9KwLwQecsVwINHWFOzw3D==
Content-Language: en-US

X-Nonspam: None

Display / AR
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: 8bit

Mr. President, I'm afraid the ubiquitous adoption of dmail has eliminated the need for
you to employ so many Peeping Sams. Might | suggest a layoff? You could refund the
budget surplus to the people as a tax cut.

Sincerely,
Ladar Levison

Attachment / AR

Content-Type: application/octet-stream;
name="TOP-SECRET-SLURPEE-net-data-collection-sources.pdf"

Content-Transfer-Encoding: base64

Content-Disposition: attachment;
filename="TOP-SECRET-SLURPEE-net-data-collection-sources.pdf"

JVBERi@xLjcKMSAWIGY1ajw8L1R5cGUVQ2F@YWxvZy9QYWdlcyAy IDAgU4+ZW5kb21qCiIg
MCBvYmo8PC9UeXB1L1BhZ2VzL@tpZHNbMyAwIFJdLONvdWS@IDEVTWVkaWFCb3hbMCAWIDUS
NSA4NDIdPj51bmRvYmoKMyAwIG9iajw8L1R5cGUVUGFNZS9QYXI1bnQgMiAwIFIvQ29udGVu
dHMgNCAWIFI+PmVuZG9iago@IDAgb21qPDwvTGVUZ3RoIDE4Pj5zdHI1YWOKNz IgNzIgNDUX
IDY50CByZSBmCmVuZHNOcmVhbSB1bmRvYmoKeHJ 1ZgowIDUKMDAWMDAWMDAWMCAZ2NTUZNSBm
DQowWMDAWMDAWMDAS IDAWMDAWI GANC j AWMDAWMDAWNT I gMDAWMDAE bg@KMDAWMDAWMDEyMy Aw
MDAWMCBuDQOWMDAWMDAWMT c 5IDAWMDAWIGANCNRYYW1sZXIBPCO9TaXplIDUvUmOvdCAXIDAgE
Uj4+CnN@YX18eHI1ZgoyNDIKISVFTOY=

User Signatures / AOR
User = Tree Signature (Combined Chunk Hashes) / Complete Content Signature

Organizational Signatures / AODR

Organizational = Bounce Signature (If Applicable) / Complete Content Signature

Figure 9 Message Structure 76

DATA FORMAT

D/MIME messages are comprised of a message header, and an arbitrary number of individual chunks. Chunks are
comprised of a chunk header, a payload and, for encrypted chunks, the appropriate number of keyslots. Every encrypted
payload is protected using a distinct, randomly generated key. The randomly generated keys are stored inside the
keyslots. Keyslots are protected using a distinct shared secret which is unique for each message, and distinct for each
actor authorized to access a message. The number of keyslots is determined by which actors must have access to the

preceding payload.

MESSAGE HEADER

D/MIME messages begin with a 6 octet header. Like all of the binary formats used throughout DIME, a D/MIME message
begins with 2 octets which provide the magic number. The following 4 octets contain the size of a message in its binary
form. The size value does not include the 6 octet header, but does include all of the data that follows it. Because the size

is 4 octets, the binary portion of a message has a technical limitation of 4,294,967,296 octets.

A D/MIME message will always begin with the two octet numeric identifier 1847. Future versions of this specification
which are syntactically compatible will continue to employ this same magic number. If a parser conforming to this
specification encounters any other value besides 1847, it must reject the message and notify the user.

[2 octet] [Magic Number (1847) 1]

[4 octets] [Message Size]
[variable] [Message]
CHUNKS

Perhaps we should rearrange the next few sections, so they are all sub sections of chunks. Then we’d have: header
(type, length), payloads and keyslots. The payload section would be further subdivided into cleartext, encrypted and
signing. Just a thought.

Messages are broken up into a series of “chunks.” Chunks are broken up into three distinct sections: the header, the
payload and the keyslots. A chunk header is 4 octets in length, with the first octet used to store the type code for a
chunk, and the remaining 3 octets used to store the payload length. Because the length value is 3 octets, and AES
requires that a payload be divided into 16 octet blocks, the maximum size for a payload is 16,777,200 octets. Following
the length is the actual payload data, which is then followed by a variable number of 64 octet keyslots.

Envelope, metadata and signature chunks must appear using an increasing numerical order. Content chunks must appear
after the metadata chunks and before any signature chunks. Only content chunk types may be used more than once.
Message content is subdivided into display and attachment sections. Display chunks may appear in any order inside their
section, but must appear before attachment chunks. Attachment chunks may also appear in any order provided they
follow the display chunks and appear before the signature chunks. See the structure section below for a description of

how messages are divided into chunks.

77

[1 octet] [Type]
[3 octets] [Payload Length]
[variable] [Payload]
[variable] [Keyslots] [Optional]

SPECIALIZED PAYLOADS

Specialized payloads are structured differently from other payload types. Since these payloads are only used to store
unencrypted data, they will never be followed by keyslots. Currently the tracing and ephemeral chunks use this format.

TRACING CHUNKS

The tracing chunk is only present when a message is serialized into binary form. When messages have been armored,
the tracing fields must be sent as comment fields. The tracing chunk layout is:

[1 octet] [Type 1
[3 octets] [Payload Length]
[variable] [Tracing Information Data]

EPHEMERAL CHUNK

The ephemeral chunk contains the ephemeral public key for a message. The ephemeral public key is combined with the
recipient’s private key, using the ECDH algorithm, and the result is shared secret which can used to derive the KEK. The
KEK can then be used to decrypt keyslots associated with encrypted chunks, where it will find the symmetric encryption
key and initialization vector to decrypt the encrypted chunk data. Ephemeral chunks are unencrypted, and contain a
compressed secp256k1 public key in binary form, and optionally an Ed25519 signing key. The ephemeral chunk uses the

following layout:

1 octet
3 octets
34 octets
35 octets

Type

Payload Length

Ephemeral Ed25519 Signing Key
Ephemeral secp256kl Encryption Key

[1]
[]]
[]] [Optional]
[1]

— — — —

Ephemeral keys are serialized using the same field layout employed by user signets, and user keys. Each key is
encapsulated inside a field. Each field begins with a single octet type identifier, and a single octet field payload length.

The key data follows the field header.

As with the signet and key formats, field types must appear in ascending order, with the ephemeral signing key, if
present, appearing first, using a type identifier of 1. All ephemeral chunks must include the mandatory encryption key,

which uses a field identifier of 2.

Ephemeral signing keys are only included with message objects created without an author. This currently includes naked
messages that are encrypted upon arrival at a destination server. If present, the signing key must be a 32 octet,
compressed, Ed25519 public key. The ephemeral chunk is mandatory with message objects, and all ephemeral chunks

must include a 33 octet, compressed, secp256k1 public key.

78

ENCRYPTED CHUNKS

Encrypted chunks are the most common chunk type. All encrypted chunks use the same basic structure: type, chunk
length, initialization vector shard, and then inside the encrypted portion, a signature, payload length, flags, pad length,
payload data, and padding. The encrypted portion is followed by keyslots. The author and recipient keyslots will always
be present, while the origin and destination keyslots only appear on specific chunk types. The complete encrypted chunk
layout looks like:

Header

[1 octet] [Type]

[3 octets] [Chunk Length]

Shards

[16 octets] [Initialization Vector Shard]

[16 octets] [Authentication Tag Shard]
Encrypted

64 octets
3 octets

Ed25519 Signature
Payload Length

— e

I]

I]

1 octet] [Flags]
1 octet] [Padding Length]
variable] [Payload Data]
variable] [Padding]
[Encrypted Total modulo 16 == 0]

Keyslots
32 octets
32 octets
32 octets
32 octets

Author Keyslot
Origin Keyslot
Destination Keyslot
Recipient Keyslot

[Optional]
[Optional]

— — /o

[U
— — — —
[U S

The entire payload must be encrypted with AES in CBC mode, using a randomly generated 256 bit key and a randomly
generated 16 octet IV. Because AES in CBC uses a 16 octet block size, the overall payload length must be padded to a 16
octet boundary. There are a fixed 69 octets. Because the overall length of a payload is limited by the length field in the
chunk header, the maximum size for a single data segment is 16,777,099" octets. Additional padding is optional, but
should be added to data segments smaller than 187 octets, making the recommended minimum overall encrypted
payload 256 octets in length. An additional random amount of padding should also be added to mask the structural
fingerprint for a message. Data segments larger than 16,777,099 octets must be split across chunks and reassembled by

the parser.

The Ed25519 signature is used to validate the decrypted chunk data, and is taken over all of the octets that follow the

signature inside a payload: the length, flags, padding length, data segment, and padding. The signature must be validated

14 The maximum aligned size is 16,777,220 - 32 (shards) - 69 (payload prefix) = 16,777,114 which makes 16,777,099
the maximum amount of plain text data that can still result in an overall encrypted data length still aligned to the 16
byte boundary, while keeping the overall chunk size less than (2°24) - 1 (not including the keyslots, which aren’t
included in the chunk header size).

79

by the parser to ensure the data payload has not been modified. If a data segment is split across multiple chunks, each
chunk will contain its own signature over just the data segment portion contained in that chunk.

The 3 octet data segment length is based on the amount of user generated data carried by a chunk. The value must
never be o; if a parser encounters a data segment length of o, the entire message must be rejected. In theory any data
segment could be arbitrarily padded and split across multiple chunks to disguise the nature, structure and amount of data
carried by a message. However, a parser must never split a data segment across more than 4 chunks unless it is larger
than the maximum usable size for 4 consecutive chunks, or 67,108,396 octets.

The next paragraph was moved up. Validating used to appear after the flags and padding discussions. The text may need

to be tweaked as a result.

While parsing an encrypted payload, a parser should treat any violation of this specification identically. Specifically, data
length overflows, an invalid padding lengths, a non-aligned payload, a cleartext signature failure, a padding octet whose
value does not match the padding length octet, a reserved flag bit with a non-zero value, a compression flag bit that is
enabled despite the data segment having uncompressed or corrupted data, or when chunks are split across more than 4
payloads unnecessarily; all of must be treated as data corruption. For spanning chunks, if any of the payloads is
considered corrupt, all of the associated chunks must also be considered corrupt and discarded. The decision whether to

reject a message when a single chunk is corrupt has been left undefined intentionally.
FLAGS

The 1 octet flags is a bitmask used to indicate the different properties described below. Currently 4 of the bits have been
assigned, with the remaining bits reserved for future use. If a parser encounters a bit that has been enabled, which it
does not recognize, the parser must reject the chunk entirely. Currently, the following bit positions have been assigned:

[1] [Alternate Padding Algorithm Enabled]
[2] [Alternate Encryption Algorithm Enabled]
[4] [Compression Enabled]
[8] [Reserved]
[16] [Reserved]
[32] [Reserved]
[64] [Reserved]
[128 1 [Data Segment Continuation Enabled]

If the alternate encryption bit is enabled, then the cleartext data segment represents the data that must also be
decrypted using the alternative user private key. See alternate encryption below for details.

If the DEFLATE [DEFLATE] compression bit is enabled, then the cleartext data segment has been compressed using
DEFLATE. Parser implementations must implement DEFLATE and be capable of accessing compressed data segments.

D/MIME message creation implementations should pick one of three suggested compression strategies:

e Compression is Always Enabled
e Compression is Enabled if, and only if, it Reduces the Data Segment Length (Recommended)
e Compression is Never Enabled

80

If the spanning bit has been enabled, then the data segment continues into the next chunk. The chunk containing the
final piece of a data segment must have the spanning flag disabled. Continuation chunks must use an identical type code
as the chunk they are continuing and appear immediately after the chunk with the spanning flag enabled.

PADDING

By default the padding is determined by the single octet that follows the flags field. Any octets appended to the data
segment must be set to the value of the padding octet. Parser implementations must reject chunks where the value of
the padding octets does not match the value of the padding length octet. When the first bit in the flags octet is set to o,
the data segment length plus the padding length must align to a 16 octet boundary. In addition to the octets needed for
alignment, up to 240 additional octets (in 16 octet blocks) may be added as padding. If padding is appended to the data
segment, beyond what is needed for alignment, the amount of additional padding must be randomized. Including a
random amount of padding is optional, but would ensure two identical messages will have different structural
fingerprints, and further assist in disguising the length of the message contents. The algebraic definition is:

(Header Length (

69) + Data Length (Var) + Padding Length (Var) = Chunk
Length) % 16 == 0

If the alternative padding algorithm is enabled, the padding octet must be interpreted as the number of additional 16
octet blocks appended to a data segment, allowing up to 4,080 octets of stuffing, beyond the padding octets needed
strictly for alignment. When the alternative padding algorithm is enabled, the amount of padding included for alignment
must be calculated automatically. This will append between o and 15 padding octets to the data segment. Like the default
padding algorithm described above, all padding octets must be set to the value of the padding length octet. The algebraic

definition for the alternative padding algorithm is:

Padding Length * 16 = Stuffing Length

(Header (69) + Data Length (Var)) % 16 = Padding Length

(Header Length (69) + Data Length (Var) + Padding Length (Var) + Stuffing
16 ==

r
Length (Var) = Chunk Length) % 0

ALTERNATE ENCRYPTION

Alternate encryption baselines are applied, or chained onto the required cryptographic baseline. The layout below is used
to describe the data segment defined above. The symmetrically encrypted data, when decrypted, will reveal a second

encrypted payload identical to the one defined above. Signature and other validation rules still apply.

1 octet
1 octet
variable

[]
[]
[]
[3 octets]
[]
[]
[]

identifier]

ephemeral key length]

ephemeral public key using alternate algo]
symmetric data length]

symmetrically encrypted

alternate key slot length]

alternate symmetric key data]

variable
1 octet
3 octets

— — — — — — —

81

Make sure you emphasize the issues with nesting! We need limits on it! And make sure you emphasize the importance

length checking, to prevent overflows!

SIGNATURE PAYLOADS

Signature payloads also use a specialized format. Signature chunks are encrypted, so they are followed by keyslots. But
the decrypted data does not conform to the encrypted payload scheme described above. The decrypted payload for a
signature chunk is a 64 octet Ed25519 signature value stored in binary form.™

[64 octets] [Ed25519 Signature]
[variable] [Keyslots]
KEYSLOTS

Every keyslot must be 64 octets in length. Keyslots are encrypted using the KEK for each actor. The number of keyslots is
determined by the chunk type. Every encrypted chunk must have a keyslot for the author and recipient. Envelope chunks
and signature chunks have additional keyslots for the origin and destination domains. See the individual chunk
descriptions below for additional details on who can access the different types of chunks.

Every encrypted chunk is protected using a 16 octet IV and a 32 octet (256-bit) AES key which must be randomly
generated and unique for each chunk. The IV and each keyslot consists of three fields: random data (16 octets), the IV
XORed with the random data (16 octets), and the AES key (32 octets) collectively making up the 64 octets occupied by
each keyslot.

The first 32 octets of data for a keyslot must be unique for every actor to prevent a variety of known, and future,
differential cryptanalysis attacks. To accomplish this, the 16 octet value used as the IV for a chunk is combined with
another randomly generated 16 octet value using an exclusive bitwise “or” operation (XOR). The random 16 octet value
used in the XOR operation must be unique for each keyslot. A keyslot stores the randomly generated 16 octet value first,
followed by the 16 octet result of the XOR operation. When accessing an encrypted chunk, these two values must be
combined again using another XOR operation to recover the IV. The final 32 octets of a keyslot store the AES key for the

chunk.

CHUNKS

15 Should signatures carry a timestamp with them? A timestamp might stop attacks where an old private key is
stolen, and then used (with a colluding service provider) to deliver a signed message that passes the standard
assortment of automated checks. Of course is the origin domain is colluding, then they could always simply insert a
bogus timestamp. To stop that, we’d need the destination server to also record the delivery time, which would be the
perfect piece of data to store in an access chunk.

82

Major question. Do we create different chunk identifiers based on the MIME group? So video, audio, html, markdown,

plain, generic? Clients could stick everything in generic if they wanted.

The currently defined section groupings and chunk types are listed below. Please note that sections have been

highlighted in blue.™

Name

Access

Required

Unique

Ordered

o} Tracing

Envelope

Unencrypted

Metadata

32 Common

AR

1 Ephemeral Unencrypted Y Y Y
2 Origin AOR Y Y Y
3 Destination ADR Y Y Y

33 Headers

Body

48 Generic

AR

AR

Attachments

64
65 Display-Multipart-Alternative AR N N N
66 | Display-Content AR N N N

128 | Attachments-Multipart AR N N N
129 | Attachments-Multipart-Alternative AR N N N
130 | Attachments-Content AR N N N

16 Should we define different display types for the different MIME content types? And possibly even differentiate a

few of the subtypes, like text/plain and text/html, so a client can distinguish which display chunk it should retrieve for
display purposes? This would leak information about what information a message is carrying, and make them easier to
fingerprint, but could allow a client to avoid downloading a video message if it didn’t support video (for example on a
mobile device). Even if we did add this, there would be a generic catchall chunk type implementations could use if they
didn’t like the leakage.

83

Name Access Required Unique Ordered

224 | Tree AOR Y Y Y
225 | User AOR Y Y Y
248 | Bounce-Metadata AODR N Y Y
249 | Bounce-Display AODR N Y Y
254 | Origin AODR Y Y Y
255 | Destination DR Y Y Y
[ENVELOPE

TBD

TRACING

TBD

EPHEMERAL

TBD

ORIGIN

8D

DESTINATION

8D

METADATA

TBD

COMMON

8D

HEADERS

8D

34

DISPLAY

TBD

DISPLAY-MULTIPART

TBD

DISPLAY-MULTIPART-ALTERNATIVE

TBD

DISPLAY-CONTENT

TBD

ATTACHMENTS

TBD

ATTACHMENTS-MULTIPART

TBD

ATTACHMENTS-MULTIPART-ALTERNATIVE

TBD

ATTACHMENTS-CONTENT

TBD

[SIGNATURES
TBD
AUTHOR-TREE-SIGNATURE
TBD
AUTHOR-SIGNATURE
TBD
ORGANIZATIONAL-METADATA-BOUNCE-SIGNATURE

TBD

85

ORGANIZATIONAL-DISPLAY-BOUNCE-SIGNATURE

TBD

ORGANIZATIONAL-SIGNATURE

TBD

ENDIANNESS

The D/MIME format is a binary schema, which relies on numeric values to convey information and facilitate parsing. The
binary values defined by this specification will always use network byte order, which is defined as a big endian
representation, requiring the most significant byte to be stored in the smallest address, and the least significant byte be
stored in the largest address. Implementations running on little endian systems will need to convert the values to ensure

proper processing.

TRANSFER ENCODING

D/MIME is a binary format, and any alteration of the encrypted data would cause the signature validation algorithm to
fail. To ensure messages are handled properly, and without any alteration, messages are encoded using the Privacy
Enhanced Mail (PEM) [PEM] mail format. This allows D/MIME messages to be processed, handled and viewed by humans,
and processed by the customary mail tools and techniques without corruption. Because the PEM format increases the
size of messages, a system specifically designed to handle D/MIME messages may process and store messages in their
binary form. If an implementation does process and store binary D/MIME messages, it must ensure any system, or
component it hands a message to is similarly capable of handling the binary format without corrupting the data. Unless it
obtains such assurances it must first encode a message into the PEM format before transferring it.

The PEM format relies on encapsulation boundaries to delimit individual messages and communicate the type of data
being carried. D/MIME messages must use the “ENCRYPTED MESSAGE” boundary, with the binary D/MIME data armored
using base64 and stored within the boundaries. In contrast to convention, D/MIME messages should not include the

"w_n

traditional base64 “=" padding characters. Instead the padding octets should be calculated using the formula:

length modulo 4 = pad

The result will determine the number of padding octets required. A D/MIME message armored using the PEM format

would use the syntax:

message
————— END ENCRYPTED MESSAGE-----

PART 7: DARK MAIL TRANSFER PROTOCOL (DMTP)

DMTP has been engineered to provide the functionality necessary for a mail user agent to fully encrypt messages sent
between two DIME addresses automatically. DMTP is the primary method used by a DIME-enabled mail transfer agent to
securely and reliably deliver a fully encrypted message to its final destination. DMTP takes advantage of the
Dark/Multipurpose Internet Mail Extension (D/MIME) format, a fully encrypted message schema, to ensure a message
can be properly routed while minimizing the leakage of metadata to handling agents. The D/MIME format also ensures
the message contents are protected from eavesdropping and manipulation.

For the encryption process to function automatically, a mail user agent must be able to locate and retrieve the public
encryption keys, which are contained inside a signet, for a given recipient. The task of retrieving and authenticating
signets is performed by a Signet Resolver (SR). Signet resolvers use DMTP to retrieve organization and user signets, to
determine whether cached signets are stale and to retrieve the historical signets required to validate the chain of

custody for an account when it discovers a new user signet.

Unlike traditional mail transfer protocols, DMTP relies on the encrypted message envelope embedded within a D/MIME
message to determine where a message should delivered. This ensures a mail transfer agent only has access to the
information required to accomplish the next step in the delivery process. It is the responsibility of a mail transfer agent to
deliver a message to its destination, or report its failure to do so.

DMTP is a network protocol that is independent of a specific transport. However, for the purpose of this document, it is
assumed that the DMTP session is between two Internet connected hosts, a client that initiates the connection and a
server that accepts input and responds accordingly. That the two hosts are able to exchange data packets using the
Internet Protocol (IP) [IP], in combination with the Transmission Control Protocol (TCP) [TCP] to establish a reliable data
stream which is used to establish a secure communications channel using the Transport Layer Security (TLS) [TLS]
protocol. Thus, TCP is responsible for the connection layer, IP is responsible for the internetworking layer and TLS is
responsible for protection against network threats. The fallback strategy is to relay data packets printed in hexadecimal

on cellulose pulp that has been dried into flexible sheets and relayed using avian carriers. [AVIAN]

PROTOCOL MODEL

DMTP is intentionally simplistic. Experience has shown that excessively complex protocols are difficult to implement
correctly, with ambiguity often creating incompatibility problems. Complex protocols are synonymous with overly
complex implementations. The layers of abstraction needed to implement a complex protocol often serve to mask
defects or hide subtle security vulnerabilities. To avoid this, DMTP borrows heavily from the Simple Mail Transfer Protocol
(SMTP) [SMTP].

DMTP has been intentionally limited to unauthenticated functionality. The protocol relies on the use of unauthenticated
exchanges to ensure input data is always considered hostile and evaluated carefully before processing. DMTP hosts may

87

advertise their support for protocol extensions that enhance the required DMTP functionality specified below, provided
the extensions do not require authentication.

DMTP uses a rigid syntax for commands and replies. The protocol relies on a line-based structure, where each line is
considered a semantic unit that can be evaluated independently to determine whether it is time to proceed. The result is
a dialog that is purposefully lock-step, with every request resulting in a reply. Clients must ensure they always wait until
areply is received before making subsequent requests unless a server advertises support for the command pipelining

protocol extension.

Every request is made using a command, which begins with a verb. Some commands require that arguments be supplied
after a verb, while others allow for optional arguments. A few will never accept arguments. In every case where an

argument is supplied, it is separated from the verb or a previous argument by a space character.

Every command results in a reply; with the reply indicating whether a command was accepted, whether message data or
additional commands should be sent, or that an error occurred. All replies begin with a three-digit numeric code use and
use syntax specified below which allows for single line and multiline responses depending on the outcome and the

information a server needs to supply in the response.

HISTORICAL CONTEXT

DMTP is intended as a replacement for SMTP [SMTP], with modifications focused on improving the privacy and security
of Internet electronic mail (email). As a result, it borrows heavily from the syntactic structure and transaction model used
by SMTP. Readers familiar with SMTP should feel comfortable with DMTP. The relationship between the protocols is by
design, by making SMTP and DMTP semantically similar, it should be easier for someone familiar with the former to

implement and deploy support for the latter.

DMTP does possess three primary differences. First, mailbox names have been removed from the protocol conversation.
The envelope addresses, author and recipient, which are used for routing a message, have been removed from the
protocol conversation, and must be extracted from the encrypted message. Second, commands have been added, using
new verbs, or repurposed SMTP verbs, for transferring user and organizational signets. Finally, TLS support is no longer
optional but a protocol requirement. While DMTP does not rely on TLS for security, it does provide an additional layer of
protection, and a measure of defense, against threats posed by hostile networks. TLS provides perfect forward secrecy

protection from attacks which involve capturing network traffic, and makes traffic analysis more difficult.

This specification does not provide guidance, nor does it address any of the requirements involved with sending and
receiving unencrypted (or “naked”) messages over SMTP. However, it is important to note that such messages sent via
SMTP are vulnerable, and any organization that does not want their private messages read by unauthorized third parties

should deprecate the use of SMTP and migrate their mail to DIME.

88

DMAP ‘i‘ DMAP

MSA | MTA MTA | MDA

Author Recipient

Origin

Destination

Figure 9 - DIME Architecture

LINE BASED PROTOCOL

DMTP lines consist of American Standard Code for Information Interchange (ASCII) [ASCII] characters. ASCII characters
consist of a single octet with the high order bit cleared. For DMTP, this means all protocol messages should consist of

data between the hex values oxo1 and ox7F.

Protocol commands and responses are exchanged using lines, which complete semantic units. Conforming
implementations must wait until a line terminator is received before evaluating the content of a line and proceeding,
unless a protocol extension has been employed, such as command pipelining. All implementations must be capable of

handling lines which are up to 512 octets in length.

A string of ASCIl octets is always followed by a line terminator, which serves the end of the semantic unit. For DMTP the
line terminator must be the character "<LF>" (hex value oA). Conforming implementations must not generate any other
character sequence for use as a line terminator. Server implementations may choose to recognize the historical line
termination character sequence "CR" (hex value oD) followed immediately by "LF" (hex value oA). This optional
functionality would allow for the use various client tools to continue functioning, which are only capable of producing the
<CRLF> sequence.

In addition, the appearance of "CR" or "LF" characters outside of their use as line terminators has a long history of
creating problems. To avoid this issue in the future, DMTP client implementations must not send these characters unless
they are being used as a line terminator, or a protocol extension has been agreed upon.

89

COMMANDS AND REPLIES

DMTP client commands are comprised of uppercase verbs (i.e. HELO, EHLO, DATA) combined with the specified command
options in the form of KEY=<value> where KEY can be any number of syntactically correct command options. The syntax
of a client command is: COMMAND KEY=<value>.

DMTP host replies are comprised of a numeric response code, followed by an uppercase reply and any freeform text that
an implementer might include (freeform text is optional). The general form of a reply is a numeric completion code
(indicating failure or success) followed by an ASCII string. Generally, the response codes are for programs and the ASCII
text is meant for human readability [SMTP]. The syntax of a host reply is: NUMERIC_CODE RESPONSE_VERB {freeformj.

DMTP commands are transmitted from the client to the DMTP host using one command per line as described above. A
DMTP reply is the result of a host’s success or failure executing the client’s transmitted command.

Replies to DMTP commands maintain the workflow of a mail transfer, guarantees that the DMTP client always knows the
state of the DMTP host, and lets the client know when it is acceptable to send the next command.

Replies fall into one of four possible values (borrowed from RFC 5321 [SMTP]) defined in the following table:

Response Code Description

2yz Positive Completion Reply

3yz Positive Intermediate Reply

AyzZ Transient Negative Completion Reply
5yz Permanent Negative Completion Reply

A sample DMTP client command and host reply using the HELO command (described in detail later in this chapter):

HELO HOST=<host.domain.tld>

A successful reply from the host with a 250 response code:
250 OK {freeform}

FIRST DIGIT

POSITIVE COMPLETION

DMTP host replies beginning with a ‘2’ indicate that the client command was successfully executed by the DMTP host. It
also serves as notice to the DMTP client that the DMTP host is ready to receive the next command.

POSITIVE INTERMEDIATE

DMTP host replies beginning with a ‘3’ indicate that the client command was successfully accepted by the DMTP host, but
the host is waiting on additional information to complete the request.

90

TRANSIENT NEGATIVE COMPLETION

DMTP host replies beginning with a ‘4’ indicate that the client command was not accepted by the DMTP host. In this
state, the client can restart any command sequence and retry the command that caused the host to reply with a
transient negative completion.

PERMANENT NEGATIVE COMPLETION

DMTP host replies beginning with a ‘5’ indicate that the client command was not accepted by the DMTP host and the
requested action did not occur. In this state, the client should not repeat the request.

SECOND DIGIT

The second digit of the DMTP host response code is used to further refine the information the code is relaying to the
client and the user.

Response Code Description

X0z Syntax Error
X1z Information
X2z Connections
X3z TBD

X4Z Unspecified
X5Z Mail System
X6z TBD

771 Signet

SYNTAX ERROR

DMTP host replies with a ‘o’ as the second digit indicate a problem with the DMTP client command syntax.

INFORMATION

DMTP host replies with a ‘1’ as the second digit indicate the reply is in response to a client request for information such
as help.

CONNECTIONS

DMTP host replies with a ‘2" as the second digit indicate the reply is in reference to the transmission channel.

UNSPECIFIED

There are no replies that have a ‘4’ as the second digit. This may be used for future capabilities.

o1

MAIL SYSTEM

DMTP host replies with a ‘5’ as the second digit indicate the status of the DMTP receiving host.

SIGNET

DMTP host replies with a ‘7" as the second digit indicate a response to signet related commands from the DMTP host.
THIRD DIGIT

TBD

Command semantics, upper case verbs

Space separated arguments, with email addresses and domain names using always being enclosed by <> and encoded

binary data argument values being enclosed by []... and equal signs used to separate argument names from the value.
Responses, success versus error, theory and severity

Single vs multiline replies

" u

In the replies, kill the ok/error etc. Fixed message text. Plus optional, trailing freeform box “+[freeform]” “-[error]” or

“=[alert]” ... do let supporting systems enable/disable this using the verbose command? Aka “VERB” from SMTP.

‘N\AIL TRANSACTIONS

Message transactions.

‘ OBJECTS
Signets and Messages

Modifications - tracing

DELIVERY
Addressing
Validation steps
Mail stores

Bounces

CACHING

How to handle the caching of signet lookups.

92

CONNECTIONS

A consumer begins the process of initiating a DMTP connection by retrieving the management record for a target domain
name. If no management record is discovered, then a consumer should rely upon its local cache until any previous entries
have reached their expiration. If no management record is found, or the cached record has expired, a consumer must
conclude the target domain is not DIME-enabled and does not support DMTP. If a Mail Transfer Agent (MTA) is
attempting to establish a DMTP connection for the purpose of message delivery, it should consider the error temporary
and apply the retry logic supplied below.

If a management record is found, and it contains a valid delivery field (dx) value, consumers should first attempt to
resolve and connect to the provided values using port 26 in single protocol mode. If multiple delivery field values are
encountered, a conforming implementation must attempt at least three unique host names before considering the single
protocol mode attempt a failure and continuing on to try dual protocol mode. It is recommended that consumers attempt
the supplied host names in a random order, independent of what order they appear in a management record.

If the management record does not contain a valid delivery field, or the consumer is unable to establish a DMTP
connection in single protocol mode, it must fall back into dual protocol mode. To find the dual protocol hosts for a
domain, consumers must query the target domain name for a mail exchange (mx) resource record. If a valid mail
exchange record is found, a conforming client must attempt the connection using port 25, and if that fails, may attempt
the connection using port 587. If a TCP connection is established, and then the consumer a consumer should apply rules
specified below for DMTP hosts operating in dual protocol mode. A conforming client must attempt at least three unique

mail exchange resource record host names before continuing.

If a consumer is unable to establish a connection using the logic above, it may consider the attempt a failure, or
optionally attempt to establish a DMTP connection using the target domain name. If a consumer attempts to establish the
DMTP connection using the target domain name, it should attempt a connection on port 26 first, and apply the rules
associated with single protocol mode. If the connection fails using port 26, then a consumer should attempt a dual
protocol connection using port 25, and if that fails, may choose to also attempt a dual protocol mode connection using

port 587.

Valid delivery field values and mail exchange resource records must always be fully qualified host names that resolve to
A or AAAA resource records. The use of IP addresses, or a CNAME is prohibited and conforming implementations should

ignore such values.

If an MTA is unable to locate a valid management record, or establish a DMTP connection using any of the supplied host
names, it should consider the error temporary. If the policy field in the management record indicates a domain is
operating in experimental mode, then a mail transfer agent may continue using SMTP [SMTP]. Otherwise a conforming
MTA must queue and periodically retry the delivery attempt for at least 72 hours. The algorithm used to schedule retries
is intentionally undefined, but a conforming implementation must ensure it will retry delivery at least once every 12

hours. An MTA should use a gradually increasing delay between delivery attempts, provided the interval never exceeds

93

12 hours. If a consumer is unable to establish a DMTP connection during the required 72 hour period, it must consider the
error permanent and report its failure to deliver the message back to the author.

An MTA may choose to report temporary failures after 4 hours, but must continue making delivery attempts for a during
the entire 72 hour period unless a user intervenes.

All DMTP connections must be secured using TLS v1.2 [TLS] and the cipher suite ECDHE-RSA-AES256-GCM-SHA384" [TLS-
ECDHE]. The required cipher suite is uniquely identified during a TLS handshake by the octet values oxCo, 0x30.™

[CERTIFICATES

DMTP connections must always be secured using TLS [TLS]. This will require that servers be configured to supply an
X.509 certificate during the connection. The certificate provides a signed RSA public key, along with a number of other
attributes. Certificates supplied by DMTP hosts must use RSA keys that are least 2048 bits, and keys of at least 4096 bits
are strongly recommended. DMTP client implementations must support RSA keys up to 8192 bits in length, and should
support RSA keys of 16384 bits in length. If a conforming DMTP consumer encounters a host using an RSA key that is
shorter than 2048 bits, it should complete the TLS handshake and immediately shutdown the connection using the QUIT

command specified below.

DMTP hosts must allow consumers to specify the intended host name for the connection using the Server Name
Identifier (SNI) extension in single protocol mode, and as an argument to the STARTTLS command when operating in dual
protocol mode. If a DMTP host is configured with a TLS certificate containing a Common Name (CN) or Alt Name (AN)
attribute matching the supplied host name, it must supply the matching certificate. If the DMTP host does not have a
matching TLS certificate, it must allow the connection to proceed using a default TLS certificate. Every DMTP host must

be configured with a default TLS certificate.

If the management record provided TLS field values, then consumers must validate TLS certificates against the supplied
values. TLS field values are Ed25519 signatures [EDDSA], and generated using the target domain’s Primary Organizational
Key (POK). If a TLS field value is found, a certificate must be confirmed against one of the supplied field values. Note that
it is possible for a management record to supply more than one TLS field value, in which case all of the supplied values
must be compared until a matching entry is found. If none of the supplied signatures can be validated, then a consumer
must terminate the DMTP connection and notify the user of an error with possible security implications. TLS certificates

must be converted to a concrete data stream using the Distinguished Encoding Rules (DER).

17 The NIST name, and the one reused by the referenced TLS standard is TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384.

18 Should we require ECDHE-ECDSA-AES256-GCM-SHA384 instead? That would allow us to avoid RSA altogether. The
problem is that currently very few CA’s publish certificates signed using ECDSA. Alternatively, should we make support
for the DHE variants optional? That is DHE-RSA-AES256-GCM-SHA384 or DHE-ECDSA-AES256-GCM-SHA384?

94

If a management record is validated by a DNSSEC signature, and the certificate was validated against a TLS field value,
then a consumer must accept certificates that would normally be rejected using strict validation. This means consumers
must accept certificates which have been validated using a signed management record that are self-signed, expired
and/or lack a matching Common Name (CN) or Alt Name (AN) attribute.

If a certificate is confirmed using the TLS field value, then a consumer should not perform the Online Certificate Status
Protocol (OCSP) check [OCSP]. OCSP checks are discouraged if the certificate can be validated using the TLS field even if
the management record is not signed using DNSSEC because the request could inadvertently leak information about
which domains a host is contacting. All other X.509 validation rules should be applied according to the TLS v1.2
specification regardless of whether the certificate is validated using the management record.

DNSSEC Validation TLS Field Validation X.509 Validation OCSP Check ESI
Yes Matches N/A N/A Pass
Yes None Passed Yes Pass
Yes None Failed N/A Fail
Yes Mismatch N/A N/A Fail
No Matches Passed Skip Pass
No Matches Failed N/A Fail
No None Passed Yes Pass
No None Failed N/A Fail

SINGLE PROTOCOL MODE

If a consumer is using the host name supplied by the delivery field in the management record, it must connect to the
provided host using port 26. The connection should be initiated using TLS [TLS]. Consumer should supply the host name
provided by the delivery field, or “dx” value, in the management record using SNI TLS extension [TLS-SNI]. Connections
to port 26 must be specifically for DMTP and upon successfully connecting, consumers must see a banner that starts with

the sequence 220 and contains the string “DMTP”. Single protocol mode greetings must match the pattern:

220 <domain.tld> DMTP {freeform}

If a consumer does not encounter the appropriate DMTP protocol banner once the TLS connection has been established,
it must immediately shutdown the connection and treat the host name the same way it would if the TLS connection had
never succeeded. Consumers conforming to this specification must make TLS connection attempts to at least three valid,
and unique, delivery field host names before continuing. If fewer than three unique and valid delivery field host names

values are found, then a consumer should try all of the unique and valid host names it encounters.

DUAL PROTOCOL HOSTS

When attempting a DMTP connection using a hostname supplied by a mail exchange (mx) resource record, a consumer
should assume the host is operating in dual protocol mode and attempt an unencrypted TCP [TCP] connection using port
25. If port 25 fails, a consumer may attempt the TCP connection using port 587. If either port results in a TCP connection,

the consumer should confirm whether a host supports DMTP by parsing the banner greeting before proceeding. A DMTP

95

capable host operating in dual protocol mode must greet consumers with a banner that starts with 220 and contains the
string “DMTP”. Dual protocol mode greetings must match the pattern:

220 <domain.tld> ESMTP DMTP {freeform}

If the appropriate banner is encountered, a consumer must immediately elevate the TCP connection into DMTP mode
using the STARTTLS command syntax specified below. If the consumer does not encounter the appropriate dual protocol
banner, it must fail immediately and continue as if the TCP connection never succeeded. To elevate a successful TCP
connection into DMTP mode, consumers must initiate a TLS handshake using the STARTTLS command syntax:

STARTTLS HOST=<domain.tld> MODE=DMTP

If a dual protocol host encounters a MODE parameter for a consumer attempting to elevate a connection into DMTP

mode, but is unable to negotiate a TLS connection using the cipher suite specified above, then the host must ensure a
STARTTLS command fails. If a consumer does find that it connected to a host that allows elevation into DMTP, without
using the required cipher suite, it must immediately issue a QUIT command and shutdown the connection. Consumers

that encounter this scenario should alert the user to a possible security threat before proceeding.

A connection which has been successfully elevated into DMTP mode must receive a reply with the status code 250, and a

response string which contains “DMTP”. The response should match the following pattern:

250 OK DMTP {freeform}

Dual protocol implementations may choose to allow consumers to issue the STARTTLS command with the MODE
parameter missing, or with a MODE parameter that supplies the value SMTP. Hosts that support TLS connections in SMTP
mode must ensure the connection does not allow consumers to use any commands using the DMTP protocol syntax.
Attempts to issue DMTP commands must result in a response code of 501, denoting an invalid syntax. The lone exception
to this rule is the MODE command, which must result in response indicating the connection is in SMTP mode. For
consumers which successfully establish a TLS connection but remain in SMTP mode, the greeting should be a 250

response code matching the following pattern:

250 OK ESMTP {freeform}

Note that both STARTTLS responses supplied above indicate the current protocol mode after completing the TLS
handshake using the third token in the response. Thus consumers conforming to this specification must consult the
server response returned by a host in response to the STARTTLS command and ensure the connection is using the
appropriate protocol mode before proceeding.

Once a connection has been secured using the STARTTLS command a host conforming to this specification must reset all
state information for the connection. This includes discarding the hostname values provided as parameters to the HELO
or EHLO commands. If a consumer is proceeding with the connection in SMTP mode then it must issue the HELO or EHLO

command before attempting to transfer a message.

96

TIMEOUTS

Consumers must provide a timeout mechanism for unresponsive server connections, while the enforcement of
connection timeouts remains optional for server implementations. Timeouts should be calculated based on the amount of
time that has lapsed since a complete line has been transmitted or received. If an implementation is unable to track
timeouts based on when the last complete line DMTP protocol line was sent or received, the recommended alternative is
to rely on the amount of time since any DMTP characters were sent or received. We strongly recommended avoiding a
strategy of relying on the time elapsed since a TLS message, or TCP packet was observed. It is possible for TLS
connections to exchange TCP packets indefinitely without ever exchanging any DMTP protocol data.

Server implementations lacking the ability to track timeouts based on the last DMTP character transmitted, or lack
support for timeouts altogether, will waste resources on paralyzed client connections. However, if a consumer lacks
support for tracking timeouts based on DMTP protocol data, it could result in unnecessary user distress. For a Mail User
Agent (MUA), this could result in lengthy send operations, as the User Privacy Agent (UPA) waits for a signet resolution
to complete. If the consumer is a Mail Transfer Agent (MTA), this issue could result in messages being rejected, or
bounced, because they were delayed beyond the expiry threshold for a stale user signet.

CONSUMERS

Below are the recommended timeouts a consumer should use for the different categories of possible DMTP operations.
However, a more sophisticated implementation may choose to use timeouts based on a higher level of granularity than
what’s provided here. In our experience, such an implementation should be patient when it comes to waiting on
commands which involve a large transmission, whether its sending a message or receiving a signet, and with commands
which involve the setup process for a DMTP connection, such as the TCP connection setup, a TLS handshake, or the
receipt of an initial greeting once the TLS channel has been established. These operations could employ multiple systems,
any of which could be suffering from congestion. The following timeouts are intended only to be recommendations, with
the one exception being the amount of time between when an MTA finishes transmitting a message and the receiving
host acknowledges its acceptance. An MTA must wait at least 8 minutes for such an acknowledgement and may want to
wait longer if a message was particularly large.

Timeout Range

Recommended
Connection Setup Operations 4 to 8 minutes
TCP setup, TLS handshakes, Connection Banners
Protocol Mode Elevation Commands 4 to 8 minutes

97

STARTTLS

Global Commands > to 8 minutes
HELO, EHLO, MODE, RSET, NOOP, HELP

Mail Processing Commands 8 to 16 minutes
MAIL, RCPT, DATA

Signet Retrieval Commands 110 4 minutes
SGNT, HIST, VRFY

Connection Termination Command 1to 2 minutes
QuUIT

SERVERS

A server implementation must use a timeout of at least 1 minute. Servers should employ timeouts between 4 and 20
minutes, with a timeout of 10 minutes being recommended. We recommend that servers that normally employ a timeout
shorter than 1 minute, increase their timeout to 4 minutes while processing a mail transaction. This means increasing the

timeout after a successful MAIL command, until the transaction is concluded.

While the practice of enforcing timeouts based on the overall time for a DMTP command to complete is not
recommended, if a server does employ this strategy, it must ensure consumers are allowed a minimum of 30 minutes to
complete the transmission of messages following a successful DATA command, and a similar minimum of 30 minutes to

finish receiving a multiline response following a successful SGNT, HIST, or VRFY command.

Sophisticated server implementations may want to dynamically adjust their timeouts based on network congestion to
differentiating between TCP congestion and a client that ceases to transmit packet acknowledgements. It may also want
to differentiate between the timeout it employs while receiving or transmitting data, and the time it waits for an idle
connection to send a DMTP command.

The above timeouts are intended to apply while server is operating normally and should not apply to servers which are

in the process of shutting down.

TERMINATION

A DMTP connection should, under normal conditions, only be terminated in response to a consumer sending the QUIT
command. Consumers sending this command should wait for the server to acknowledge the receipt of a QUIT command

transmit a positive reply.

98

A server must not intentionally choose to unilaterally terminate a DMTP connection under normal operating conditions
unless a consumer has exceeded the configured timeout, or is in the process of shutting down. Specifically, servers must
not terminate DMTP connections in response to an unknown command, because of syntax violations, or because a

command was sent out of order.

If a server does encounter a situation where it needs to unilaterally close a DMTP connection, it must first transmit a line
starting with the status code 421, to indicate the abnormal closure. Presumably, a consumer will receive and process the
response as a reaction to a previously transmitted command, or asynchronously as the response to its next command. A
server should follow this transmission by attempting to cleanly shutdown the TLS connection. DMTP clients must always
be prepared to handle the abnormal shutdown of a connection. This means gracefully handling a DMTP reply which starts
with the status code 421, or being notified the of a TLS shutdown.

If an MTA experiences an abnormal shutdown during a message transfer operation, it must treat the delivery attempt as
if a response code of 451 was returned, and ensure the message delivery attempt is retried.

Sometimes abrupt communications failures can result in the unexpected closure of connections. Despite being a violation
of this specification, this situation will inevitably, and unavoidably, arise and must be handled gracefully. The robustness
of DIME depends upon implementations being able to handle failure and retry the aborted operation using a different
DMTP host, or when the original host comes back online.

GLOBAL COMMANDS

The following commands must always be available to consumers regardless of the protocol mode or connection state:
HELO, EHLO, MODE, RSET, NOOP, HELP, VERB, and QUIT. This includes a connection to a dual protocol host that has not

been elevated into DMTP mode.

For signet resolvers, issuing a HELO or EHLO command is not recommended, and should be avoided to prevent the
unnecessary leakage of meta-information about a consumer. If the consumer is an MTA, it must send either the HELO or
EHLO command before attempting a mail transaction. If the MTA is connected to the host using the dual protocol mode, it

must send, or resend, the HELO or EHLO after the connection has been elevated to DMTP.

HELO

Consumers may use the HELO command at any time. If the host already has a host name stored for the current
connection, it must replace the stored value with the newly issued host name. Unlike the EHLO command below, the
HELO command does not list the supported protocol extensions in its reply. This command requires a single parameter in
the form of a fully qualified domain name. If the consumer does not have a meaningful host name to supply, it should
send an address literal. If a host name is supplied, it should resolve to an address literal matching the current connection.
The HELO command uses the following syntax:

HELO HOST=<host.domain.tld>

99

Successfully issued HELO commands must result in a single line reply, with a response code of 250 in the form:

250 OK {freeform}

[EHLO

The EHLO command is identical to the HELO command above with one notable exception. A successful EHLO command
will result in a reply that lists the protocol extensions supported by a DMTP host. If the host does not support any
protocol extensions, then it will result in a reply that is identical to the HELO command. This command requires a host
name as the first argument, and uses the syntax:

EHLO HOST=<host.domain.tld>

The EHLO response may use the multiline response structure. The additional lines will provide keywords, with each
corresponding to a protocol extension. DMTP hosts operating in dual protocol mode must return the DMTP and STARTTLS
keywords in their response to the EHLO command for connections that have not issued the STARTTLS command and
successfully completed a TLS handshake. The following is a potential EHLO response returned by a dual protocol host on
a connection that has not been elevated into DMTP mode:

250-DMTP
250-STARTTLS
250-PIPELINING
250-SIZE 33554432
250 OK {freeform}

In contrast, the EHLO response for single protocol connections, or a dual protocol mode connection that has been
elevated into DMTP mode, should never include the DMTP or STARTTLS keywords. The following is a potential EHLO

response returned to a consumer over a DMTP connection:

250-PIPELINING
250-SIZE 33554432
250 OK {freeform}

Note that when a consumer connects to a dual protocol host, it must discard the list of protocol extensions returned by
an EHLO command submitted before the connection was elevated. Dual protocol hosts are likely to send a list of protocol
extensions after a connection has been elevated into DMTP that is distinctly different from the list sent before elevation.

MODE

The MODE command is the only DMTP command that a dual protocol host should accept before a connection is elevated
into DMTP. The MODE command accepts no arguments and is used by consumers to confirm the protocol mode for the
current connection. A consumer may issue the MODE command using the following syntax:

MODE

100

The response to a MODE command matches the reply issued after a successful STARTTLS command. The 250 response
code should be followed by the current protocol mode for the connection in the third token. A DMTP connection must
result in a reply matching the syntax:

250 OK DMTP {freeform}

In contrast a connection operating in SMTP mode, must reply with the following response regardless of whether the
connection has been secured using TLS:

250 OK ESMTP {freeform}

For legacy servers which lack support for DMTP, the MODE command should result in a soo response code to indicate the
MODE command was unrecognized. Hosts which are DMTP capable, but currently have DMTP support disabled, should
reply using the 502 response code to indicate the MODE command was recognized, but currently has DMTP support
disabled.

RSET

The RSET command is used to reset the state information for a connection. It operates in a fashion that is similar to the
STARTTLS command specified above, with the exception that the RSET command does not destroy a host name which
was supplied as an argument to the HELO or EHLO commands. The RSET command accepts no arguments and uses the
following syntax:

RSET

A RSET command that is accepted by a server, will return a 250 response code to indicate the state table was

successfully reset, with the reply conforming to the syntax:

250 OK {freeform}

If a consumer encounters a response code other than 250, it must clear the state table by disconnecting from the DMTP
and reconnecting.

NOOP

The NOOP command is used by consumers to keep a DMTP connection alive, and should result in no operation being
carried out by either host. The NOOP command does not require an argument, but servers must accept NOOP commands
that supply command arguments provided they conform to the limitations specified above. This means the entire
command line, including the line terminator, must be 512 octets or less in length and only contain valid ASCII character
values. The command uses the syntax:

NOOP {freeform}

Valid NOOP commands must result in a reply using the 250 response code and match the pattern:

101

250 OK {freeform}

HELP

The HELP command is used by administrators on interactive DMTP connections to retrieve the list of commands
supported by the DMTP host. Support for this command is optional. The command itself does not accept an argument,
and is issued using the syntax:

HELP

Servers with the HELP command enabled may use the multiline response structure and must reply using a response code
of 214. It is recommended that server implementations always return the list of available DMTP commands in
alphabetical order. The following reply includes a listing of the DMTP commands a host is required to support:

214-DATA
214-EHLO
214-HELO
214-HELP
214-HIST
214-MAIL
214-MODE
214-NOOP
214-QUIT
214-RCPT
214-RSET
214-SGNT
214 VRFY {freeform}

A DMTP host may choose to disable support for the HELP command. To indicate this, a DMTP server should reply using
the 502 response code to indicate the HELP command was recognized but has been disabled:

502 COMMAND DISABLED

QUIT

The QUIT command terminates a connection gracefully. A DMTP host must initiate send the appropriate response and
subsequently initiate a controlled shutdown of the TLS connection. The QUIT command accepts no arguments and uses

the syntax:

QUIT

A DMTP server must acknowledge its receipt of a QUIT command by transmitting a reply using the 221 response code:

221 BYE {freeform}

If a consumer does not receive a reply from the DMTP server a timely fashion, it may choose to begin the shutdown
process in accordance with the TLS protocol specification. [TLS]

102

MESSAGE TRANSFER COMMANDS

The following commands are used to transfer messages between organizations using atomic mail transactions. The
commands have been constructed for securely and reliably delivering messages while minimizing the amount of
metadata a compromised handling agent is capable of leaking. The commands described in this section must not be sent
by a consumer, or accepted by a server, until either the HELO or EHLO command have been sent. These commands
require a consumer to provide its fully qualified host name, and for a server to indicate its acceptance of the value by
replying with a successful status code. If any of the commands in this section are submitted before a successful HELO or
EHLO, a server must respond with the status code 503 to indicate an invalid sequence of commands.

A mail transaction is an atomic transaction requiring a consumer to send, and a server accept all three commands
specified in this section, in the sequence: MAIL, RCPT and DATA. If the RCPT or DATA commands are received out of

order, then a server must respond with a 503 status code to indicate an invalid sequence of commands.

If the RSET command is received before a mail transaction is completed, then any pending mails transactions must be
aborted. A conforming MTA must ensure it retains responsibility for a message until it receives a successful response to
the DATA command. This concludes the mail transaction and transfers responsibility for delivering message to the
destination host. If a message is accepted by a destination, and it encounters a problem delivering a message, it must
generate and deliver a bounce back to the origin domain.

MAIL

The MAIL command is used to start a new mail transaction. The command has two required arguments. The FROM
argument must be sent first and is followed by the FINGERPRINT argument. FROM is used to provide the origin domain
name for a pending message, while FINGERPRINT provides the full fingerprint for the origin signet required by a

destination host to authenticate the organizational signature attached to the pending message.

A destination host must ensure it has a cached copy of referenced origin signet referenced before replying with a
successful status code. If it the origin signet has not already been stored, a destination host may choose to delay sending
a response to the MAIL command until it has successfully retrieved, and authenticated the origin signet. However, if this
simultaneous retrieval attempt does not completed within 4 minutes, a destination host must reply with the status code
of 470. A destination should immediately reply with the status code 470 if it prefers, or is unable, to perform a
simultaneous origin signet lookup. The response code 470 is used to indicate an origin signet is temporarily unavailable,
and that an MTA must queue the message and reattempt the transfer in the future. If a destination host repeatedly tries
and fails to retrieve an origin signet for 72 hours, it should return the response code 570 to any MAIL command
referencing the origin signet in question. The response code of 570 is used to indicate the prolonged failure to retrieve
the origin signet. The destination host should continue making retrieval attempts until it succeeds, or if an additional 72
hours lapses without encountering a reference to origin signet in question.

A server must only respond to a MAIL command with a success response if a new mail transaction is started. If an MTA
sends the MAIL command before completing the pending transaction has been completed, a server must abort the

103

previously started transaction before evaluating the newly submitted MAIL command. As a result, servers must produce
identical results for MAIL commands regardless of any potentially pending mail transactions. This also means the
outcome of a MAIL command resulting in an error must be semantically equivalent to the outcome of an RSET command
resulting in success; both must result the pending mail transaction being aborted without starting a new transaction.

The syntax used to submit a MAIL command with its two required parameters is:

MAIL FROM=<domain.tld> FINGERPRINT=[fingerprint]

If an MTA attempts a MAIL command before it submits a valid HELO or EHLO command, then a server must respond with
a response code of 503 to indicate the invalid command sequence:

503 INVALID COMMAND SEQUENCE {freeform}

If the submitted MAIL command references an origin signet which is unavailable on the destination host, a server should
reply using the status code 470, which must result in the message being queued and retried. The syntax for the 470

status message is:

470 ORIGIN SIGNET UNAVAILABLE {freeform}

If a destination has been attempting to retrieve the reference origin signet for at least the previous 72 hours, then it
should indicate a permanent origin signet failure using the status code 570 and the syntax:

570 ORIGIN SIGNET UNAVAILABLE {freeform}

If the origin domain lacks a management record, or the authoritative server for the origin domain returns an error when
the referenced signet is requested, then a DMTP host should respond using the error code 575 to differentiate it from an

origin signet timeout:

575 INVALID ORIGIN SIGNET

If a destination host does have the referenced origin signet available in its cache, it should allow the transaction to
proceed by returning a response code of 250 using the syntax:

250 OK {freeform}

If the fingerprint does not match what the destination has in its cache for domain.tld, this command would initiate a side

channel lookup.

RCPT

The RCPT command is used to confirm a message is being delivered to the correct host and was created using a current
and available destination signet. It requires two arguments, TO parameter and the FINGERPRINT parameter. The TO

parameter must provide a target domain that the destination host is configured to accept messages for. The

104

FINGERPRINT parameter provides the full fingerprint for the destination signet used to encrypt the recipient information.
The RCPT command uses the following syntax:

RCPT TO=<domain.tld> FINGERPRINT=[fingerprint]

If the destination host needs to reject a message because the fingerprint indicates the recipient information was
encrypted using an expired or otherwise invalid destination signet, it should respond with a status of 576, clear any state
information associated with the mail transaction and use the syntax:

576 INVALID DESTINATION SIGNET {freeform}

If a RCPT command is submitted twice in a single mail transaction, the second attempt must be rejected using the 431
response code. A DMTP mail transaction is only capable of being associated with a single recipient, so if a RCPT was
already accepted, the resource limits would be exceeded by accepting a second RCPT command. The limitation is a
byproduct of the D/MIME format, which intentionally limits the envelope to a single recipient, which prevents anyone
from discovering how many people a message was originally addressed to. This requires that a message be transferred
separately for each recipient as standalone mail transactions. To indicate a rejection resulted from this limitation server
should use the following response syntax:

431 DESTINATION LIMITS EXCEEDED {freeform}

If the RCPT parameters indicate a recognized destination domain and the fingerprint indicates the embedded recipient
information will be accessible, a server should reply using the status code 250 to allow the MTA to proceed with the

transaction by sending the message data. The success response syntax is:

250 OK {freeform}

DATA

The DATA command is used to transfer a D/MIME message to the destination host. Provided the MTA has successfully
issued MAIL and RCPT commands, a DATA command should result in a 354 response code, indicating the destination host
is ready to receive the message. A client should proceed to transmit the D/MIME message in its ASCll armored form. The
transmission sequence is terminated by the string “<LF>.<LF>" which is sent to indicate the transmission has been
completed. The sender must then wait at least 8 minutes for a reply, presumably a sender should wait at least 1
additional minute for every megabyte used by the transmitted message. If the DMTP host responds with the code 254,
then the mail transaction is complete. A response code between 400 and 499 will indicate the current attempt failed, but
the issue was temporal and the sender should retry the transmission later. A response code over 500 indicates a
permanent failure, that the error is likely to persist, and that an origin host should proceed to notify the author of the
failure. Once the 254 code has been sent, responsibility for the transmitted message shifts from the origin MTA to the
destination MTA. If a DMTP host, after having transmitted the 254 response code, discovers that it is unable to deliver a

message, then it must bounce the message back to the origin to ensure the author is properly notified of the failure.

105

Alternatively, if a message is delivered, but the 254 response code is never received by the sender, because it
disconnected before the 254 response was received, when it retransmits the message, it is possible the retransmission
will only result in the message being duplicated in a recipient’s mailbox. Sophisticated server implementations may want
to detect this issue by tracking the cryptographic hashes for any recently delivered messages and compare those hashes
against incoming messages. If a duplicate message is detected, then a host may return the response code 255 which
indicates the message successfully delivered on a previous attempt.

The transmission process begins with a DATA command. The default DATA command does not allow arguments to be
included. The syntax for the command is:

DATA

If the DMTP host is ready to receive the message it will respond using the 354 banner shown below:

354 READY TO RECEIVE MESSAGE

Once a sender sees the 354 response, the sender may begin transmitting the message. The sequence “<LF>.<LF>" is

used to terminate the message transmission:

————— BEGIN ENCRYPTED MESSAGE-----
BvOAAdcBhvAmMjVKiMZmjF8gTnXNTDZ4C1lW8MSWEhSNLIdzquujQCBJkgd4dcp/m8tjp7JFriikowv
lbplalpIJdNyIbbh
YOCpFaF4z2L8mjcJg5P1l+J/1F4iKrJc7tJYWCueGeJiYgQciOvKUiRHgyrlwkjMUbmdY954udPi
AVzHJplUj6ZtjdA
bSedhM4nrLzQe5wXR6n8fMDsHtIJvZNbl1PZSMycs7rMoNDEY6pjJjo8Y70k0E3jJLy9SHcCBhA78k9
y8JEDzT7M7Udi80
wooUGWENp3upYuhxd/bzoZg53TdQbNM2RKcGKozSQK2gHKPpFI59gjwcZBUXhZGFyGwRDYXZ1HhJ
Db3VudHJGggY2FX
FXppcGNvZGUgd210aG91dCBjYXZ1lcyADNDEXfjd0pQO0k4DXVvBEfUNNFxir+IzghryyCr67G9jEa4
4VDB8QlEW1xC/TF2
mfylpmL2iueTyPz50kAYIQd/EWxhZGFyQGxhdmFiaXQuY29tgIl7gaXg2Nu7dVKmu8i78jjBlule
U8VbJjZQUMIL79Wu

dMC2yD4viW76cGkb8hrGL/y8H0OIshRpNeOAM

————— END ENCRYPTED MESSAGE-----

Upon receiving a message, a server must ensure the D/MIME is structurally correct and contains a valid organizational
signature from the origin domain before accepting a message. If the message is does not contain a valid D/MIME binary

structure, the DMTP host should immediately return a 451 error code:

451 DATA CORRUPTED

If the organizational signature for the message is missing, or invalid, then a server must return the 578 error code:

578 INVALID ORIGIN SIGNATURE

A server may also decrypt the destination portion of the D/MIME message and confirm the validity of the recipient, and
whether the recipient signet used to encrypt the message is either current, or is within the expiry threshold for stale user

106

signets. Alternatively, a DMTP host may also accept a message and commit to bouncing it later if these checks fail. If the
message is validated before responding, and the recipient mailbox is invalid, or not affiliated with the destination domain
provided by the RCPT command, then a DMTP host must respond using the 510 error code:

510 INVALID RECIPIENT

If the message was encrypted using an expired user signet, then a DMTP server must respond using the 586 error code:

586 INVALID RECIPIENT SIGNET

If received message passes all of the checks described above, then the message should be queued for delivery and the
254 response code returned to the sender along with a cryptographic hash of the binary message data received, and
transmitted in its base64 encoded form, without padding, yielding a message transaction identifier that is precisely 86
bytes long:

254 ACCEPTED=MUYWQKNENDYOMzE3OEQYOTAxXRDEwWMJj1lFThDQUZEOTM4NKYS5NFESRDESNTUxMg

If the host tracks the cryptographic hashes for recently accepted messages, and a duplicate message is detected, then it
should return the 255 response code to indicate the message has already been delivered. This response must only be
returned if the message has already been delivered to the mailbox. If the previous transfer attempt failed, then it must

not be considered a duplicate. Successful deliveries result in a response using the syntax:

255 DUPLICATE=MUYWQkNENDYOMzE3OEQyOTAxXxRDEwWM]j1lFRUREOTM4NM4NkY5S5NJERDESNTUxMg

Regardless of the response code, a sender must consider the mail transaction terminated. If it intends to retransmit the
message, or begin the transmission of a different message, it must begin the command sequence again using the MAIL
command.

SIGNET TRANSFER COMMANDS

‘SGNT

The SGNT command is used to retrieve user and organizational signets from an authoritative source using DMTP. The
command requires a consumer to supply the DOMAIN argument, and may be submitted along with the FINGERPRINT
argument. The DOMAIN argument must be sent first, and a FINGERPRINT value, if supplied, must be sent second. The
SGNT command syntax for retrieving an organizational signet is:

SGNT DOMAIN=<domain.tld>

An almost identical syntax is used for retrieving user signets, with the syntactical exception that a mailbox is supplied
using the USER argument:

SGNT USER=<mailbox@domain.tld>

107

A consumer may want to retrieve a specific version of a user or organizational signet, possibly because the fingerprint
was supplied using the MAIL command above, or because it is trying to retrieve a signet referenced elsewhere. To
retrieve a specific signet a consumer would use the second optional argument, which accepts a full fingerprint for the
requested signet, after it has been base64 encoded, and the padding bytes removed. The resulting values for the
FINGERPRINT argument should be exactly 86 bytes. The complete syntax for SGNT command syntax when retrieving a
specific organizational signet:

SGNT DOMAIN=<domain.tld> FINGERPRINT=[fingerprint]

When a consumer is requesting a specific user signet, it may supply either the full fingerprint or the cryptographic
fingerprint for the user signet it wants to retrieve. Note that a server must always return a full signet in response to the
SGNT command, even if a cryptographic fingerprint is submitted. The syntax for retrieving a specific user signet is:

SGNT USER=<mailbox@domain.tld> FINGERPRINT=[fingerprint]

A conforming server implementation must only return organizational signets for domains in which it is the authoritative
source. If the requested organizational signet is available, it must be returned in its ASCIl armored form, and if the
fingerprint argument is omitted, a host must return what is considers the current organizational signet for the supplied
domain name. When returning an organizational signet, a server must use the multiline syntax and the 270 response
code:

270-
BVAAAWEBQt1Wjk8S+DkKkuEbOLgfQTvVyS7Ae7NjwonNLI+TRoDYUCBOYleb/SnETFZjzYsjv+
270-
BpyT614bHZj3Pd0s9QGEOrXCy9PWsCPwAMFC2aVVecG3NTaONDtmz3LS11KgkFvIB/wB8hkLT
270-
dCBMTEMbGzEyMyBIaWRkZW4g0OnVua2VyIEJvdWxldmFaW5sndWxhcml hHwUwMDAXMSALMwSPU
270-

EgqMnb0cbDDFBatu9tTMALI 7ERNKWGLqWda2IGO0EWIp7QF/qC0byTh7Is+YexkCT+xz0yL3ALDb
270-
dC5jJb22AFjee+3raziK2GZYoFErVAsJKXbRay9fY/GNihmZgd9SBZrJUnu8XA99RKQrlnnl?2
270====== END ORGANIZATIONAL SIGNET-----

270 OK {freeform}

Like organizational signets, a conforming server implementation must only return user signets for domains in which it is
the authoritative source. If the requested user signet is available, it must be returned in its ASCIl armored form, and if the
fingerprint argument is omitted, a host must return what it considers to be the current user signet. When returning a user
signet, the full signet must always be returned, even if the consumer supplies a cryptographic fingerprint. When

returning a user signet, the server must use the multiline syntax and the 280 response code:

280====== BEGIN USER SIGNET-----

280-BvOAAdcBhvAMjVKiMZmjF8gTnXNTDZ4C1W8MSWEfhS5NLIdzcp7m8jk1lKZtjp7JFrWkNyIbb
280-hjaxY0CpFaF4z2L8mjcJdg5P1+J/1F4iKrJc7tJYWCueGediYgQciOvKUiRHqyY9Zo5dPiA
280-6ZtjmmdAbSeJhM4nrLzQe5wXR6n8 fMDsHtJvZNb1PZSMycs7rMoNDEY6pjjocCBhA79y8J
280-7RAeM7Udi80GAW00oUGWENp3upYuhxd/bzoZg53TdQbNM2RKcGKozjwcZBUxhZGFyGwRDZ1H
280-IHdpdGggY2F2ZXMfFXppcGNvZGUgd210aG91dCBjYXZ1lcyADNXBXvBfUNNFxir+IzghyCr
280-8QlE3j7EqVW1xC/TF2KGmfylpmL2iueTyPz50kAYIQd/EWxhZGFyQGxhdmFiagI7gaXg8i

108

280-8Vbjj47aXZzQUMIL7 9WugqTuLdMC2yD4viW76cGkb8hrGL/y8HO0IshRpNeOAM
280)====== END USER SIGNET-----
280 OK {freeform}

If a fingerprint parameter is provided, then a host must return the signet matching the fingerprint, or an error. If no signet
is available for the requested address, then a server must also return a 486 or 576 error. A server may optionally apply
fuzzy matching logic to a non-matching identifier based on common alternate representations of a domain or email
address and suggest the true identifier using the temporary error code 486. Multiple potential matches are allowed, with
each potential identifier provided on a separate line. The following example shows a possible server request using an

international character:

SGNT USER=<{iserfexample.tld>

In a situation where the precise email local part identifier does not match a user signet, but several similar identifiers
exist on the system, the possible response might be:

486-IDENTIFIER=<User@example.tld>
486-IDENTIFIER=<User@example.tld>
486-IDENTIFIER=<tGser@example.tld>
486-IDENTIFIER=<User@example.tld>
486-IDENTIFIER=<yser@example.tld>
486 IDENTIFIER=<user@example.tld>

Whether suggestions are returned based on greedy matching is optional, and precisely what logic is applied to an
identifier is localized to the host locale, and a signet resolver must exercise caution when accepting such suggestions. If

no matching users are encountered, then a permanent 576 error must be returned:

576 SIGNET UNAVAILABLE

If the domain or address is valid, but the signet is unavailable, a server may choose to return the error code 476 instead.
If the domain advertises a policy of experimental in its management record, then a consumer may choose to send the
message using SMTP if this error is received. Otherwise clients must either retry the request later, or return an error to

the message author.

476 SIGNET TEMPORARILY UNAVAILABLE

If the domain or email address is submitted valid identifier but does not precisely match the available does not precisely
match an, but the signet is unavailable, a server may choose to return the error code 476 instead. If the domain
advertises a policy of experimental in its management record, then a consumer may choose to send the message using
SMTP if this error is received. Otherwise clients must either retry the request later, or return an error to the message

author.

109

HIST

Allows a resolver to retrieve the chain of user signets between a trusted signet fingerprint (START) and a recently
encountered user signet (END). If both fingerprint values are valid, then the host should return only the cryptographic
signets published by the user between the two values. If the end fingerprint value is missing, the server must provide all
of the cryptographic signets through the current user signet. This command must not be used to retrieve organizational
signets.

The HIST command has one required argument, and two optional arguments. The USER argument is required and used to
provide the email address being queried. The USER argument must always come first. If provided, the START argument
must follow the USER argument, and provides the cryptographic fingerprint for a user signet at the start of a chain of
custody query. The final argument is STOP and if included, provides a cryptographic fingerprint for the last user signet
that needs to be returned. If the START parameter is missing, then a DMTP server should return the first signet from the
user’s current chain of custody. If the STOP parameter is missing, then the server should provide all of the user signets
between the START value and the current user signet. If both arguments are missing, then a server must return the
entire chain of custody for the current user signet.

HIST USER=<mailbox@domain.tld> START=[fingerprint] STOP=[fingerprint]

A DMTP server must be capable of providing the cryptographic signets in a user’s chain of custody, from the root, all the
way to the current user signet. A server may provide user signets beyond a user’s current chain of custody, but should
only return these if provided a starting fingerprint that reaches past the current user signet’s root. Results are provided
using the multiline syntax, and the 290 response code:

290====== BEGIN USER SIGNET-----
290-BvOAAQUBhVAMIVKiMZmjF8gTnXNTDZ4C1W8MSWfhS5NLIdzgp7m8jklKZtjpwvYgpIJNyIbb
290-jJaxY0CpFaF4z2L8mjcJg5P1+J/1F4iKrJdc7tJYWCueGediYgQci0vKMUbmdY9Z0g5HILNGZ
290-tjmmdAbSeJhM4nrLzQe5wXR6n8fMDsHtIJvZNb1PZSMycs7rMoNDEY6jJLy9S8JEDRS8bF4ARTA
290-M7Udi1i80GAwWo0oUGWENPp3upYuhxd/bzoZg53TdQbNM2RKcGKozSQK2gHKpFI59gjwe
290====== END USER SIGNET-----

290 OK {freeform}

If the start or end fingerprint values fall outside of the current user signet’s current chain of custody, then a server may
return the 576 response code. A server should also return the 576 response code if the user signet requested is
unavailable. In a situation where the precise email local part identifier does not match a user signet, but several similar

identifiers exist on the system, a host may use the 486 response to suggest possible matches:

486-IDENTIFIER=<UGser@example.tld>
486-IDENTIFIER=<User@example.tld>
486-IDENTIFIER=<UGser@example.tld>
486-IDENTIFIER=<User@example.tld>
486-IDENTIFIER=<yser@example.tld>
486 IDENTIFIER=<user@example.tld>

110

Whether suggestions are returned based on greedy matching is optional, and precisely what logic is applied to an
identifier is localized to the host locale, and a signet resolver must exercise caution when accepting such suggestions. If
no matching users are encountered, then a permanent 576 error must be returned:

576 SIGNET UNAVAILABLE

VRFY

Allows a consumer to determine whether a signet is current. If a signet has been rotated, then the response will return
the current signet. Signet resolvers should use “refresh” value provided by a domain’s management record to determine
how often it should confirm that a signet is current. This command must accept cryptographic fingerprints for users and
full fingerprints for organizations, and should reject requests where the consumer supplies a full fingerprint for a user
signet. The VRFY command requires the DOMAIN and the FINGERPRINT arguments, and uses the following syntax:

VRFY DOMAIN=<domain.tld> FINGERPRINT=[fingerprint]

If the organizational signet is current, the following is returned:

271 ORGANIZATIONAL SIGNET CURRENT {freeform}

Or to verify that a user signet is still current:

VRFY USER=<mailbox@domain.tld> FINGERPRINT=[fingerprint]

If a user address was supplied and the signet is still current:

281 USER SIGNET CURRENT {freeform}

Otherwise an update is returned using the same syntax as the SGNT command. Where an organizational signet uses the
270 response code:

270====== BEGIN ORGANIZATIONAL SIGNET-----
270-AWEBQt1Wjk8S+DkuEbOLgfQTvVyS7Ae7NJwonNLI+TRoDYUCBOY1/SnE7pOFZjZYSAGWI]
270-BpyT614bHZj3Pd0s9QGE0rXCy9PWsCPwAMFC2aVVecG3NTXsQ5VhYPJK/13a0ONDtmz3LS11
270-dCBMTEMbGzEYyMyBIaWRkZW4gOnVual2VyIEJvdWx1dmFyZB4PUG9zdC1lTaWsndWxhcmlhHw
270-EgMnb0cbDDFBatu9tTMALi 7ERNKWGLgWda2IG00oTP22njpchB2KEWjp7Q0F/gC0byTh7Is+Y
270-dC5jJb22AFjee+3raziK2GZYoFErVAsJKXbRc2ZxulZ30XAJ1lay9£fY/GNihmzZgd9SBZrJUn
270====== END ORGANIZATIONAL SIGNET-----

270 OK {freeform}

Or if a user address was supplied that was updated, the 280 response code is used to return the updated user signet:

280====== BEGIN USER SIGNET-----

280-BvOAAdcBhvAmMjVKiMZmjF8gTnXNTDZ4C1W8MSWfhS5NLIdzquujQCBJkgddcp7m8jklKkow
280-hjaxY0CpFaF4z2L8mjcJg5P1+J/1F4iKrJdc7tJYWCueGeJiYgQciOvKUiRHqyrlwkjMU/5
280-6ZtjmmdAbSeJhM4nrLzQe5wXR6n8fMDsHtIJvZNb1lPZSMycs7rMoNDEY6pjjo8Y70k0E3]L
280-7RAeM7Udi80GAWO0OUGWENp3upYuhxd/bzoZg53TdQbNM2RKcGKozSQK2gHKpFI59gjwcZBR
280-IHdpdGggY2F2ZXMfFXppcGNvZGUgd210aG91dCBjYXZ1lcyADNDExfjdOpQO0k4DXBXvBfUn

111

280-8QlE3j7EqVW1IxC/TF2KGmfylpmL2iueTyPz50kAYIQd/EWxhZGFyQGxhdmFiaXQuY29tgQ
280-8Vbj347aXZ2zQUMILT 9WugqTuLdMC2yD4vW76cGkb8hrGL/y8HOIshRpNeOAM

280)====== END USER SIGNET-----

280 OK {freeform}

RESPONSE CODES

214 HELP
221 BYE
250 OK
254 ACCEPTED=identifier
255 DUPLICATE=identifier
270 OK
271 ORGANIZATIONAL SIGNET CURRENT
280 OK
281 USER SIGNET CURRENT
290 OK
291 USER SIGNET CURRENT
354 READY TO RECEIVE MESSAGE
421 CONNECTION REQUIRES ABNORMAL TERMINATION
431 DESTINATION LIMITS EXCEEDED
450 ACCESS DENIED
451 DATA CORRUPTED
470 ORIGIN SIGNET UNAVAILABLE
486 IDENTIFIER=identifier
00 COMMAND SYNTAX ERROR
501 ARGUMENT SYNTAX ERROR
02 COMMAND DISABLED
503 INVALID COMMAND SEQUENCE
10 INVALID RECIPIENT
570 ORIGIN SIGNET UNAVAILABLE
75 INVALID ORIGIN SIGNET
576 INVALID DESTINATION SIGNET
78 INVALID ORIGIN SIGNATURE
586 INVALID RECIPIENT SIGNET

PROTOCOL EXTENSIONS

112

‘SQE

TBD
‘MNARY
T8D
‘UNKODE
T8D
‘PIPHJNING
T8D
‘SURROGATE

Indicates that the true destination host indicated by the TLS SNI extension, or as an argument to the STARTTLS command,
could not be reached. However, the current host will act as a surrogate to accept and relay the D/MIME message onto its
destination when the host becomes available. This extension allows individuals to host a DIME server at home, without
revealing the destination host address literal to a consumer, and allows consumers to access DMTP services for the
target domain even when the destination host is offline. Surrogates, depending on the configured policies for the
domain, will be capable of handling signet retrieval requests and accepting encrypted messages for delivery when the

true destination host comes back online.

113

PART 8: DARK MAIL ACCESS PROTOCOL (DMAP)

The Dark Mail Access Protocol (DMAP) specification will not be released with this draft, but will be added to this
document in the future. DMAP will be an authenticated protocol and is intended for use between end user MUA and
organizational servers. A few of the key elements currently being planned for DMAP are:

e The authentication mechanism will be rely on cryptography, allowing a user to prove they know the
account password, without the server ever receiving it. Sometimes called ZKPP. This information will
also be used to derive the keys needed to decrypt account data. Details still under development.

e DMAP will handle the submission of messages. The org signature will need to be appended before the
message is relayed to another domain, although this doesn’t need to be handled by the DMAP
implementation.

e DMAP server will accept user signet signing requests and, if once approved/signed, will notify the
user’s client that a new signet has been published.

Some of the elements still in development, which may be removed:

e Facilitate the synchronization of a user’s encrypted key ring. The key ring is responsible for storing
private key information.

e Store encrypted copies of user signet rings. The signet ring is used to store management records,

organizational signets, and user signets.
e Allow authenticated users behind a firewall to proxy their signet lookups, at the expense of privacy.

e Retrieve encrypted log entries. Log entries may contain security alerts®, outbound delivery reports®,

service provider notifications, and system broadcasts.
Some of the elements being removed, which are currently available with IMAP:

e The protocol will not include server-side search because all email is encrypted on the server.

e The “fetch” command, or its equivalent will be dramatically simplified, selectors will be limited to
retrieving specific chunks, or entire messages.*

19 Such as information about failed login attempts, or the IP addresses recently used to access the account.

20 A simple record which provides the outcome of a message submitted for relay to another domain. A simple
success, error X, or pending indication. If this information is stored in a user’s encrypted log queue, then a service
provider won't need to keep the information stored in plain text log files, just so they can handle technical support
requests. Of course most of them probably will either way.

114

PART 9: GLOBAL LEDGER

Currently in the design phase, the future implementation of the global ledger will enhance or replace the need for
DNSSEC acceptance and deployment. Since the adoption of DNSSEC may continue to be slow, the introduction of the
DIME global ledger will provide a non-reputable external record of user signet publications that a client can consult
independently of a provider and thus detect when their provider might be complicit in an attack on their account.
External sources also provide non-reputable evidence of a possible service provider MitM attack.

A few of the key elements currently being planned for the Global Ledger are:

e Adefined set of trusted global ledger hosts deployed around the world with operational oversight
from the Dark Mail Alliance (DMA).

e Allow for DMTP lookups of user and organizational signets providing a non-reputable record of
signets.

e Provide key management that is redundant across sources to aid in the detection of compromised

servers.

e Stand as the de facto source for public signets for all DIME implementations.

21 A handful of IMAP clients use the “chunking” feature of IMAP, allowing them to download a result in pieces.
Should DMAP allow clients to pull D/MIME chunks in pieces? Consider the maximum possible chunk size is 16 MB - any
MIME body parts larger than 16 MB will be split across chunks. The encryption scheme and chunk layout dictate that an
entire chunk be downloaded before decryption. A complete chunk will also be needed to verify the signature taken over
the cleartext.

115

PART 10: DARK MAIL ALLIANCE

The purpose of the Dark Mail Alliance (DMA) is to bring the world an ubiquitous end-to-end encrypted email standard.
The DMA will be responsible for evangelizing the DIME amongst implementers and providers, and manage/coordinate
the deployment of infrastructure projects like the global ledger, which are provided by independent DMA member
organizations (or individuals)

The DMA partners will work to bring other members into the alliance and assist them in implementing the DIME
standards. The DMA will also hold the rights to any DIME intellectual property in trust, such as the DIME trademarks. The
DMA will also work to develop and maintain an open source reference implementation of the DIME standards to address
privacy concerns regarding back doors.

116

PART 11: THREATS

A user’s concern for private email exchanges can involve protection of basic content or extend to their social network
information - who they exchange mail with, and when - and can vary by the amount of trust they place in their email
service provider. Dark Internet Mail Environment (DIME) builds upon classic Internet Mail [IMA] and provides strong
privacy protection using encryption, covering metadata, overall message structure, and individual message content
including attachments. DIME also ensures message authenticity, integrity and verifiable non-repudiation.

Privacy exposure can be due to passive or active third-party impostors, with wiretapping that captures message traffic
over the wire, compromise of a mail handling host or a key management host, or collaboration by a host operator.
DIME's design provides a range of protections that combine to defend against each of these categories of threats.

Key management by end users, and even system operators, is a major barrier to the use of security-related services.
Therefore, to the extent possible, DIME’s encryption details are designed to operate automatically. Great care has been
taken to make it difficult for an attacker to subvert the automated aspects of the system undetected. Because error
messages and security warnings can be confusing to users, the system provides for alternate mechanisms so clients can
overcome common anomalies without compromising security or requiring user intervention. The goal is to create a
system sufficiently resilient so that the occurrence of a non-recoverable security error is most likely to be due to system
compromise, or because someone in a privileged network position is attempting to carry out an attack.

Service providers occupy a trusted position in the DIME ecosystem. However, a client can choose among three service
trust levels to considerably narrow this dependence. In particular, it determines a server’s access to the user’s private
keys using account modes (Trustful, Cautious and Paranoid).

This document discusses the privacy goals for the DIME protocols and formats, how those goals are achieved and what
assumptions are made [SPARROW]. A core goal is attending to different types of users and their trust of an associated
organization server. We highlight assumptions, and detail specific aspects of the design intended to mitigate common
attack vectors. Unless otherwise noted, this document assumes the “Cautious” account mode is being utilized.

THREATS

VENUES

The primary concern is unauthorized information disclosure, that is, situations where the user loses control over the
release of their private information. Different types of information need different types of protection. A related concern
is authentication of the participants in an exchange, both end users and service providers, so that fraudulent content is
avoided.

The types of information compromise of concern include:

117

Author spoofing: Whether the purported creator and submitter of a message is the actual agent of
action.

Figure 10 - Author Spoofing

Service provider spoofing: Knowing that the intended provider (mail, key, DNS) is the actual provider.

v

LN

Figure 11 - Service Provider Spoofing

Message content disclosure: ~ Limiting disclosure only to authorized parties or recipients.

118

Figure 12 - Message Content Disclosure

Message structure disclosure: Even without knowing the detailed content, knowing about message size,
attachment structure, and attachment data types can help an attacker.

Metadata disclosure: Any other structured data, involving participant and message attributes, which can
be stored and subjected to social and network traffic analyses. This includes
relationships and activity. Who is talking with whom; when and how actively?

119

4%y X’v S
‘iiﬂ» 2 ri%g, ‘iii

é;%gg =] <o

Figure 13 - Metadata Disclosure

[VECTORS

A variety of avenues can be exploited to achieve unauthorized disclosures:
Password: The basic unit of local authentication within a system.

“[A challenge is] how to authenticate securely with the service provider without
revealing the password (since the password is probably also used to encrypt the
private key and other secure storage, so it is important that the service provider does
not have cleartext access as with typical password authentication schemes).”
[SPARROW]

120

Key:

Organizational Signet:

User Signet:

Domain name:

Transmission Channel:

“[P]ublic-key encryption to allow[s] a user to send a confidential message to the
intendant recipient, and for the recipient to verify the authorship of the message.
Unfortunately, public-key encryption is notoriously difficult to use properly, even for
advanced users. The very concepts are confusing for most users: public key versus
private key, key signing, key revocation, signing keys versus encryption keys, bit
length, and so on. This is where we are now: we have public key technology that is
excessively difficult for the common user, and our only methods of key validation have
fallen into disrepute.” [SPARROW]

Information tied to a specific domain name, including the public keys associated with
that domain name. The authoritative source and verification information for an
organizational signet is advertised using a DIME management record in the DNS system
and is considered authentic when retrieved from an authoritative DMTP server and
validated by the DIME management record. No further validation steps are necessary if
the management record was signed using DNSSEC. The organizational signet may also
carry with it policy information for the domain. Compromising the private keys
associated with an organizational signet or replacing an organizational signet with a
fraudulent one could allow an attacker to generate fake user signets and spoof the

organization identity.

Information included with a person’s public key that helps others verify that a key is
genuine or valid; it can carry related profile information for the entity being identified.
Assessing signet validity is a distinct step. Compromising the user signet resolution
process could allow an attacker to advertise fraudulent public keys allowing them to
spoof an identity or access encrypted message contents only if the victim later uses
the spoofed ID. A user signet is considered authentic when a retrieved from an
authoritative DMTP host and the signature is authenticated using the keys contained

within organizational signet.

Domain names are basic unit of global identification on the Internet. Domain names are
associated with records of information through public queries of the Domain Name
Service. Trusting DNS servers, or at least DNS records, is the foundation for email
service. The primary long-term path for improving that trust is the widespread adoption
of DNSSEC.

Monitoring traffic across a transmission link (wiretapping) can be simply passive
copying or it can be active spoofing via a man in the middle attack (MitM) that relays
messages between both ends, making them believe that they are talking directly to
each other over a private connection. TLS is the primary means of protection against
wiretapping; MitM protection requires that the server’s X.509 certificate is validated

using a CA from a certificate authority, or using a management record signed using

121

Client:

Mail Server:

Key Server:

DNS Server:

Gateway:

Persistence:

DNSSEC, authenticating the server’s affiliation with the owner of the target domain

name.

A compromised end-point permits the attacker to impersonate the user or, at least, to
see all of the user’s data. It could also permit the attacker to steal keys and passwords,
obtain cleartext message information, or otherwise weaken on-going services to
facilitate later interceptions by introducing malware. Additionally, a poorly
implemented client or MUA could break the cryptographic mechanisms employed by
DIME.

A compromised mail server (MSA, MTA, MDA, MS) can access any mail information that
is in the clear or that the server is able to decrypt. Depending upon the capabilities of
the client and the account mode, the amount of trust a user must place in their mail
server can be greatly reduced.

Compromising a server that holds private encryption keys permits an attacker to
decrypt data and thereby break DIME’s protection. Redundant sources for signet
information can aid in the detection of compromised key servers attempting MitM
attacks.

A compromised server can permit creation of false records under a target domain
name. DNSSEC authenticates records, independent of the server providing them.

Transition between a protected email environment, such as DIME, and an unprotected
one, such as naked Internet mail, usually requires operation of service gateways. They

create opportunities for spoofing and downgrade attacks.

Advanced Persistent Threats (APT) typically entails an attacker with a privileged
network position, ability to perform extensive and long-term data collection and apply
massive computational resources. This creates its own line of attack, beyond those

vectors normally of concern.

MITIGATION STRATEGIES

DIME minimizes information that is exposed to intermediaries along the mail-handling path, including what is available to

the initial origin and destination service providers. Content is protected by multiple layers of encryption reducing reliance

on single-points of failure for providers of keys and signets.

MESSAGE PROTECTION

A message is a hierarchical object, comprising several distinct handling-related and payload components. This permits

efficient handling of distinct portions over limited channels and by clients with limited capabilities, as well as permitting

separable protection. Only a thin “outer” component of the message transits with unencrypted information.

122

In terms of handling and protection, each copy of a message is between the author and one recipient. The basic message
handling model has twolevels, with an organization component and a user component. The organization provides public-
facing services, at the granularity of a domain name. An individual user’s involvement with a message, such as their full

email address, is visible only to their associated organization server and the other end user associated with this message.

The basic message protection model encrypts the entire message, as well as each component, using a different key for
each portion that is encrypted. This permits independent handling of different message components and protects

envelope information by encrypting those portions with different user and organizational keys.

0955 7¢84 a97f3282 6dc8 31c5 0e44 9fc3 fc9a d70c ddff67e7 e5e7 153b d4f4 d94e ada2 20ee 4c32

From: gmail.com W

To:yahoo.com

15ae 8430 3893 3304 a5b9 8f8a 1cf7 a5e4
5044 c421 fb3a 5alc 5dbd a7ce 15ef 847a
96bc 9bb6 €744 eb28 69d7 ae55 343a 63a0
2fca 5739 ed97 30a9 5ee5 9741 745c 6718
ccb1 ac92 a7b5 daOb 7b66 4126 f96d 69¢2
84b2 0967 0515 7b93 5788 983f a3d1 d2d1

Figure 14 - Basic Message Protection

ACCOUNT MODES

A user’s reliance on an associated organization server can be at three different service trust levels, selectable by the

user:

Trustful: Comparable to the level of trust placed in a service provider for typical email services historically. In
effect, the service handles all privacy issues on behalf of the user. DIME provides protection for
messages in transit over the Internet, but the end-user’s service provider is fully trusted. In particular,

the server has direct access to the user’s private keys. Users access email using traditional access via

123

SMTP and IMAP over SSL. Although it is implementation specific, it is recommended that the user’s
private key be protected using the user’s password.

Cautious: In this mode the server holds encrypted copies of a user’s private keys and messages. This is
convenient for multi-platform users, while reducing the amount of information a compromised
service provider can disclose. Because the service provider never has access to the decrypted private
key, they are unable to access a user’s messages, or publish new user signet without triggering a
break in the chain of custody. This mode is designed to facilitate the adoption of DIME without
requiring end users to modify their behavior to obtain the additional benefits of encryption without
the traditional encryption costs.

Paranoid: This mode provides the server with almost no user security information. In particular, the server
never has access to the user’s private keys, even in encrypted form.

A thin client is more dependent upon the service provider, since it has few, or none of its own, independent capabilities.
Webmail is typically an example of complete reliance on the provider, since any software running on the client comes
from the provider; however, a proper thin client implementation that performs encryption in the user’s browser will not
have complete access to all user information. In the event a thin client is exploited by an attacker to contain malicious
code, it could circumvent security to gain access to user information. The recommended approach is a thick client
independently obtained and installed and fully under the control of the user.

ATTACK VECTOR MITIGATION

The following discussion explores the likely approaches for preventing or detecting problems in each part of the system
subject to attack.

PASSWORD

User access to a server is controlled through an account password. It is used to authenticate with a server; however
is never sent to the server. Rather the password is used to derive information that is sent. The server only stores a
pre-nonced hash and account key pair, with the private account key being encrypted by the password on the user’s
device. Hence, if the server is compromised it cannot reveal the password, or even provide the required elements to
successfully spoof authentication. The amount of entropy associated with a user’s password is improved with user
specific salts, and the number of hash rounds being varied based on plaintext length. Organizations can further
improve passwords by imposing a variable number of additional hash rounds.

SIGNET

Signet Assignment: Signets are associated with an organizational domain or a user address based on the
semantic context of a signet resolver query.

NETWORK PACKET CAPTURE

124

FORWARD SECRECY

“Traditional schemes for forward secrecy are incompatible with the asynchronous nature of email communication,
since with email you still need to be able to send someone a message even if they are not online and ephemeral key
generation requires a back and forth exchange between both parties.

“...Another possible approach is to use traditional encryption with no support for forward secrecy but instead rely on
a scheme for automatic key discovery and validation in order to frequently rotate keys. This way, a user could throw
away their private key every few days, achieving a very crude form of forward secrecy.” [SPARROW]

Network level packet captures are useless with DIME because all connections are protected using TLS v1.2 and
require the use of a cipher suite which provides for perfect forward secrecy (PFS). If an organization can protect
their TLS private key, then they can ensure attackers are also unable to MitM the organization’s TLS connections and
can achieve PFS at a wire level.

PFS for message objects, as the description above suggests, is far more difficult, and contrary to the nature of email.
However, a DIME user using the “paranoid” account mode could still obtain PFS for messages by routinely rotating
their signet, and destroying the private keys associated with their former signet once the expiry threshold has been
reached. Because the private keys were never synchronized with the server, the user can be assured that deletion
means the keys could never be recovered, thereby providing PFS even if the messages were intercepted and
recorded by a server.

SIGNET AND KEY MANAGEMENT

‘BASIC MANAGEMENT AND OPERATION

No single source of key information is automatically accepted by the entity making the query. It always must have a

confirmation.

Key creation: 1. Trustful Mode: The user signet and the corresponding private keys are generated on
the server. The server appends the organization signature plus optional attributes such
as name, address, telephone, etc. and a second organizational signature. The two
organization signatures allow the cryptographic portion of the user signet to be split
from the optional attribute portion. The server stores this signet internally and makes it
available via DMTP.

2. Cautious Mode: The desktop client generates a Signet Signing Request (SSR) and the
corresponding private keys and submits to server over DMAP with the private keys
encrypted. The server appends the organization signature plus optional attributes such
as name, address, telephone, etc. and a second organizational signature. The server
stores this signet internally and makes this available via DMTP. The encrypted private
keys are available to the desktop client via DMAP.

3. Paranoid Mode: The desktop client generates the SSR and submits the SSR to the

125

Signet discovery:

Signet validation:

Signet availability:

Signet revocation:

server over DMAP. The server appends attributes (such as names, address, telephone,
etc.) and organization signature. The server stores this signet internally and makes this
available via DMTP. The encrypted private key is stored on the desktop client and

never transferred to the server.

The desktop client performs a lookup of the management record for a domain using
DNSSEC. If there is a DIME management record (MR), it retrieves the Primary
Organization Key (POK) from the MR and the organizational signet via a DMTP
connection. The organizational signet is validated against the POK retrieved via DNS. If
a DIME MR is not signed using DNSSEC, the DMTP server must use a TLS certificate
validated by a recognized certificate authority (CA).

The DMTP server will respond to queries for user and organizational signets. Note that
some clients might not be able to make direct TCP/TLS connections to a DMTP server
because of firewall rules; they will need to proxy requests through their local DIME key
server, presumably over an authenticated DMAP connection. This could create an

additional avenue for metadata to leak, such as what signet a user retrieves.

A signet is validated by a confirming query via DNS, in addition to the primary means of
obtaining and validating it. For an organization-level signet, the secondary query can be
via a pre-authenticated source (recognized CA) or DNSSEC. For a user-level signet,
confirmation is through a chain of custody if the signet is already in the user’s signet

cache, in addition to confirmation of an organization signature.

Organization and user signet availability will vary based on deployment decisions and
user configuration options. From an organizational viewpoint, access to the
organization’s private key will be required for signing operations and decryption of
delivery information. This will require every DMTP server to have access to the private
key, or for more sophisticated deployments, access to a centralized key server that
performs all of the organizational level cryptographic operations. Note the
trustful/cautious/paranoid modes for end-users; they can choose to share the
unencrypted private keys with the server, just the encrypted private keys, or nothing
at all. Which option they choose will determine how they can access their account, and

where user level cryptographic operations occur.

To revoke a potentially compromised user signet, a user simply needs to publish a
replacement public signet and wait the specified time-to-live for the compromised
signet to expire. Once the TTL expires, servers will have to query for the signet again.
When an organizational signet is compromised, all existing user signets must be
resigned and republished. Because of the potential overhead for large organizations,
this issue further stresses the requirement that each organization must protect their

corresponding organizational private keys at all costs. If an organizational signet is NOT

126

compromised, but simply changed, the previous organizational keys can be added to
the new organizational signet as secondary keys*.

Key rollover: A chain of custody is established for a sequence of signets. As a new signet is
introduced, it is signed by its predecessor signets. This permits automatic acceptance of
a new signet when the previous one is already in a user’s signet ring. It is based on the
reasonable assumption that the owner of the new signet had access to the private key
associated with the trusted signet.

ORGANIZATIONAL_SIGNET

An organizational signet is generated by a system administrator who installs the key into a DMTP configuration and
associates the signet with a domain. The administrator configures the DNS for the domain in question to provide the
associated validation record. Because of the manual process associated with publishing new organizational signets,
the assumption is they will change infrequently. While user signets will have TTL values specified in minutes,
organizational signets would use TTL values measured in days; the recommendation is organizations will change
signets every 1 to 3 years and have high TTLs (16-32-64 days).

An organizational signet, and its associated private keys, is used to:

e Sign user signets

e Sign outbound messages

e Decrypt ‘recipient’ chunk on received messages

e Decrypt ‘author’ chunk for outbound messages before signing
e Decrypt ‘author’ chunk for bounce message

e Validate signatures before accepting bounces

USER SIGNET

A user signet is generated automatically by a user’s client submitted using DMAP. The public signet is published on
an authoritative DMTP server. Whether or not the user’s private keys are shared with their organization’s server
depends on the account mode (trustful, cautious, and paranoid). In trustful mode, each device the user has can get
access to keys through the organization’s DMAP server. In paranoid mode, the user must use an independent
mechanism when using multiple devices for synchronizing keys.

To minimize the amount of data exposed by a compromised private key, users are encouraged to have their signets
rotated automatically. The time period recommended will likely vary by user, but could range from a handful of days

22 In this context, this can be considered an estoppel (i.e. a revocation).

127

to a period of weeks. Users who suspect their private keys have been compromised can trigger a manual signet
rotation ahead of the scheduled rotation.

To provide a robust validation model, a potential sender has multiple avenues for confirming that a specific public
key belongs to a user address. The primary basis is that a public key was retrieved from an organization’s
authoritative key store, and contains an organization signature that can be traced to a verifiable and trusted
organizational signet. This constitutes basic authenticity and typically means the key can be trusted unless: the
lookup request(s) was subverted or the organization is complicit in an attack (assuming the organization’s key has
not also been compromised). Additional verification paths are designed to allow detection of such attacks.

A verifiable chain of custody can illustrate that the owner of an address may have changed recently; this can be used
by people with a previous trusted signet in their local cache. Finally, the use of the optional global ledger can provide
a non-reputable external record of user signet publications that a client can consult independently of a provider and
thus detect when their provider might be complicit in an attack on their account. External sources also provide non-

reputable evidence of a possible MitM attack by a user’s organization or service provider.
A user signet, and its associated private keys, is used to:

e Decrypt inbound messages.
e Sign outbound messages.

e Sign new public signets before submitting them to the organization’s server for publication.

DOMAIN NAME

The DNS system controls whether a domain supports DIME and provides the trusted anchor for organizational and
user signets. In effect, compromising the DNS records would permit an attacker to gain authoritative control over a
domain’s identity. The primary long-term path for ensuring the validity DNS information and responses is DNSSEC.

TRANSMISSION CHANNEL

TLS is the primary means of protecting against wiretapping and the tampering of data in transit. For TLS to provide
MitM protection a server certificate must be validated with an X.509 certificate signed by a certificate authority or
against a TLS field provided by an MR signed using DNSSEC.

CLIENT

Client implementations will perform the user level cryptographic operations. Like email today, we anticipate a large
variety of DIME client implementations will be created. They will likely range from thick applications that run on
desktop and mobile devices, to thin clients written in JavaScript that are loaded from a web server at runtime.
Because the user level cryptographic functions are performed by the client for cautious and paranoid users, it is
important that these client implementations properly implement the cryptographic primitives and conform to the
user interface and implementation standards supplied. These standards will ensure client implementations follow a

baseline for the secure handling of sensitive information like passwords and private keys. Clients will also be

128

responsible for communicating to users which inbound and outbound messages are protected by encryption because
they involve DIME-enabled domains, versus those that were sent naked using traditional mail protocols.

MAIL SERVER: MSA, MTA, MDA

Email content and data structure are protected by a proper DIME implementation; however, it is still the
responsibility of the mail server organization to follow security best practices and secure the mail server.

KEY SERVER

Key management that provides redundant sources can aid in detection of compromised servers. Sources can be
authoritative servers or be replicated through syndication to a partner domain’s servers or in the future to the global
ledger.

DNS SERVER

Distinct from using DNSSEC to authenticate DNS content, the responsibility for securing a domain’s DNS servers

remains with the organization.

Primary protection is accomplished by DNSSEC. However, if DNSSEC name validation cannot be used, it is still
possible to reach a trusted state by publishing a DNS record AND using a TLS certificate that has been signed by a
trusted Certificate Authority.

GATEWAYS

SMTP gateways provide the ability for DIME users to exchange messages with users at domains that do not support
DIME. These gateways accept incoming SMTP messages from non-DIME domains and encrypt them using a user’s
current key before storing it on the server. Likewise, outbound messages can be relayed through a gateway to an
SMTP host. It should be possible to translate, without any information loss, between the SMTP MIME format and the
D/MIME message format. It is worth noting that organizations can choose to disable SMTP access at a domain level,
or allow users to disable SMTP access at a user level. It is also important to understand that because SMTP messages
may be transmitted in the clear in a worst-case scenario, and rely on TLS for protection in a best-case scenario, that
users understand when they are sending out messages to a DIME-enabled domain versus when they send naked

messages via traditional email.

PERSISTENCE

For network level protection, DIME relies on TLS cipher suites that provide perfect forward secrecy. For message
level protection, we assume that most users will want to retain persistent access to their historical message corpus.
This implies retaining private keys to facilitate the future decryption of messages or alternatively, clients storing

messages in their decrypted form locally before deleting a given private key.

HUMAN FACTORS

129

System security is often compromised through social engineering and other challenges with user and operator
behavior. Simply implementing DIME does not replace good user education and competent operational security. Bad
passwords, poor protection of private keys, and situational factors (such as leaving a laptop, no matter how short
the length of time, unattended at the airport) cannot be mitigated by DIME. Depending on the implementation,
examples of efforts to mitigate human factors include tailoring the user’s interface, such as flagging information that
is to be more or less trusted, and compensatory computation, as might be used to counteract a shorter password.

130

PART 12: ATTACKS AND MITIGATIONS

TBD

131

PART 13: KNOWN VULNERABILITIES

THIS PAGE INTENTIONALLY LEFT BLANK

132

PART 14: CREDITS

AUTHOR

‘LADARLEVBON

Ladar Levison is the Founder of Lavabit, LLC, which served as a place for free and private email
accounts. By August of 2013, Lavabit had grown to over 410,000 users. Levison created Lavabit
because he believes that privacy is a fundamental, necessary right for a functioning, free and
fair democratic society. On August 8, 2013, he made the bold decision to shut down his business
after refusing to become "complicit in crimes against the American people." Presently, Levison
is serving as the lead architect for the Dark Internet Mail Environment. Levison continues to
vigorously advocate for free speech and the right to privacy, speaking at conferences, and
collaborating on projects which are working to give back control of the Internet to the people.

CONTRIBUTORS

‘DAVECROCKER

David H. Crocker is a principal with Brandenburg InternetWorking. He designs network-based
applications businesses and distributed system architectures. His focus is on the creation of
Internet-based businesses built on a solid foundation of customer benefit and revenue potential.

Dave worked in the ARPA and NSF CSNet network research community during the 1970s and
early 1980s, and led product development efforts at MCl and various Silicon Valley companies, into the 1990s. He then
founded several startup companies, serving as CEO for one. Dave has developed and operated two national email
services, designed two others, and was CEO of a community non-profit ISP. His senior management product efforts cover
email clients and servers, core protocol stacks for TCP/IP and 0Sl, network management control stations, and knowledge
management tools for product support. For his work on email, Dave was a co-recipient of the 2004 IEEE Internet Award.

Dave has been leading and authoring Internet standards for forty years, covering Internet mail, instant messaging,
security, facsimile and EDI. He has also contributed to work on Internet commerce, domain name service, emergency
services, and TCP/IP enhancements. He has authored more than 5o IETF Requests for Comments. Dave served as an Area
Director for the Internet Engineering Task Force (IETF) variously overseeing network management, middleware and the
IETF standards process. He has also been a member of the IETF's administrative and legal oversight bodies (IAOC/Trust).

133

‘ UNNAMED CONTRIBUTORS

The DIME team would like to thank the gracious help of numerous, yet unnamed, contributors without whose dedication
and time this publication would not be possible.

‘ATTRIBUTION

The document author’s borrowed heavily from referenced RFCs and other sources for several sections. The team
provides full attribution to the extent possible; however, if a reader notices an unintentional missing attribution, please
notify the author for correction. The DIME team owes a debt of gratitude to the hard work of the many Internet
revolutionaries that got us to this point.

134

PART 15: REFERENCES

[AES] National Institute of Standards and Technology, "Specification for the Advanced Encryption Standard (AES)", FIPS
197, November 2001.

[ASCII] Cerf, V., , RFC 20, October 1969.

American National Standards Institute (formerly United States of America Standards Institute), “USA Code for
Information Interchange”, ANSI X3.4-1968, 1968.

[AVIAN] Waitzman, D.,, RFC 1149, April 1990.
[DANE] Hoffman, P., Schlyter, J.,, RFC 6698, August 2012.
[DANGER] Bernstein, D., Tanja, L.,, September 2013.
[DEFLATE] Deutsch, P.,, RFC 1951, May 1996.
[DKIM] Allman, E., et al.,, RFC 4871, May 2007.
[DOMAIN] Mockapetris, P.,, STD 13, RFC 1034, November 1987.
Mockapetris, P.,, STD 13, RFC 1035, November 1987.
[DNSSEC] Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.,, RFC 4033, March 200s.
[E123] International Telecommunications Union, , February 2001.
[ECDH] Blake-Wilson, S., et al., , RFC 4492, May 2006.
[EdDSA] Bernstein, D., , September 2011.
[GCM] Dworkin, M., , SP 800-38D, November 2007.
[IMA] Crocker, D., , RFC 5598, July 2009.
[IMF] Resnick, P.,, RFC 5322, October 2008.
[IP] Postel, J.,, RFC 791, September 1981.
[1ISO0639-1] International Organization for Standardization, , ISO 639-1:2002, July 2002.
[1IS0639-2] International Organization for Standardization, , ISO 639-2:1998, October 1998.
[1IS03166-1] International Organization for Standardization, , ISO 3166-1:2013, November 2013.

[1ISO4217] International Organization for Standardization, , ISO 4217:2008, October 2008.

135

[1ISO15924] International Organization for Standardization, , ISO 15924:2004, January 2004.

[LOC-LANG] The Library of Congress, , March 201s.
[KEYWORD] Bradner, S.,, RFC 2119, March 1997.
[LANGUAGE] Phillips, A. and M. Davis, , BCP 47, RFC 5646, September 2009.
[IANA-LANG] Internet Assigned Numbers Authority, , March 201s.
[MIME] Freed, N., Borenstein, N., , RFC 2045, November 1996.
Freed, N., Borenstein, N., , RFC 2046, November 1996.
Moore, K., , RFC 2047, November 1996.
Freed, N., Klensin, J.,, RFC 4289, December 2005.
Freed, N., Borenstein, N.,, RFC 2049, November 1996.
[OCSP] Myers, M. et al.,, RFC 2560, June 1999.
[PEM] Linn, J.,, RFC 1421, February 1993.
[PGP] Callas, J. et al.,, RFC 4880, November 2007.
[PGP-ECC] Jivsov, A.,, RFC 6637, June 2012.
[PGP-EdDSA] Koch, W.,, March 2014.
[PNG] Boutell, T.,, RFC 2083, March 1997.
Portable Network Graphics, , ISO/IEC, 15948.
[SEC], September 2000.
[SHS] National Institute of Standards and Technology, , FIPS 180-2, August 2002.
[SMIME] Ramsdell, B., Turner, S.,, RFC 5751, January 2010.
[SMTP] Klensin, J., , RFC 5321, October 2008.
[SNV-CURRENCY] Swiss Association for Standardization, , January 2015.
[SPARROW] Sparrow, E., .
[SRV] Gulbrandsen, A., Vixie, P., Esibov, L., , RFC 2782, February 2000.

[TCP] Postel, J.,, RFC 793, September 1981.

136

[TLS] Dierks, T., Rescorla, E., , RFC 5246, October 2008.

[TLS-ECDHE] Rescorla, E., , RFC 5289, August 2008.

[TLS-SNI] Blake-Wilson, S. et al., , RFC 3546, June 2003.

[TXT] Rosenbaum, R.,, RFC 1464, May 1993.

[XMPP] Saint-Andre, P., , RFC 6120, March 2011.
Saint-Andre, P., , RFC 6121, March 2011.

[XMPP-CHAT] Saint-Andre, P., , February 2012.

[XMPP-OTR] Goldberg, I., Borisov, N.,, September 2012.

137

APPENDIX A:

DATA TYPE IDENTIFIERS

Magic Number Label

1215 User Signet Signing Request

1776 Organizational Signet

1789 User Signet

1847 Encrypted Message

1851 Encrypted Sent Message

1861 Encrypted Draft Message

1908 Encrypted Naked Message

1947 Encrypted Organizational Key

1952 Organizational Key

1976 Encrypted User Key

2013 User Key

DO d e cD 2

BLK Blackcoin https://www.blackcoin.co/
BTC Bitcoin https://bitcoin.org/
DRK Darkcoin https://www.darkcoin.io/
LTC Litecoin https://litecoin.org/
PPC Peercoin http://www.peercoin.net/
STR Stellar https://www.stellar.org/
XMR Monero https://monero.cc/
XRP Ripple https://ripple.com/currency/

138

APPENDIX B: COMMON ENCODINGS

BASE64URL ENCODING

This document represents encodes binary data using the base64 encoding scheme defined in RFC 4648, with the URL
and filename safe character set defined in Section 5, and known as baseé4url. In addition to the standard base64url
conversion, all trailing pad characters, line breaks, white space, and other non-printable control characters should be

removed, as permitted by Section 3.2. [BASE]

[BASE] Josefsson, S., The Base16, Base32, and Base64 Data Encodings, RFC 4648, October 2006.

NOTES ON IMPLEMENTING BASE64URL ENCODING WITHOUT PADDING
This section was adapted from draft-ietf-jose-json-web-signature, Appendix C.

[JWS] Jones, M., Bradley,)., and N. Sakimura, "JSON Web Signature (JWS)", draft-ietf-jose-json-web-signature
(work in progress), March 2015.

This section describes how to implement the base64url encoding and decoding functions without padding based upon
standard base64 encoding and decoding functions that do use padding. To be concrete, example code written in C# is
provided showing how to convert between standard base64 into the base64url encoding. These functions should provide
an adequate template for implementations in other languages.

To encode binary octets into a base64url string:

import operator, base64
def base6d4url encode (binary):
Encodes a string using the standard base64 method, and

converts the output into the proper format.

Encode the binary input using standard base64 method.
output = base64.bb6d4encode (binary)

Swap ‘+' (plus) with ‘-' (minus) .
output = output.replace('+', '-")

Swap ‘/' (slash) with ' ' (underscore).

output = output.replace('/’,)
Remove the padding ‘=' (equal) .
output = output.replace('=", '')

Remove line breaks and other whitespace.
return output.join((output.split()))

To decode a baseé4url string back into an array of binary octets:

import operator, base64

139

def base6d4url decode(string):
Converts the string into the standard base64 format, and
then uses the standard method to convert the string.

Swap ‘-' (minus) with ‘+' (plus).
string string.replace('=-", '"+');

Swap ' ' (underscore) with ‘/' (slash).
string string.replace (' ', '/');

Determine whether padding should append to the string.
if operator.mod(len(string), 4) == 3:
string = str.join(string, "=")
elif operator.mod(len(string), 4) == 2:
string = str.join(string, "==")
Finally, convert the string using a standard base64 decoder.
return base64.bb6d4dencode (string)

As per the example code above, the number of '=' padding characters that needs to be added to the end of a base6é4url
encoded string without padding to turn it into one with padding is a deterministic function of the length of the encoded

string. Specifically, if the length mod 4 is o, no padding is added; if the length mod 4 is 2, two '=' padding characters are
added; if the length mod 4 is 3, one '=' padding character is added; if the length mod 4 is 1, the input is malformed.

The following octet sequence, expressed in hexadecimal form:

0x03ecffelcl

Results in the following string after being converted into the baseé4url format:

A-z 4ME

MULTIPRECISION INTEGERS

Multiprecision integers (also called MPIs) are unsigned integers used to hold large integers such as the ones used in

cryptographic calculations.

An MPI consists of two pieces: a two-octet scalar that is the length of the MPI in bits followed by a string of octets that

contain the actual integer.

These octets form a big-endian number; a big-endian number can be made into an MPI by prefixing it with the

appropriate length.
Examples (all numbers are in hexadecimal):
The string of octets [0o 01 01] forms an MPI with the value 1. The string [00 09 01 FF] forms an MPI with the value of 511.

Additional rules:

140

The size of an MPI is ((MPl.length + 7) / 8) + 2 octets.

The length field of an MPI describes the length starting from its most significant non-zero bit. Thus, the MPI [00 02 01] is
not formed correctly. It should be [00 01 01].

Unused bits of an MPI MUST be zero.

Also note that when an MPI is encrypted, the length refers to the plaintext MPI. It may be ill-formed in its ciphertext.

RADIX-64 CONVERSIONS

As stated in the introduction, OpenPGP's underlying native representation for objects is a stream of arbitrary octets, and
some systems desire these objects to be immune to damage caused by character set translation, data conversions, etc.

In principle, any printable encoding scheme that met the requirements of the unsafe channel would suffice, since it
would not change the underlying binary bit streams of the native OpenPGP data structures. The OpenPGP standard
specifies one such printable encoding scheme to ensure interoperability.

OpenPGP's Radix-64 encoding is composed of two parts: a base64 encoding of the binary data and a checksum. The
base64 encoding is identical to the MIME base64 content-transfer-encoding [RFC2045].

The checksum is a 24-bit Cyclic Redundancy Check (CRC) converted to four characters of radix-64 encoding by the same
MIME baseé4 transformation, preceded by an equal sign (=). The CRC is computed by using the generator 0x864CFB and
an initialization of 0xB704CE. The accumulation is done on the data before it is converted to radix-64, rather than on the
converted data. A sample implementation of this algorithm is in the next section.

The checksum with its leading equal sign MAY appear on the first line after the base64 encoded data.

Rationale for CRC-24: The size of 24 bits fits evenly into printable base64. The nonzero initialization can detect more
errors than a zero initialization.

An Implementation of the CRC-24 in "C"

#define CRC24_INIT 0xB704CEL

#define CRC24 POLY O0x1864CFBL

typedef long crc24;

crc24 crc_octets (unsigned char *octets, size t len)

{
crc24 crc = CRC24 INIT;

int 1i;

while (len--) {
crc = (*octets++) << 16;
for (1 = 0; 1 < 8; 1i++) {

crc <<= 1;
if (crc & 0x1000000) crc ~= CRC24 POLY;
}

}
return crc & OXFFFFFFL;

141

ENCODING BINARY IN RADIX-64

The encoding process represents 24-bit groups of input bits as output strings of 4 encoded characters. Proceeding from
left to right, a 24-bit input group is formed by concatenating three 8-bit input groups. These 24 bits are then treated as
four concatenated 6-bit groups, each of which is translated into a single digit in the Radix-64 alphabet. When encoding a
bit stream with the Radix-64 encoding, the bit stream must be presumed to be ordered with the most significant bit first.
That is, the first bit in the stream will be the high-order bit in the first 8-bit octet, and the eighth bit will be the low-order
bit in the first 8-bit octet, and so on.

+--first octet--+-second octet--+--third octet--+
|7 6 5 4 3 2 1 0|7 6 5 4 3 2 1 0|7 6 5 4 3 2 1 0]

/5 4 3 2 1 0|5 4 3 2 1 0|5 4 3 2 1 0|5 4 3 2 1 0]
+--1.index--+--2.index--+--3.index--+--4.index--+

Each 6-bit group is used as an index into an array of 64 printable characters from the table below. The character
referenced by the index is placed in the output string.

Value Encoding Value Encoding Value Encoding Value Encoding
0 A 17 R 34 i 51 z
1 B 18 S 35 3 52 0
2 C 19 T 36 k 53 1
3 D 20 U 37 1 54 2
4 E 21 Vv 38 m 55 3
5 F 22 W 39 n 56 4
6 G 23 X 40 o 57 5
7 H 24 Y 41 p 58 6
8 I 25 7 42 g 59 7
9 J 26 a 43 r 60 8

10 K 27 Db 44 s 61 9
11 L 28 c¢ 45 t 62 +
12 M 29 d 46 u 63 /
13 N 30 e 47 v
14 O 31 £ 48 w (pad) =
15 P 32 g 49 x
16 O 33 h 50 vy

The encoded output stream must be represented in lines of no more than 76 characters each.

Special processing is performed if fewer than 24 bits are available at the end of the data being encoded. There are three
possibilities:

1. The last data group has 24 bits (3 octets). No special processing is needed.

142

2. Thelast data group has 16 bits (2 octets). The first two 6-bit groups are processed as above. The third
(incomplete) data group has two zero-value bits added to it, and is processed as above. A pad character (=) is
added to the output.

3. The last data group has 8 bits (1 octet). The first 6-bit group is processed as above. The second (incomplete) data
group has four zero-value bits added to it, and is processed as above. Two pad characters (=) are added to the
output.

DECODING RADIX-64

In Radix-64 data, characters other than those in the table, line breaks, and other white space probably indicate a
transmission error, about which a warning message or even a message rejection might be appropriate under some
circumstances. Decoding software must ignore all white space.

Because it is used only for padding at the end of the data, the occurrence of any "=" characters may be taken as
evidence that the end of the data has been reached (without truncation in transit). No such assurance is possible,
however, when the number of octets transmitted was a multiple of three and no "=" characters are present.

EDDSA POINT FORMAT

The EADSA algorithm defines a specific point compression format. To indicate the use of this compression format and to
make sure the key can be represented in the Multiprecision Integer (MPI) format of [RFC4880] the octet string specifying
the point is prefixed with the octet ox40. This encoding is an extension of the encoding given in [RFC6637] which uses
0x04 to indicate an uncompressed point.

For example, the length of a public key for the curve Ed2s519 is 263 bit: 7 bit to represent the ox40 prefix octet and 32

octets for the native value of the public key.

TEST VECTORS

To help implementing this specification a non-normative example is given.

‘SAN\PLE KEY

The secret key used for this example is (which holds K and Q):

Kprv: 0x1a8blff05ded48el8bf50166c664ab023ea70003d78d9e41£5758a91d850£8d2
Qpub: 0x3£f098994bdd916ed4053197934e4a87c80733a1280d62£8010992e43ee3b2406

The public key encoded in the MPI format is:

Ompi: 0x0107403£098994bdd916ed4053197934e4a87c80733a1280d62£8010992e43ee3
b2406

143

SIGNATURE ENCODING

The MPIs representing the R and S value are encoded as MPIs. Note the compressed version of R and S as specified for
EdDSA ([ED25519]) were used.

The signature below was created using this sample key:

d: 0xf6220a3f757814£f4c2176ffbb68b00249cd4ccdc059c4b34ad871£30b1740280

The EADSA signature function and yields this signature:

R: 56£90cca%98e2102637bd983£fdbl16c131dfd27ed82bf4dde5606e0d756aed3366
S: d09c4£fall527£038e0£57£2201d82£2ea2c9033265fa6ceb489e854bae6lbd404

The MPI encoding rules require a prefix octet of oxoo, which yield a signature value of:

Smpi: 0x010056£90ccaf98e2102637bd983fdbl6cl31dfd27ed82bf4ddde5606e0d756aed
33660100d09¢c4£all1527£f038e0£57£2201d82£2ea2c9033265fabcebd489e854bae
61b404

144

APPENDIX C: WHAT NEEDS DOING

Short Authenticating String section
Consolidate the language on signing and encryption key encoding in the signet specification.

Possibly reorganize the field types into: fixed, var(x) (aka variable length value), and var(1)/var(2) (aka variable length
name and variable length value, aka undefined fields).

The different types of textual informational fields. Literals, semicolon delimited and identifier colon value fields.

Figure out if any additional rules need to be supplied for the identifier field beyond using utf-8 in Normalization Form C.
Provide a list of valid error codes for the DMTP commands.

Create the ABNF.

Consolidate the various encodings into its own chapter, so the information can be provided once. This means providing id
strings and details for the PEM format, and then write up the translation rules for the JSON forms.

Write up the details for the optional pipelining and binary DMTP extensions.
Figure out if we should use radix-64 for everything, or stick with modified base64 (b64 w/o padding). Also consider Z8s.

Finish describing the d/mime format. This means chunk descriptions. Tree and bounce signature descriptions are

important, and figure out if we want to create a structure chunk in the meta section.

Finish writing the details for aux/alt encryption chunks. Make it clear that aux/alt must not be used on envelope, meta,
or signature chunks.

Create a section on how private keys should encoded, encrypted and then stored.

Consolidate and formalize the signet validation rules into a checklist/binary decision tree. Including the rules regarding a
primary, plus pre-authenticated source for automated trust acceptance. Guidelines for handling single source signets
based on the different account mode. Cover the rules for validating a signet structure, independent of the content.
Ensuring no reserved fields identifiers have been used. That all of the defined fields appear in numerical order. Then
cover the required content validation rules. Check the text informational fields to ensure they only contain valid utf-8
codepoints. Ensure the encryption keys represent valid points on the signing or encryption curves. Rules for validating
the chain of custody. Rules for the identity field comparisons when retrieving a signet. Trimming excessively long text
fields.

Add details on compressing/decompressing Ed25519 public signing keys.

Provide a standardized list of properties for signet fields, something like: Identifier (type number), Label, Disposition,
Type (binary or text), Format (applicable to text fields only, with the values: literal, semicolon delimited values, identified

value pairs, and semicolon delimited identified value pairs), Length Limit, Reqular Expression Validator (applicable to text

145

fields only), Validation Policy (trim, ignore, invalidate info fields only, invalidate entire signet), History (Defined by

Revision 1, Updated by Revision 2).
Provide a standardized list of properties for message chunks.

For org signets, the services field doesn’t define a list of recognizable identifiers, nor does it cite one. No
comprehensive/IANA/standards body list of SRV identifiers currently exists, although IANA does provide a protocol

service name registry.

The supported codecs list needs a collection of defined identifiers, for example, GIF, JPG, BPG, TIFF, BMP, vector formats,
SVG, SVGZ, audio codecs/containers, MP3, WAV, AAC, WMA, FLAC, and video codecs/containers, AVI, MP4, 3GP, FLV,
MKV, WMV, DIVX, WEBM/

146

Network Working Group L. Levison
Internet-Draft Lavabit LLC
Intended status: Experimental May 18, 2018
Expires: November 19, 2018

Safely Turn Authentication Credentials Into Entropy (STACIE)
draft-ladar-stacie-04

Abstract

This document specifies a method for Safely Turning Authentication
Credentials Into Entropy (STACIE) using an efficient Zero Knowledge
Password Proof (ZKPP), and is provided as a standalone component
suitable for use as a building block in other protocol development
efforts. The scheme was created to fill the emerging need for a
standard which allows a single low entropy password to be used for
user authentication and the derivation of strong encryption keys.

The design is modular, and is conservative in its use of an arbitrary
one-way cryptographic hash function. The security of the scheme
depends on the difficulty associated with reversing the hash function
output back into the plain text input. STACIE attempts to make
discovering the plain text input through the use of brute force more
difficult by correlating the amount of processing to the length of a
user's plain text password. The shorter the plain text password, the
more processing is required, with the amount of additional,
artificially required, work scaling exponentially for each character.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on November 19, 2018.

Levison Expires November 19, 2018 [Page 1]

Interne

Copyrig

t-Draft stacie

ht Notice

May 2018

Copyright (c) 2018 IETF Trust and the persons identified as the

docu

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents

ment authors. All rights reserved.

(http://trustee.ietf.org/license-info) in effect on the date of

publ

ication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect
his document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as

to t

described in the Simplified BSD License.

Table o

A WNBR
A BADD

(&)
(A)I\JHUJO)‘.HJ}\I\IOO\I\II\JI—"U(DNI—\'UI\JHI'I'Im-b(ADI\J

~N N

0 0

Levison

f Contents

Introduction
Terminology
Encodings
Derivation Process

.1. Hash Rounds

Entropy Extraction

Key Derivation

Token Derivation

Realm Key Derivation
ncryptlon

Envelope

Payload

assword Changes

Shallow Password Change
Deep Password Change
Hybrid Password Change
rotocol . .o .
Create User

Login .

.1. Login Request

.2. Login Response
Password Authentication
.1. Authenticate Request
.2. Authenticate Response
Password Change

Fetch Realm Shards

Add a Realm Shard
ecurlty Considerations
Servers

Clients

Shared

NN

w w

Expires November 19, 2018

O~NBbBMbhW

12

14
17
17
18
21
21
22
22
22
22
23
23
24
26
26
27
28
28
28
28
29
29
29

[Page 2]

Internet-Draft stacie May 2018

9. IANA Considerations + « v v v v v v v v v v e e .. 30
10. Feedback o o v e e e e e e e w30
11. Acknowledgments 4 30
12. Normative References « + v v v v v v v v v v .. 3
Appendix A. Test Vectors+ 33

A.l. Inputs« + + + + + v v+ 4w v e e ... 383

A.2., Outputs« o w34
Author's Address v v v v e e e e e e e .. 34

1. Introduction

A number of emerging client/server protocols are currently being
developed which rely on endpoint encryption schemes for protection
against server compromises and pervasive surveillance efforts. All
of these protocols share a common need for the ability to
authenticate users based on their account password, without having to
share a plain text password with the server. While several proposals
have emerged which rely on a Zero Knowledge Password Proof (ZKPP),
none of them provide a standardized method for deriving a symmetric
encryption key suitable for use with Authenticated Encryption with
Associated Data (AEAD) ciphers using the same user password.

This specification describes a standalone scheme which solves these
problems by Safely Turning Authentication Credentials Into Entropy
(STACIE). Unlike previous efforts, STACIE can uniquely provide a
configurable level of resistance against off-line brute force attacks
aimed at recovering the original plain text password, or the derived
encryption keys. Client side key stretching ensures attackers
capable of eavesdropping on connections protected by Transport Layer
Security (TLS), or with access to the authentication database on the
server, will be unable to derive a user's password or their symmetric
encryption keys.

STACIE is intended for use as a standalone component in other client/
server protocol and application development efforts. While the
protocol examples provided below are simplified, the abstract
mechanism should easily translate into other encapsulation and
encoding formats. Likewise, STACIE has been designed in a modular
fashion, making it capable of using any arbitrary, but suitably
strong, one-way cryptographic hash function. To ensure
interoperability among different implementations, the Secure Hash
Algorithm (SHA2-512) [SHS] MUST be implemented, while support for the
newer Secure Hash Algorithm (SHA3-512) [PBH] and the Skein hash
function (Skein-512) [SKEIN], are OPTIONAL.

For improved security, STACIE has been designed to provide extension

points making it possible for specifications to extend the scheme
with support for alternate authentication factors. The goal of this

Levison Expires November 19, 2018 [Page 3]

Internet-Draft stacie May 2018

specification is to accommodate a large variety of security
requirements, while remaining conservative in its assumptions and its
use of any particular cryptographic primitives.

To accommodate the unpredictable pace of improvements in computer
hardware and processing power, STACIE includes a mechanism which
allows system operators to increase the difficulty level and
processing required by clients for key derivation beyond what is
mandated by this specification.

The purpose of this document is to discourage the proliferation of
multiple schemes for use by the variety of protocols currently in
development which need to safely derive a symmetric encryption key,
and authenticate a user with the server using a single low entropy
password. While STACIE introduces strategies designed to strengthen
key material against a variety of recently revealed threats, and
provides a measure of protection associated with deficiencies in the
randomness of human input, it is not intended as a call to change or
update existing protocols and specifications.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in RFC
2119 [KEYWORDS] when, and only when, they appear in all capitals, as
described by RFC 8174 [CAPITALIZATION].

3. Encodings

This document represents all of the request and responses using
standard JavaScript Object Notation [JSON]. When an object value is
text, the native UTF-8 representation is supplied. Otherwise the
value is armored using the base64 encoding scheme defined in RFC 4648
[BASE], with the URL and filename safe character set defined in
Section 5, and assigned the identifier "base64url." In addition to
the standard base64url conversion, all trailing pad characters, line
breaks, white space, and other non-printable control characters MUST
be removed, as permitted by Section 3.2. [BASE] For the examples in
this document, line breaks only appear when the sample value exceeds
the available space.

4. Derivation Process
STACIE employs a multistage process which includes an extraction
stage, two key derivation stages, and two token derivation stages.

The stages MUST progress in a linear order because the output for
each stage is used as an input for the subsequent stage. The

Levison Expires November 19, 2018 [Page 4]

Internet-Draft stacie May 2018

extraction and key derivation stages require a user's plain text
password, while the token derivation stages do not. This allows the
derived tokens to be used for authentication, because they can be
generated and verified by a server without access to the plain text
password.

Implementations MUST never store a user's plain text password.
Client implementations which need the ability to authenticate and
access encrypted user data without user input MUST store the
verification token, and the individual realm hash. These values
provide the ability to authenticate with a server, and access the
realm specific encryption keys without additional user input. By
storing just these values, an implementation ensures a user's plain
text password is still REQUIRED to alter account credentials. This
allows a user to recover from an endpoint compromise by updating
their password, allowing for a point in time recovery.

Client implementations with support for automatic login capabilities
on platforms which provide a secure storage facility SHOULD make use
of this capability to protect the verification token, and realm
hashes.

Required Inputs
The derivation process requires the following inputs:

username
The normalized username.

password
The plain text user password.

Optional Inputs

salt
An additional non-secret, per-site, or per-user source of random
entropy. The salt value ensures output independence and provides
protection against computational reuse and precomputed table
lookups. Salt values MUST provide a minimum of 64 octets, and
SHOULD be less than 1,024 octets, with 128 octets the RECOMMENDED
length. Salt values SHOULD be aligned along a 32 octet boundary.

nonce
An array of randomly generated octets created by a server for each
login attempt, which MUST be combined with the verification token
to derive the ephemeral login token. The nonce value MUST be a
minimum of 64 octets, and SHOULD be less than 1,024 octets, with

Levison Expires November 19, 2018 [Page 5]

Internet-Draft stacie May 2018

128 octets the RECOMMENDED length. Nonce values SHOULD be aligned
along a 32 octet boundary.

bonus
The fixed number of additional iterations added to the iteration
count calculated dynamically based the password's length.

Qutputs

rounds
The REQUIRED number of hash rounds used for the extraction and key
derivation stages.

master_key
The key value REQUIRED for deriving realm keys, and used to derive
the password key.

password_key
The second key derivation output, and REQUIRED for deriving the
verification token. The password is also used to authenticate
password updates.

verification_token
The persistent token stored on a server during account creation,
or following a password update and then used to authenticate
ephemeral login tokens in the future.

ephemeral_login_token
The ephemeral token value which proves knowledge of the
verification token for a singular login attempt, and is REQUIRED
to authenticate a session or connection.

Example
The following code, written in Python, demonstrates how to derive the

various outputs by calling the example functions provided in
subsequent sections:

Levison Expires November 19, 2018 [Page 6]

Internet-Draft stacie May 2018

Derive the Rounds
rounds = RoundsDerivation(password, bonus)

Extract the Seed
seed = SeedDerivation(rounds, username, password, salt)

Keys

master_key = KeyDerivation(seed, rounds, username, password, \
salt)

password_key = KeyDerivation(master_key, rounds, username, \
password, salt)

Tokens

verification_token = TokenDerivation(password_key, username, \
salt)

ephemeral_login_token = TokenDerivation(verification_token, \
username, salt, nonce)

Derive the Realm Key
realm_key = RealmKeyDerivation(master_key, label, shard, salt)

Extract the Cipher and Vector Keys

vector_key = RealmVectorKeyExtraction(realm_key)
tag_key = RealmTagKeyExtraction(realm_key)
cipher_key = RealmCipherKeyExtraction(realm_key)

Encryption and Decryption

encrypted_data = RealmEncrypt(vector_key, tag_key, cipher_key, \
secret_message)

decrypted_data = RealmDecrypt(vector_key, tag_key, cipher_key, \
encrypted_data)

4.1. Hash Rounds

To improve the security of short passwords, STACIE requires client
implementations to calculate the appropriate number of iterations, or
"rounds" used for string concatenation during the seed stage and the
number hash rounds REQUIRED during the key derivation stages. The
rounds variable is based on the number of characters, with short
passwords requiring more rounds than long passwords. The variable
number of rounds was designed to make systematically checking all of
the possible plain text inputs more expensive in the event any of the
derived tokens are compromised. It does not inherently provide
security for predictable passwords which might be easily guessed.

To ensure the formula used to calculate the number of rounds, and the
required processing remains effective against brute force attacks in

Levison Expires November 19, 2018 [Page 7]

Internet-Draft stacie May 2018

the future, a fixed number of "bonus" rounds MAY be added beyond what
is required. The number of bonus rounds is dictated by the server
configuration and MUST be added to the number calculated based on
length. The bonus variable is primarily intended to offset
improvements in computer performance in the future, for
implementations which rely on hash algorithm after they've been
deprecated.

When calculating the number of dynamic hash rounds clients MUST first
determine the number of Unicode "characters" in a password, which is
distinct from the number of octets. Many character encodings, such
as UTF-8 use a variable number of octets per character, and the
number of octets MAY change based on the input method editor. For
consistency, the password MUST be converted into the UTF-8 encoding,
and the number of Unicode characters determined. Because UTF-8 is
capable of representing the same hashed characters using multiple
octets, and using different binary values based on the normalization
form, it is critical that the length used for this calculation is
always based on the number of Unicode characters. This will ensure
the number of rounds remains deterministic.

To determine the number of rounds, a client MUST subtract the number
of Unicode characters from the constant value 24. If the result is
negative, the value 1 MUST be used. The result of this calculation
is used as a "dynamic" exponent, which is raised using the base 2,
and the result is the '"variable" number of rounds. The "bonus"
rounds MUST be added to the "variable" number to derive the total
number of rounds.

If the combined value of the dynamic and bonus values is less than 8,
the value 8 MUST be used. Alternatively, if the value exceeds
16,777,216 the value MUST be reduced to this maximum value. The
maximum value corresponds to the limit imposed by the use of the 3
octet counter employed during the entropy extraction and key
derivation stages.

Token derivation employs a fixed, 8 rounds, to avoid leaking
information about the password length.

Example

The following Python code demonstrates the proper method for deriving
the number of rounds:

Levison Expires November 19, 2018 [Page 8]

Internet-Draft stacie May 2018

def RoundsDerivation(password, bonus):
Accepts a user password and bonus value, and calculates
the number of iterative rounds required. This function will
always return a value between 8 and 16,777,216.

Identify the number of Unicode characters.
characters = len(password.decode("utf-8"))

Calculate the difficulty exponent by subtracting 1
for each Unicode character in a password.
dynamic = operator.sub(24, characters)

Use a minimum exponent value of 1 for passwords
equal to, or greater than, 24 characters.
dynamic = max(1, dynamic)

Derive the variable number of rounds based on the length.
Raise 2 using the dynamic exponent determined above.
variable = pow(2, dynamic)

If applicable, add the fixed number of bonus rounds.
total = operator.add(variable, bonus)

If the value of rounds is smaller than 8, reset
the value to 8.
total = max(8, total)

If the value of rounds is larger than 16,777,216, reset
the value to 16,777,216.
total = min(pow(2, 24), total)

return total

4.2. Entropy Extraction

STACIE starts by deriving a fixed-length pseudorandom seed value
which is "extracted" by "concentrating" the low-entropy user password
into a short, but cryptographically strong pseudorandom value.

Future extensions which incorporate a second authentication source
that results in a quality pseudorandom value for the seed value may
find this stage unnecessary.

Unlike the key and token derivation stages, the entropy extraction
stage uses the Hashed Message Authentication Code [HMAC] algorithm,
which is also defined by National Institute of Standards and
Technology (NIST) as a Federal Information Processing Standard (FIPS)

Levison Expires November 19, 2018 [Page 9]

Internet-Draft stacie May 2018

[HMAC-FIPS]. Test vectors based on SHA2-512 are available
[HMAC-SHA].

Implementations supporting the OPTIONAL SHA3-512 or Skein-512 hash
functions MUST use an HMAC implementation bsaed on the appropriate
SHA3-512 or Skein-512. Implementations SHOULD NOT use the Skein-MAC
alternative described by the Skein paper [SKEIN]. Future STACIE
extensions MAY provide alternative methods for seed extraction.

Unlike a simple hash, HMAC requires a 128 octet key value. The key
value for the entropy extraction stage is derived from the salt
value. If no salt value is available the username MUST be hashed and
used as a substitute for the salt value. If the provided salt value
is precisely 128 octets, then it MUST be used as the HMAC key.

When the provided salt is not 128 octets, then a key MUST be derived
using an appropriate hash function, which provides a 128 octet value
by digesting the salt value concatenated together with a counter
variable. The process is performed twice, with the counter variable
set to the values 0 and 1, respectively. The counter is digested as
a 3 octet big endian integer value. The two hash digest output
values MUST be concatenated to form the 128 octet HMAC key value.

The HMAC primitive also requires a "message" which is created using
the plain text password, which MUST be provided to the HMAC primitive
repeatedly, with the precise number of repetitions dictated by the
"rounds" variable. The digest produced by the HMAC function becomes
the 64 octet seed value used for the master key derivation stage.

Example

The following Python code demonstrates the proper method for
extracting the entropy seed value:

Levison Expires November 19, 2018 [Page 10]

Internet-Draft stacie May 2018

def SeedDerivation(rounds, username, password, salt=None):
Concentrates and then extracts the random entropy provided
by the password into a seed value for the first hash stage.

If if an explicit salt value is missing, use a hash of
the username as if it were the salt.
if salt is None:

salt = SHA512.new(username).digest()

Confirm the supplied salt meets the minimum length of 64
octets required, is aligned to a 32 octet boundary and does not
exceed 1,024 octets. Some implementations may not handle salt
values longer than 1,024 octets properly.
elif len(salt) < 64:
raise ValueError("The salt, if supplied, must be at least " \
"64 octets in length.™")
elif operator.mod(len(salt), 32) != 0:
warnings.warn("The salt, if longer than 64 octets, should " \
"pbe aligned to a 32 octet boundary.")
elif len(salt) > 1024:
warnings.warn("The salt should not exceed 1,024 octets.")

For salt values which don't match the 128 octets required for
an HMAC key value, the salt is hashed twice using a 3 octet
counter value of 0 and 1, and the outputs are concatenated.
if len(salt) != 128:
key =\
SHA512.new(salt + struct.pack('>I', 0)[1:4]).digest() + \
SHA512.new(salt + struct.pack('>I', 1)[1:4]).digest()
If the supplied salt is 128 octets use it directly as the
key value.
else:
key = salt

Initialize the HMAC instance using the key created above.
hmac = HMAC(key, None, SHA512)

Repeat the plain text password successively based on
the number of instances specified by the rounds variable.
for unused in range(©, rounds):

hmac .update(password)

Create the 64 octet seed value.
seed = hmac.digest()

return seed

Levison Expires November 19, 2018 [Page 11]

Internet-Draft stacie May 2018

4.3. Key Derivation

There are two successive key derivation stages. The master key is
first, and requires the extracted seed value derived in the previous
stage, along with the calculated number of rounds, the username,
password, and if available, the salt value. The master key MUST be
kept private. It provides the secret material needed to derive the
realm specific subkeys used to encrypt data on the client.

The second key derivation stage provides the password key. It uses
an identical process as the master key stage, with the exception of
the seed value being replaced by the master key value derived in the
first stage. The password key MUST be kept private until it comes
time for a user to update their password. Password updates require
sharing the password key with a server, which can then confirm the
value translates into the current verification token, before updating
the values stored in the authentication database. This ensures a
that a compromised authentication database can't be used by an
attacker to alter user passwords.

Each key derivation stage repeats the hash process by the variable
number of iterations dictated by the rounds variable. Assuming the
hash function remains securely one-way, this strategy ensures key
derivation requires a linear computational process. The amount of
processing time is a product of the difficulty imposed by the rounds
variable and a client's computational performance. The linear nature
of the process means the time required for individual rounds MAY be
shortened but the rounds MUST NOT be processed in parallel.

Hash values are generated by concatenating the input seed (or master
key value) together with the with the username, salt, password and
counter value. Successive rounds repeat the process, using an
incremented counter value, and include the output of the previous
round prepended to the input. The counter value MUST be digested as
a 3 octet big endian integer value, and represents a 0 based value
corresponding to the current round.

Example
The following Python code demonstrates the proper method for key

derivation, with the seed value either the extracted seed, or the
master key, depending on the stage:

Levison Expires November 19, 2018 [Page 12]

Internet-Draft stacie May 2018

def KeyDerivation(seed, rounds, username, password, salt=""):
Hash the input values together using the input values, and
repeat the process, with the number of iterations dictated by
the rounds variable.

count = 0
hashed = ""

while count < rounds:
hashed = SHA512.new(hashed + seed + username + salt + \
password + struct.pack('>I', count)[1:4]).digest()
count = operator.add(count, 1)

The last digest output is returned as the key value.
return hashed

4.4, Token Derivation

The token derivation process is distinct from the key derivation
process because it is repeatable without knowing a user's password.
The password key is combined with other inputs to derive the
verification token, and the verification token is then shared with
the server, which can use it to authenticate future login attempts.
To prevent replay attacks, the verification token is combined with a
nonce value, and using the same token derivation process, a unique
ephemeral login token is generated for each session or connection.

Like the key derivation stages defined above, the seed value in the
sample code below represents the output from the previous stage,
which is either the password key or the verification token. This
value is concatenated together with the salt value, if applicable,
and a nonce value (when deriving the ephemeral token). A counter
value is also appended, with the value representing a 3 octet big
endian integer value, and corresponding to a @ based count of the
current round. The output for each round is prepended to the input
of successive rounds, with a fixed 8 rounds performed during each
token derivation stage.

__Example__hashed
The following Python code demonstrates the proper method for token

derivation, with the seed value either the password key, or the
verificiation token, depending on the stage:

Levison Expires November 19, 2018 [Page 13]

Internet-Draft stacie May 2018

def TokenDerivation(seed, username, salt="", nonce=""):
Hash the input values together using the input values, and
repeat the process eight times.

count = 0
rounds
hashed

8

Confirm the nonce, if it was provided, meets the minimum
length of 64 octets, does not exceed 1,024 octets, and is
aligned along a 32 octet boundary. Implementations may not
handle nonce values larger than 1,024 octets properly.
if len(nonce) > 0 and len(nonce) < 64:
raise ValueError("Nonce values must be at least " \
"64 octets in length.™")
elif operator.mod(len(nonce), 32) != 0:
warnings.warn("The nonce value, if longer than 64 octets, " \
"should be aligned to a 32 octet boundary.")
elif len(nonce) > 1024:
warnings.warn("The nonce should not exceed 1,024 octets.")

while count < rounds:
hashed = SHA512.new(hashed + seed + username + salt + \
nonce + struct.pack('>I', count)[1:4]).digest()
count = operator.add(count, 1)

return hashed

4.5. Realm Key Derivation

Realm specific keys are used to access and authenticate symmetrically
encrypted user data. The realm label specifies the category and/or
type of data protected by a given realm key. Protocols which
incorporate STACIE MAY use a single realm, or separate data into
different realms based on the data type. Every realm is protected by
a unique encryption key. The realms are isolated to allow separable
handling, and isolation, such that if one realm key is compromised,
it is possible for the remaining realms to remain secure, provided
the master key was not compromised, or the attacker is unable to gain
access to the shard values for other realms.

The shard value is a randomly generated string of 64 octets, provided
after successful authentication, which allows a client to derive a
realm key. Because the shard is stored on the server, an endpoint
compromise won't yield the necessary information to decrypt any
locally stored data, after the user updates their credentials. This

Levison Expires November 19, 2018 [Page 14]

Internet-Draft stacie May 2018

will mitigate the damage that would occur when a device with cached
data is lost or stolen.

The unique key for a realm is derived by concatenating, then hashing
the master key, realm label, and salt. The resulting digest is then
combined with a realm shard value using the bitwise exclusive "or"
operation. The result is a "realm key" which contains the
concatenated vector key, tag key, and cipher key values. The vector
key is comprised of the first 16 octets, the tag key is protected by
the subsequent 16 octets, and the cipher key is comprised of the
final 32 octets.

Required Inputs

The master key, as previously described, is combined with the
following required inputs:

label
The realm label, a predefined lowercase string describing the
category and/or type of data.

The salt is only required if a salt value was used to derive the
master key:

salt An additional non-secret, per-site, or per-user source of
random entropy. The salt value increases the unpredictability of
the output. Salt values MUST provide a minimum of 64 octets, and
SHOULD be less than 1,024 octets, with 128 octets the RECOMMENDED
length. Salt values SHOULD be aligned along a 32 octet boundary.

Qutputs
realm_key
The realm specific key distilled from the provided inputs, and is
the combination of the vector, tag and cipher key values.
vector_key
The key used to unlock the initialization vectors for a given
realm.

tag_key
The key used to unlock the authentication tags for a given realm.

cipher_key
The key used by the symmetric cipher to decrypt user data
associated with a given realm.

Example

Levison Expires November 19, 2018 [Page 15]

Internet-Draft stacie May 2018

The following Python code demonstrates how to derive and then
separate the keys for a given realm:

def RealmKeyDerivation(master_key, label="", shard="", salt=""):

if len(label) < 1:

raise ValueError("The realm label is missing or invalid.")
elif len(shard) !'= 64:

raise ValueError("The shard length is not 64 octets.")
elif len(master_key) !'= 64:

raise ValueError("The master key length is not 64 octets.")

The salt value is optional, but if supplied, must be a minimum
of 64 octets in length, and no more than 1,024 octets in
length. It should be aligned to a 32 octet boundary. Some
implementations may not handle salt values longer than 1,024
octets properly.
elif len(salt) != 0 and len(salt) < 64:
raise ValueError("The salt, if supplied, must be at least " \
"64 octets in length.")
elif len(salt) != 0 and operator.mod(len(salt), 32) != 0:
warnings.warn("The salt, if longer than 64 octets, should " \
"be aligned to a 32 octet boundary.")
elif len(salt) > 1024:
warnings.warn("The salt should not exceed 1,024 octets."

H*H HHH

realm_hash = SHA512.new(master_key + label + salt).digest()

realm_key = str().join(chr(operator.xor(ord(a), ord(b))) \
for a,b in zip(realm_hash, shard))

return realm_key

def RealmVectorKeyExtraction(realm_key):
vector_key = realm_key[0:16]

return vector_key

def RealmTagKeyExtraction(realm_key):
tag_key = realm_key[16:32]

return tag_key

def RealmCipherKeyExtraction(realm_key):
cipher_key = realm_key[32:64]

return cipher_key

Levison Expires November 19, 2018 [Page 16]

Internet-Draft stacie May 2018

5.

5.

Encryption

STACIE requires client implementations to support the Advanced
Encryption Standard [AES] using 256 bit key values. To ensure data
integrity, and protect against manipulation by a malicious server,
AES MUST be employed using the Galois Counter Mode [GCM]. The binary
format specifies a 34 octet envelope, followed by a payload aligned
to a 16 octet boundary. The payload includes a 4 octet prefix, and a
variable amount of padding appended as a suffix for alignment
purposes.

1. Envelope

Symmetrically encrypted buffers are preceeded by an envelope,
consisting of the realm serial number, the initialization vector
shard, and the authentication tag shard. The serial number is a 2
octet big endian integer corresponding to the realm key used to
derive the key values associated with a given buffer. It is possible
for a realm to have buffers encrypted using different serial numbers.
The number MAY be increased when users update their password. The
serial number is followed by a 16 octet initialization vector shard,
which MUST be randomly generated whenever data is encrypted. The
vector shard is combined with the vector key using a bitwise
exclusive "or" operation to produce the initjialization vector used
for a given cipher text. The final envelope value is a 16 octet tag
shard, which like the vector shard, MUST be combined with the tag key
using a bitwise exclusive "or" operation to produce the
authentication tag for a given cipher text.

Envelope Parameters

serial
The serial number is a 2 octet big endian integer which delineates
which shard value for a given realm MUST be used to derive the
realm key.

vector_shard
The randomly generated 16 octet value generated during encryption,
and then combined with the vector key to using a bitwise exclusive
"or" operation. The result is the initialization vector for a
given cipher text.

tag_shard
A 16 octet authentication tag is created during the encryption
process, and then combined with the tag key using a bitwise
exclusive "or" operation to create the tag shard. To produce the
authentication tag for a cipher text, the tag key MUST be combined

Levison Expires November 19, 2018 [Page 17]

Internet-Draft stacie May 2018

with the tag shard using to another bitwise exclusive "or"
operation when the buffer is decrypted.

5.2. Payload

The envelope data is immediately followed by the encrypted payload,
which consists of the encrypted plain text value, a 4 octet prefix,
and up to 255 octets of padding appended after the plain text. The
entire encrypted/decrypted payload, including the prefix and suffix,
MUST align to a 16 octet boundary. The prefix begins with a 3 octet
big endian integer which denotes the length of the plain text value,
and is is followed by a single octet pad value. The pad value
indicates how many additional octets have been appended to the plain
text value tO align the payload to the 16 octet boundary. The amount
of padding MUST include the requisite 0 to 15 octets required to
align the payload, but MAY also include a random amount of OPTIONAL
padding in 16 octet increments. Specifically, the pad value MAY
include an additional 16, 32, 48, 64, 80, 96, 112, 128, 144, 160,
178, 192, 208, 224, or 240 octets beyond those required for
alignment. The padding octets appended after the plain text value,
or suffix, MUST match the value of the padding octet in the prefix.

size
The length of the plain text value represented as a 3 octet, big
endian integer.

pad
The amount of padding appended to the plain text value generated
16 octet value generated during encryption, and then combined with
the vector key to using a bitwise exclusive "or" operation. The
result is the initialization vector for a given cipher text.

buffer
A plain text value worthy of protection.

padding
Up to 255 octets of padding, with the padding octets all set to
the pad value.

Example

The following Python code demonstrates how to encrypt a plain text
value:

Levison Expires November 19, 2018 [Page 18]

Internet-Draft stacie May 2018

def RealmEncrypt(vector_key, tag_key, cipher_key, buffer, serial=0):
count = 0

if serial < 0 or serial >= pow(2, 16):
raise ValueError("Serial numbers must be greater than 0@ " \
"and less than 65,536.")
elif len(cipher_key) !'= 32:
raise ValueError("The encryption key must be 32 octets " \
"in length.")
elif len(vector_key) !'= 16:
raise ValueError("The vector key must be 16 octets in " \
"length.")
elif len(buffer) == 0:
raise ValueError("The secret being encrypted must be at " \
"least 1 octet in length.")
elif len(buffer) >= pow(2, 24):
raise ValueError("The secret being encrypted must be at " \
"less than 16,777,216 in length.")

vector_shard = get_random_bytes(16)

iv = str().join(chr(operator.xor(ord(a), ord(b))) \
for a,b in zip(vector_key, vector_shard))

size = len(buffer)
pad = (16 - operator.mod(size + 4, 16))

while count < pad:
buffer += struct.pack(">I", pad)[3:4]
count = operator.add(count, 1)

encryptor = Cipher(algorithms.AES(cipher_key), modes.GCM(iv), \
backend=default_backend()).encryptor()

ciphertext = encryptor.update(struct.pack(">I", size)[1:4] \
+ struct.pack(">I", pad)[3:4] + buffer) \
+ encryptor.finalize()

tag_shard = str().join(chr(operator.xor(ord(a), ord(b))) \
for a,b in zip(tag_key, encryptor.tag))

return struct.pack(">H", serial) + vector_shard + tag_shard \
+ ciphertext

The following Python code demonstrates how to decrypt and validate
the cipher text created by the encryption function above:

Levison Expires November 19, 2018 [Page 19]

Internet-Draft stacie May 2018

def RealmDecrypt(vector_key, tag_key, cipher_key, buffer):
count = 0

Sanity check the input values.
if len(cipher_key) !'= 32:
raise ValueError("The encryption key must be 32 octets in "\
" length.")
elif len(tag_key) != 16:
raise ValueError("The tag key must be 16 octets in length.")
elif len(vector_key) !'= 16:
raise ValueError("The vector key must be 16 octets in " \
"length.")
elif len(buffer) < 54:
raise ValueError("The minimum length of a correctly " \
"formatted cipher text is 54 octets.")
elif operator.mod(len(buffer) - 34, 16) != 0:
raise ValueError("The cipher text was not aligned to " \
"a 16 octet boundary or some of the data is missing.")

Parse the envelope.
vector_shard = buffer[2:18]
tag_shard = buffer[18:34]
ciphertext = buffer[34:]

Combine the shard and key values to get the iv and tag.
iv = str().join(chr(operator.xor(ord(a), ord(b))) \
for a,b in zip(vector_key, vector_shard))

tag = str().join(chr(operator.xor(ord(a), ord(b))) \
for a,b in zip(tag_key, tag_shard))

Decrypt the payload.
decryptor = Cipher(algorithms.AES(cipher_key), \

modes.GCM(iv, tag), backend=default_backend()).decryptor()
plaintext = decryptor.update(ciphertext) + decryptor.finalize()

Parse the prefix.

size = struct.unpack(">I", '\x00' + plaintext[0:3])[0]

pad = struct.unpack(">I", '\x00' + '\x00' + '"\x00' + \
plaintext[3:4])[0]

Validate the prefix values.

if operator.mod(size + pad + 4, 16) != 0 or \
len(plaintext) != size + pad + 4:
raise ValueError("The encrypted buffer is invalid.")

Confirm the suffix values.

Levison Expires November 19, 2018 [Page 20]

Internet-Draft stacie May 2018

for offset in xrange(size + 4, size + pad + 4, 1):
if struct.unpack(">I", '\x00' + '\x00' + '\x00' + \
plaintext[offset: offset + 1])[0] != pad:
raise ValueError("The encrypted buffer contained " \
an invalid padding value.")

Return just the plain text value.
return plaintext[4:size + 4]
6. Password Changes
6.1. Shallow Password Change
Required Inputs
The derivation process requires the following inputs:

new_master_key
The master key created using the new password.

new_salt
The salt value associated with the new password. Note this value
SHOULD be different following a password change.

realm_key
The realm specific key distilled using the previous password,
salt, and current shard value.

label
The realm label, a predefined lowercase string describing the
category and/or type of data.

Qutputs

realm_shard
A replacement shard value, which will result in the same realm key
being derived when combined with the new master key.

Example

The following code, written in Python, demonstrates how to derive a
new realm shard value during password changes:

Levison Expires November 19, 2018 [Page 21]

Internet-Draft

6.

6.

7.

7.

Levison

if len(new_master_key) !=
raise ValueError("The

elif len(new_salt) < 1:
raise ValueError("The

elif len(realm_key) != 64:

raise ValueError("The
elif len(label) < 1:
raise ValueError("The

stacie May 2018

def RealmShardRotation(new_master_key, new_salt, realm_key, label):

64:
master key is not 64 octets.")

salt is missing or invalid.")
previous realm key is not 64 octets.")

realm label is missing or invalid.")

realm_hash = SHA512.new(new_master_key + label + new_salt).digest()
realm_shard = str().join(chr(operator.xor(ord(a), ord(b))) \
for a,b in zip(realm_hash, realm_shard))

return realm_shard

2. Deep Password Change
3. Hybrid Password Change
Protocol

1. Create User

When the birds mate with the bees a new account is born.

Expires November 19, 2018 [Page 22]

Internet-Draft stacie May 2018

{ register:
{ username: "user-alias@example.tld" }

{ recruit:
{ username: "user-alias@example.tld",
salt: "Wb4vfzSpBpDRKafDlhhba3KhjIh09_4-IA122X0cal2z900QNdvNXFiRBM
qsyr4yb900mbDxBckHJzijGF7d1PEsrGwlGEb9YCVpNVKiIgLeAPxz10B7mnO3wL
RCfzYA8Ab8kvkinoZjHVnr6Fd34RS6bYB-mBB5WX2iQ-TBKZ1E",
bonus: "131072",
hash: "sha2" }

error: "Registration is currently disabled." }

error: "The requested username is unavailable." }

error: "A dramatic increase in cosmic radiation means registration
is temporarily unavailable." }

L T T

{ enroll:
{ username: "user-alias@example.tld",
salt: "Wb4vfzSpBpDRKafDlhhba3KhjIh09_4-IA122X0cal2z900QNdvNXFiRBM
qsyr4yD900mDxBckHJIzijGF7d1PESrGwl1GEb9YCVpNVKiIgLeAPxz10B7mnO3wL
RCfzYA8Ab8kvkinoZjHVnr6Fd34RS6bYB-mBB5WX2iQ-TBKZ1E",
verification-token: "egf9dS64z5b5qmrw4JYT86iNXDWHM5PVLF7DkyufIUwX
2bAZ8p7iDCHNLVbT53_zZUMWgXWIXAXmWw6d8nAvoQ" }

7.2. Login

The login process begins by submitting a "login" request with the
response providing an array of method objects each with the
parameters REQUIRED to compute the secret values needed for key
derivation and the tokens used for authentication. This includes the
password object which provides the nonce value REQUIRED to generate
the ephemeral login token used to validate the session or connection.

7.2.1. Login Request
A login request supplies a single username parameter, which is
REQUIRED, and ensures equivalent inputs always provide a common,
deterministic outcome.
Required Parameters
username

The username value provide must be submitted to the server for
normalization, canonicalization and alias mapping to ensure a

Levison Expires November 19, 2018 [Page 23]

Internet-Draft stacie May 2018

deterministic result. The specific rules applied are determined
by the account policies and system locale for the server.
Typically, this will include lower-case characters, decomposing
ambiguous characters, adding, removing or altering the domain name
component, and mapping aliases to a real username.

Example

{ login:
{ username: "user-alias@example.tld" }
}

7.2.2. Login Response

The response provides an array of method objects corresponding to
different authentication mechanisms along with any requisite
parameters. A disposition attribute indicates whether a particular
method is OPTIONAL or REQUIRED. Currently, STACIE only provides
details for key derivation using passwords. Future specifications
MAY extend this scheme to support common alternate, or additional
methods, including second factor mechanisms, which is indicated by
the presence of multiple method objects marked as REQUIRED.

If a user or site specific salt value is available, it MUST be
returned in the password object. The salt provides a non-secret
random value which ensures independence between different uses of the
same password at different points in time. The salt value is
particularly important for sites with a policy of stripping the
domain portion off usernames, as a unique salt will ensure
independence between accounts with an identical username and
password, but residing on different systems.

The singular method defined by this specification is the password
mechanism, which provides an object containing the following
parameters specified below.

Required Parameters

username
The username returns the normalized username in a form suitable
for use as an input parameter to the cryptographic hash function.
Presumably, this will involve matching the value provided by the
client with a static username identifier to ensure a deterministic
output.

salt

Levison Expires November 19, 2018 [Page 24]

Internet-Draft stacie May 2018

The salt provides additional entropy for the cryptographic hash
function. The salt value SHOULD be randomly generated and unique
for every username. A minimum of 64 octets SHOULD be returned,
with additional octets allowed in 32 octet increments. Clients
MUST be capable handling salt values up to 1,024 octets in length.

nonce
The nonce MUST be combined with the verification token, which
results in the ephemeral login token. Server implementations MUST
ensure a unique nonce is used for each authentication attempt.

Optional Parameters

bonus
The bonus value mandates an arbitrary number of additional hash
rounds a client MUST perform during each stage, in addition to the
base rounds, and MAY be used by system operators to mitigate
improvements in computing performance, or simply provide
additional security sensitive accounts. Clients must accept and
support values between 0 to 1,024. Implementations MAY provide
support for values higher than 1,024. If this attribute is
missing, a client MUST assume a default value of 0.

hash
The hash value provides an object which identifies the one-way
hash function, along with any parameters specific to the supplied
primitive. This specification defines the hash objects for the
"sha2" and "skein" primitives. Clients MUST support the SHA2
algorithm. Support for SHA3 or Skein is OPTIONAL. If the hash
object is missing, a client SHOULD assume the SHA2 algorithm with
block and digest attribute values of 512 bits. If a SHA2 or Skein
object is returned without block or digest values, a client MUST
assume the default value of 512 bits.

cipher
The cipher value provides an object which identifies the symmetric
cipher used to encrypt and decrypt data retrieved from the server
along with any algorithm specific parameters. This specification
mandates that all implementations MUST be capable of supporting
the "aes" primitive using the "gcm" block mode with a 256 bit key.
If the cipher object is missing, clients MUST assume that AES
[AES] is being used in the GCM [GCM] block mode, with a 256 bit
key. These same default values MUST be used if the cipher object
specifies AES, but lacks values for the mode and key attributes.

disposition

An enumerated value, with values of OPTIONAL and REQUIRED. If
this value is missing, REQUIRED is presumed as the default value.

Levison Expires November 19, 2018 [Page 25]

Internet-Draft stacie May 2018

If two or more method objects are marked as REQUIRED, then 2
factor authentication is implied.

Example

{ methods:
[password:
{ username: "user@example.tld",

salt: "lyrtpzN8cBRZvsiHX6y4j-pJ0jIyJeuw5aVXzrItwlG4EOa-6CA4R9Bh
VpinkeHOUeXyOeTisHR3Ik3yuOhxbWPyesMIvTpOIBtx0fQuorb8wPnhw5BxD
JVCb1TOSE50PFKGBFMkc63Koa7vMDj -WE0Dj2X0kkTt1w6cUvF8i-M",

nonce: "oDdYAHOsiX7N12qTwT180onWOhZdeT03ebxzZp6nXMTo__0_vr_AsmAm
3VYRWWtSCPJz0sA2066uhNm6Yen0GzONKHCSAVgQhKdEBT_BTYkyULDuw2fSk
bO07mlnxEhxqrJEc27ZVam60gYABTHZjgVUTAL SICYKAN7KOMuImL2g",

bonus: "131072",

hash: "sha2",

cipher: "aes",

disposition: "required" }

7.3. Password Authentication

The process for a password based authentication concludes by
submitting an "authenticate" request with an ephemeral login token.
The response provides a keys array, with objects corresponding to the
various realm specific keys specific to the protocol. These values
are combined with the master key to derive the symmetric keys for the
various realms used to encrypt data on a client.

7.3.1. Authenticate Request
The authenticate object is submitted to a server for validation.
Required Parameters

username
The normalized username.

nonce
A randomly generated value, which MUST be combined with the
verification token to create an ephemeral login token. Every
nonce value MUST only be used for one authenticate request.
Failed login attempts require a new nonce value to retry the login
attempt.

token

Levison Expires November 19, 2018 [Page 26]

Internet-Draft stacie May 2018

The ephemeral login token needed to authenticate a session or
token.

Example

{ authenticate:
{ username: "user@example.tld",
nonce: "oDdYAHOsiX7N12qTwT180nWOhZdeT03ebxzZp6nXMTo__O_vr_AsmAm
3VYRWWtSCPJz0sA2066uhNm6Yen0GzONKHCSAVgQhKAEBT_BTYkyULDuw2fSk
bO07mlnxEhxqrJEc27ZVam60ogYABTHZjgVUTAL_SICyKAN7KOMuImL2g",
token: "-Eu5mUcA7ko2BysV965hrf9bvMlh_S_1iiI3tfMreQc7hf4oPmBCdGOU
9vCeQilgBrga-WyR-rko510-feoWuuuA"

7.3.2. Authenticate Response

If the authentication attempt was successful the server will return
an array of realm shards.

Required Parameters

index
The an incrementing counter corresponding to each shard value.

label
A protocol specific string containing the realm where the key
value 1is used.

shard
The random bytes which are combined with the master key to derive
a realm specific key value.

Example

{ realms: [
{ index: "1",
label: "mail",
shard: "gD65KdedalhB2Q6gdz10fetGg2vilLXWGOVMKN4HXE3Jp3Z0Gkt5prqsS
mcuY208t24iGSCONFDpP71c3x19SX9Q",
}

However, if the authentication request is unsuccessful and the server
is willing to allow the client another attempt, it will return a

Levison Expires November 19, 2018 [Page 27]

Internet-Draft stacie May 2018

login response with a unique nonce value. A nonce value MUST only be
used once regardless of whether the attempt is successful. The
following example only contains the required parameters.

Example

{ methods:
[password:
{ username: "user@example.tld",

salt: "lyrtpzN8cBRZvsiHX6y4j-pJ0jIyJeuwb5aVXzrItwlG4EOa-6CA4R9Bh
VpinkeHOUeXyO0eTisHR3Ik3yuOhxbwWPyesMIvTfpOIBtxOfOuorb8wPnhw5BxD
JVCb1TOSE50PFKGBFMkc63Koa7vMDj -WE0Dj2X0kkTt1w6cUvF8i-M",

nonce: "vQmxYp9sznZJ1M62AxSGe3cQgMqTmVwO2E1qfNR_F1_u2zVFEiyV5dV
2abGEhsWPDKHsxtJG]j -NTEF1vetimlgfD67mQO1IPG7RFXPMEAJWAWGWKbgPG
kQI2tpfAs5LgQai-Any3I95Kq-eTPIP8ykQYXKW8g0O-DJCw5SmmCrJs" }

Or if the server does not want to allow any further attempts to
access the account, it MAY also return an error message.

{ error: "The authentication attempt failed." }

7.4. Password Change
Update the verification token, and salt values on the server. Note
the salt value is only updated if user specific salt values are being
used. Alter any existing realm specific shard values, and if
required add new randomly generated realm specific shard values.

7.5. Fetch Realm Shards

Fetch the realm shard values. The result MAY be request a specific
realm, and serial number.

7.6. Add a Realm Shard

Add a shard, for a given realm, to the account using the next
available serial number.

8. Security Considerations

Client and server implementations SHOULD follow the recommendations
provided here to avoid leakage, and improve difficulty.

Levison Expires November 19, 2018 [Page 28]

Internet-Draft stacie May 2018

8.

8.

8.

1. Servers

Username Enumeration

To avoid enumeration and avoid leaking the list of valid user
accounts, servers SHOULD respond to authenticate requests with valid
and invalid usernames in the same fashion. Because salt values are
typically unavailable in this situation, servers SHOULD normalize and
return the username along with a dynamically derived salt value
generated by combining the username with a site specific value. This
will ensure a consistent salt value is returned on subsequent
requests for the same invalid username. Servers MAY choose to return
an error if the username contains invalid characters, or was provided
with an unrecognized domain name.

Salt Values

To ensure STACIE provides the maximum amount of protection,
implementations SHOULD generate unique, random salt values for every
user, and then rotate the salt value every time the password is
updated. This will ensure independence between common inputs, and
strengthen the security analysis underpinning the design [HKDF].

2. Clients
Side Channels
A properly implemented client SHOULD ensure it's impossible for an
attacker to correlate the duration between client request/responses
with the plain text password length. Several mitigation strategies
are possible, including submitting authentication requests
independently of when users input their password. Adding random
delays between hash rounds, which are independent of system load and
processor speed, or using a constant duration for password processing
independent length, are also possible. Clients MAY round any
artificial processing delays to aligned boundaries, which would also
make correlation more difficult.
3. Shared

Transport Security

STACIE implementations MUST support TLS using a ciphersuite capable
of protecting against network eavesdroppers, data tampering and
ensure the confidentiality of messages. Protocols incorporating
STACIE as a component MUST provide recommendations sensitive to their
intended context, but SHOULD encourage the use of TLS version 1.2, or
later, and limit implementations to ciphersuites capable of providing

Levison Expires November 19, 2018 [Page 29]

Internet-Draft stacie May 2018

10.

11.

perfect forward secrecy. Server deployments SHOULD ensure they
provide valid TLS certificates, and client implementations SHOULD
ensure they properly validate server certificates using the
procedures described in RFC 6125 [TLS-PKIX] or optionally, using the
procedures described in RFC 6698 [TLS-DANE].

As of this writing, the RECOMMENDED ciphersuite is
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, identified by the octet values
{0xCO, 0x30}, or the equivalent ECDSA variant,
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, which is identified by the
octet values {0OxCO,0x2C}. [TLS-GCM]

Specific requirements and recommendations will need to be updated
over time, based on what is widely deployed, and MAY need altering
based on future vulnerability discoveries. To obtain contemporary
guidance, or find additional recommendations, implementers and system
operators SHOULD consult the Recommendations for Secure Use of TLS
and DTLS [TLS-UTA].

IANA Considerations
This document has no actions for IANA.
Feedback

The preceding document was excreted with the assistance of a
diarrhoetic. As such, feedback is both welcome, and encouraged.

Acknowledgments

The genesis for STACIE was the authentication and key derivation
method used by Lavabit LLC to authenticate client connections and
protect the user specific private keys. Improvements were made while
adapting the original server based scheme to operate on clients being
developed for the Privacy Respecting Internet Mail Environment
(PRIME). The author would also like to acknowledge and thank the One
Password Protocol [ONEPW] developed for Firefox Sync and the HKDF
[HKDF] specification for inspiring some of the improvements
incorporated into STACIE.

The improvements were all focused on providing operational
flexibility, extensibility, while improving the security
characteristics of short, relatively simple passwords commonly chosen
by bipedal hominids. Acknowledgment must also be given to the large
online services which allowed their password databases to be publicly
scrutinized. Analysis of these databases proved invaluable while
selecting the constants used by STACIE, and allowed the author to see

Levison Expires November 19, 2018 [Page 30]

Internet-Draft stacie May 2018

12.

how variations effected the dynamic difficulty level for a random
sampling of real passwords.

The goal for STACIE was to ensure it provided sufficient resistance
against brute force attacks for the vast majority of passwords which
will inevitably be used. Admittedly the term "sufficient resistance"
is very subjective, and is constantly being shifted by advances in
technology. Thanks should be given to the critics. Their complaints
led to a modular hash algorithm, and the strategy of combining a
dynamically calculated difficulty with a policy based bonus.
Hopefully these decisions will ensure the survival of users with
short password who inevitably get stuck on the long tail. STACIE is
not a substitute for long, truly random, and incredibly complex
passwords used by any evolved hominids capable of remembering them.

The author would also like to thank Stacie for inspiring the name.
Her resistance to having a computer bear her name, inevitably, led to
something far better.

Normative References

[AES] National Institute of Standards and Technology, "Advanced
Encryption Standard (AES), FIPS 197", November 2001,
<http://csrc.nist.gov/publications/fips/fips197/
fips-197.pdf>.

[BASE] Josefsson, S., "The Basel6, Base32, and Base64 Data
Encodings", October 2006, <https://www.ietf.org/rfc/
rfc4648. txt>.

[CAPITALIZATION]
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", May 2017, <https://www.ietf.org/rfc/
rfc8174.txt>.

[GCM] Dworkin, M., "Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC, SP
800-38D", November 2007,
<http://csrc.nist.gov/publications/nistpubs/800-38D/
SP-800-38D.pdf>.

[HKDF] Krawczyk, H., "Cryptographic Extraction and Key
Derivation: The HKDF Scheme", May 2010,
<https://eprint.iacr.org/2010/264>.

[HMAC] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
Hashing for Message Authentication", February 1997,
<https://www.ietf.org/rfc/rfc2104.txt>.

Levison Expires November 19, 2018 [Page 31]

Internet-Draft stacie May 2018

[HMAC-FIPS]
National Institute of Standards and Technology, "The
Keyed-Hash Message Authentication Code (HMAC), FIPS
198-1", July 2008,
<http://csrc.nist.gov/publications/fips/fips198-1/
FIPS-198-1_final.pdf>.

[HMAC-SHA]
Nystrom, M., "Identifiers and Test Vectors for HMAC-SHA-
224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512",
December 2005, <https://www.ietf.org/rfc/4231.txt>.

[JSON] Bray, T., "The JavaScript Object Notation (JSON) Data
Interchange Format", December 2017,
<https://www.ietf.org/rfc/rfc8259.txt>.

[KEYWORDS]

Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", March 1997,
<https://www.ietf.org/rfc/rfc2119.txt>.

[ONEPW] Boulange, R., "One Password Protocol", May 2014,
<https://github.com/mozilla/fxa-auth-server/wiki/onepw-
protocols>.

[PBH] National Institute of Standards and Technology, "SHA-3
Standard: Permutation-Based Hash and Extendable-Output
Functions, FIPS 202", August 2015,
<http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf>.

[SHS] National Institute of Standards and Technology, "Secure
Hash Standard, FIPS 180-2", August 2015,
<http://nvlpubs.nist.gov/nistpubs/FIPS/
NIST.FIPS.180-4.pdf>.

[SKEIN] Ferguson, N., Lucks, S., Schneier, B., Whiting, D.,
Bellare, M., Kohno, T., Callas, J., and J. Walker, "The
Skein Hash Function Family", November 2008,
<http://www.skein-hash.info/sites/default/files/
skeinl.1.pdf>.

[TLS-DANE]
Hoffman, P. and J. Schlyter, "The DNS-Based Authentication
of Named Entities (DANE) Transport Layer Security (TLS)
Protocol: TLSA", August 2012, <https://www.ietf.org/rfc/
rfc6698. txt>.

Levison Expires November 19, 2018 [Page 32]

Internet-Draft stacie May 2018

[TLS-GCM] Rescorla, E., "TLS Elliptic Curve Cipher Suites with SHA-
256/384 and AES Galois Counter Mode (GCM)'", August 2008,
<https://www.ietf.org/rfc/rfc5289.txt>.

[TLS-PKIX]
Saint-Andre, P. and J. Hodges, "Representation and
Verification of Domain-Based Application Service Identity
within Internet Public Key Infrastructure Using X.509
(PKIX) Certificates in the Context of Transport Layer
Security (TLS)", March 2011, <https://www.ietf.org/rfc/
rfc6125. txt>.

[TLS-UTA] Sheffer, Y., Holz, R., and P. Saint-Andre,
"Recommendations for Secure Use of TLS and DTLS", February
2015, <https://www.ietf.org/id/draft-ietf-uta-tls-bcp-
11.txt>.

Appendix A. Test Vectors

This appendix provides test vectors. Binary values are provided
using the base64url encoding, with line breaks added as necessary.

A.1. Inputs

User Inputs
password = "password"
username = "user@example.tld"

Server Inputs

bonus = 131072

salt = "lyrtpzN8cBRZvsiHX6y4j-pJ0jIyJeuw5aVXzrItwlG4EOa-6CA4R" \
"9BhVpinkeHOUeXy0eTisHR3Ik3yuOhxbwWPyesMIvfpOIBtx0fOuorb8w" \
"Pnhw5BxDJVCb1TOSES0PFKGBFMkc63Koa7vMDj -WEODj2XOkkTt1lwecUu" \
"vF8i-M"

nonce = "oDdYAHOsiX7N12qTwT18onW@hzZdeT03ebxzZp6nXMTo__0_vr_" \
"AsmAM3VYRWWESCPJz0sA2066uhNm6Yen0GzONKHCSAVgQhKAEBT_BT" \
"YkyULDuw2fSkbO7mlnxEhxqrJEc27ZVam60ogYABfHZjgVUTAL_SICy" \
"KAN7KOMuImL2g"

Realm Inputs

realm = "mail"

shard = "gD65KdedalhB2Q6gdz10fetGg2viLXWGOVMKN4HXE3Jp3Z" \
"OGkt5prqSmcuY208t24iGSCONFDpP71c3x19SX9Q"

Encrypted Data

encrypted_data = "AACS5PQo0Bg40N1Xt6aUSddMXTTIKGdbGSelUkIbUKUj" \
"przv9ekAwPRrJOUqJgWGhdgEVCzSkZwr - kvNZo6f2IWla

Levison Expires November 19, 2018 [Page 33]

Internet-Draft stacie May 2018

A.2. Outputs

rounds = 196608
seed = "5f-3mTGTSf-sFPfMkGqHTyydDjJU-cqahwDmHWyh6DLQ20LB1z3ht" \
"PTZS6V-TYVBiwJIxuTYmQv3fCZN3Fb8brg"

master_key = "SDt67ZfTr8c1KO1Ym6BI69i7TQNNg5J2irym6gPQLlE0OMGC" \
"5x-b43biluXIDF4rhJJvf19NFBQkDQ _X_2n66RA"

password_key = "1YmvC3qutKIb6QrnxnTi_WuJR_PSiyMZOCdH18DAXHIgw" \
"jj0_edw6X8bKckKNGUgWMMXmNgXDYb_7L1vtfN3HQ"

verification_token = "-Eu5mUcA7ko2BysV965hrf9bvMlh_S_iiI3tfMr" \
"0Qc7hf40PmBCAGOU9VCeQ1lgBrga-WyR-rko510-feoWuuuA"

ephemeral login_token = "8YEH_6kBdAdR5v1Baxs3KR3pZ429bEzF3AVF" \
"hkAOP2WPt2h940mJq-d8NhXOrNLBESn2yTu_z0ugJcSVLyz5iQ"

realm_key = "v53LS2JFJE-ErqJ2UWTe00-dYxtYMUQzevxXczVVkQzcRPSS" \
"4sdBHPaKBnigxxr7SWaQR3moXN2tzJJhJ_p5Dw"

tag_key = "751jG1gxRDN6_FdzNVWRDA"
vector_key = "v53LS2JFJjE-ErqJ2UWTeOQA"
cipher_key = "3ETOkuLHQRz2igZ4qsca-01mkEd5qFzdrcySYSf6eQ8"

decrypted_data = "Attack at dawn!"

Author's Address

Ladar Levison
Lavabit LLC

Email: ladar@lavabit.com

Levison Expires November 19, 2018 [Page 34]

	dark-internet-mail-environment-cover-june-2018
	dark-internet-mail-environment-june-2018
	Dedication
	Contents
	Figures
	Overview
	Part 1: Abstract
	Part 2: Terminology
	Keywords
	Actors
	Account Modes
	Signets
	Terms

	Part 3: System Architecture
	Introduction
	Design Goals
	Operational Directives
	Functional Components
	Transport
	Message Object
	Classic Email Agents

	Privacy Processing Agents
	Organization Privacy Agent
	User Privacy Agent
	Signet Retrieval Services

	Part 4: Management Record
	Introduction
	Location
	Text Records
	Security
	Expiration
	Fields
	Definitions
	Descriptions
	Primary (pok)
	TLS (tls)
	Syndicates (syn)
	Deliver (dx)
	Version (ver)
	Refresh (ref)
	Expiry (exp)
	Policy (pol)
	Subdomain (sub)

	Examples

	Part 5: Signet Data Format
	Introduction
	Groupings
	Classes
	Types
	Modifiers
	Categories

	Field Identifiers
	Ranges
	Reserved
	Ordering

	Binary Layouts
	Signet Header
	Field Types
	Signature Fields
	Defined Fields
	Undefined Fields

	Cryptography
	Signing Keys
	Encryption Keys
	Signatures
	Splitting
	Fingerprints
	Cryptographic
	Ephemeral
	Root

	Cryptographic Signets
	Organizational Signets
	Primary Organizational Key
	Secondary Organizational Key
	Encryption Key
	Organizational Signature

	User Signets
	Signing Key
	Encryption Key
	Alternate Encryption Key
	Security Levels
	Special Access

	Custody
	User Signature
	Organizational Signature

	Full Signets
	Common Fields
	Name
	Address
	Province
	Country
	Postal Code
	Phone
	Language
	Currency
	Cryptocurrency
	Motto
	Website
	Message Size Limit

	Distinct Organizational Fields
	Contact Abuse
	Contact Admin
	Contact Support
	Web Access Host
	Web Access Location
	Web Access Certificate
	Mail Access Host
	Mail Access Certificate
	Onion Access Host
	Onion Access Certificate
	Onion Delivery Host
	Onion Delivery Certificate
	Services

	Distinct User Fields
	Title
	Gender
	Alma Mater
	Alternate Address
	Affiliation
	Supervisor
	Political Party
	Resume
	Endorsements
	Extensions
	Codecs

	Special Fields
	Image
	Undefined Fields

	Signature Field

	Identifiable Signets
	Identifier
	Identifiable Signet Signature

	Derivative Formats
	Signet Signing Requests
	Organizational Private Keys
	Primary Organizational Key
	Secondary Organizational Key

	User Private Keys
	Alternate User Private Key

	Encrypted Private Keys

	Usage
	Rotation
	Revocation
	Validation

	Encoding
	Binary
	JavaScript Object Notation
	Privacy Enhanced Message

	Part 6: Message Data Format (D/MIME)
	Introduction
	Historical Context
	Leakage
	Algorithms
	Required Baseline
	Alternate Baselines

	Types
	Messages
	Data Format
	Message Header
	Chunks
	Specialized Payloads
	Tracing Chunks
	Ephemeral Chunk

	Encrypted Chunks
	Flags
	Padding
	Alternate Encryption

	Signature Payloads
	Keyslots

	Chunks
	Envelope
	Tracing
	Ephemeral
	Origin
	Destination

	Metadata
	Common
	Headers

	Display
	Display-Multipart
	Display-Multipart-Alternative
	Display-Content

	Attachments
	Attachments-Multipart
	Attachments-Multipart-Alternative
	Attachments-Content

	Signatures
	Author-Tree-Signature
	Author-Signature
	Organizational-Metadata-Bounce-Signature
	Organizational-Display-Bounce-Signature
	Organizational-Signature

	Endianness
	Transfer Encoding

	Part 7: Dark Mail Transfer Protocol (DMTP)
	Introduction
	Protocol Model
	Historical Context
	Line Based Protocol
	Commands and Replies
	First Digit
	Positive Completion
	Positive Intermediate
	Transient Negative Completion
	Permanent Negative Completion

	Second Digit
	Syntax Error
	Information
	Connections
	Unspecified
	Mail System
	Signet

	Third Digit

	Mail Transactions
	Objects
	Delivery
	Caching

	Connections
	Certificates
	Single Protocol Mode
	Dual Protocol Hosts
	Timeouts
	Consumers
	Servers

	Termination

	Global Commands
	HELO
	EHLO
	MODE
	RSET
	NOOP
	HELP
	QUIT

	Message Transfer Commands
	MAIL
	RCPT
	DATA

	Signet Transfer Commands
	SGNT
	HIST
	VRFY

	Response Codes
	Protocol Extensions
	SIZE
	BINARY
	UNICODE
	PIPELINING
	SURROGATE

	Part 8: Dark Mail Access Protocol (DMAP)
	Part 9: Global Ledger
	Part 10: Dark Mail Alliance
	Part 11: Threats
	Threats
	Venues
	Vectors

	Mitigation Strategies
	Message Protection
	Account Modes

	Attack Vector Mitigation
	Password
	Signet

	Network Packet Capture
	Forward Secrecy

	Signet and Key Management
	Basic Management and Operation
	Organizational Signet
	User Signet
	Domain name
	Transmission Channel
	Client
	Mail Server: MSA, MTA, MDA
	Key Server
	DNS Server
	Gateways
	Persistence
	Human Factors

	Part 12: Attacks and Mitigations
	Part 13: Known Vulnerabilities
	Part 14: Credits
	Author
	Ladar Levison

	Contributors
	Dave Crocker
	Unnamed Contributors
	Attribution

	Part 15: References
	Appendix A: Data Type Identifiers
	Appendix B: Common Encodings
	Base64url Encoding
	Notes on implementing base64url encoding without padding

	Multiprecision Integers
	Radix-64 Conversions
	Encoding Binary in Radix-64
	Decoding Radix-64
	EdDSA Point Format
	Test vectors
	Sample key
	Signature Encoding

	Appendix C: What Needs Doing

	draft-ladar-stacie-04

