
FABIEN SANGLARD'S WEBSITE

ABOUT EMAIL RSS DONATE

August 29, 2017

FLOATING POINT VISUALLY EXPLAINED

While I was writing a book about
Wolfenstein 3D[1], I wanted to
vividly demonstrate how much of a
handicap it was to work without
floating points. My personal
attempts at understanding floating
points using canonical[2] articles[3]
were met with significant resistance
from my brain.

I tried to find a different way. Something far from

 and its mysterious exponent/mantissa.
Possibly a drawing since they seem to flow through my brain
effortlessly.

I ended up with what follows and I decided to include it in the
book. I am not claiming this is my invention but I have never
seen floating points explained this way so far. I hope it will
helps a few people like me who are a bit allergic to mathematic
notations.

HOW FLOATING POINT ARE USUALLY EXPLAINED

In the C language, floats are 32-bit container following the
IEEE 754 standard. Their purpose is to store and allow
operations on approximation of real numbers. The way I have seen
them explained so far is as follow. The 32 bits are divided in
three sections:

1 bit S for the sign
8 bits E for the exponent
23 bits for the mantissa

(−1 ∗ 1.M ∗)S 2(E−127)

Floating Point Visually Explained http://fabiensanglard.net/floating_point_visually_e...

1 of 5 5/6/20, 2:03 AM

0222331 30

Floating Point internals.

S EXPONENT MANTISSA

The three sections of a floating Point number.

So far, so good. Now, how numbers are interpreted is usually
explained with the formula:

How everybody hates floating point to be explained to them.

This is usually where I flip the table. Maybe I am allergic to
mathematic notation but something just doesn't click in my brain
when I read this. It feels like learning to draw a owl.

Floating-point arithmetic is considered an esoteric subject by
many people.

- David Goldberg

A DIFFERENT WAY TO EXPLAIN...

Although correct, this way of explaining floating point usually
leaves some of us completely clueless. I blame this dreadful
notation for discouraging legions of programmers, scaring them
to the point where they never looked back to understand how
floating point actually works.

Fortunately, there is a different way to explain it. Instead of
Exponent, think of a Window between two consecutive power of two
integers. Instead of a Mantissa, think of an Offset within that
window.

S WINDOW OFFSET

(−1 ∗ 1.M ∗)S 2(E−127)

Floating Point Visually Explained http://fabiensanglard.net/floating_point_visually_e...

2 of 5 5/6/20, 2:03 AM

The three sections of a floating Point number.

The window tells within which two consecutive power-of-two the
number will be: [0.5,1], [1,2], [2,4], [4,8] and so on (up to
[,]). The offset divides the window in
buckets. With the window and the offset you can approximate a
number. The window is an excellent mechanism to protect from
overflowing. Once you have reached the maximum in a window (e.g
[2,4]), you can "float" it right and represent the number within
the next window (e.g [4,8]). It only costs a little bit of
precision since the window becomes twice as large.

The next figure illustrates how the number 6.1 would be encoded.
The window must start at 4 and span to next power of two, 8. The
offset is about half way down the window.

0 1 2 4 86.1

Value 6.1 approximated with floating point.

PRECISION

How much precision is lost when the window covers a wider range?
Let's take an example with window [1,2] where the 8388608
offsets cover a range of 1 which gives a precision of

. In the window [2048,4096] the

8388608 offsets cover a range of which

gives a precision .

AN OTHER EXAMPLE

Let's take an other example with the detailed calculations of
the floating point representation of a number we all know well:
3.14.

2127 2128 = 8388608223

= 0.00000011920929(2−1)
8388608

(4096 − 2048) = 2048
= 0.0002(4096−2048)

8388608

Floating Point Visually Explained http://fabiensanglard.net/floating_point_visually_e...

3 of 5 5/6/20, 2:03 AM

The number 3.14 is positive .
The number 3.14 is between the power of two 2 and 4 so the
floating window must start at (see formula

where window is).
Finally there are offsets available to express where

3.14 falls within the interval [2-4]. It is at

within the interval which makes the offset

Which in binary translates to:

S = 0 = 0b
E = 128 = 10000000b
M = 4781507 = 10010001111010111000011b

0222331 30

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00001 1 1 1 1 1 1 1 0 1 1 1 1 1

3.14 floating point binary representation.

The value 3.14 is therefore approximated to
3.1400001049041748046875. The corresponding value with the ugly
formula:

And finally the graphic representation with window and offset:

0 1 2 4 83.14

3.14 window and offset.

I hope that helped :) !

→ S = 0

21 → E = 128
2(E−127)

223

= 0.573.14−2
4−2

M = ∗ 0.57 = 4781507223

3.14 = (−1 ∗ 1.57 ∗)0 2(128−127)

Floating Point Visually Explained http://fabiensanglard.net/floating_point_visually_e...

4 of 5 5/6/20, 2:03 AM

BLAST FROM THE PAST

Since floating point units were so slow,
why did the C language end up with float
and double types ? After all, the
machine used to invent the language
(PDP-11) did not have a floating point
unit! The manufacturer (DEC) had
promised to Dennis Ritchie and Ken
Thompson the next model would have one.
Being astronomy enthusiasts they decided
to add those two types to their
language.

Trivia: People who really wanted a hardware floating point unit
in 1991 could buy one. The only people who could possibly want
one back then would have been scientists (as per Intel
understanding of the market). They were marketed as "Math
CoProcessor". Performance were average and price was outrageous
(200 USD in 1993 equivalent to 350 USD in 2016.). As a result,
sales were mediocre.

REFERENCES

^ [1] Source : Game Engine Black Book: Wolfenstein 3D
^ [2] Source : Wikipedia, Floating-point arithmetic
^ [3] Source : What Every Computer Scientist Should Know About

Floating-Point Arithmetic

*

Floating Point Visually Explained http://fabiensanglard.net/floating_point_visually_e...

5 of 5 5/6/20, 2:03 AM

