
1

A Bit About Forth

Dave Eckhardt
de0u@andrew.cmu.edu

mailto:de0u@andrew.cmu.edu

2

Disclaimer

● I don't know Forth
● Forth tutorials abound on the Web

– Intro: stack, postfix stack operators
– Writing a simple Forth word
– Loops
– Stack manipulation, simple built-ins
– Gee, tutorials take forever to write, so close with:

● 100%-inscrutable example using Forth's full power
● I am ~40% through the inscrutable stage

3

Outline

● Forth is a language with

– No syntax
1

– No operator precedence

● No operators

– No functions
– No variables
– No constants

– No loops
2

4

No Syntax

● Well, hardly any
– “Whitespace-delimited sequence of digits” (in the current

input radix) is recognized as a number.
● In many dialects, a dot in a number is allowed for

readability or to signal double precision

– “Whitespace-delimited sequence of characters” is a
“word”.

5

Syntax Examples

● 123
● FFEB.09CA
● >entry
● 2dup
● $entry
● *, +, -, /, etc.

6

No Operator Precedence

● Easy: no operators!
● In C, + and && and || are part of the language

– So the language arranges for them to be evaluated
according to “natural” precedence (more or less)

● In Forth, all executable things are of the same class
(“word”)

● Precedence is manual (postfix stack ops)

7

Stack Operations

 3 4 +
– Push 3 (a number) onto the stack.
– Then push 4 (a number) onto the stack.
– Run +

● Which traditionally pops two integers from the stack, adds
them, and pushes the result on the stack. But it could be
redefined to do anything else instead.

● “3 + 4 * 2” - meaning is up to you, not to Forth
 3 4 2 * +
 3 4 + 2 *

8

No Functions

● Words aren't functions
– They have no types

● No parameter types
– Words pull whatever they want off the stack
– First parameter may determine how many parameters

● Or the second, if you want
● No return types

– Words push whatever they want onto the stack
– Common idiom:

● success ⇒ push answers, then push “true” (-1)
● failure ⇒ push “false” (0)

– Actually, nothing has any types

9

No Types

● What is the type of items on the stack?
– “Cell” - approximately “machine word”
– Same type as BLISS (great-grandfather of C, used to

write DEC's VMS, CMU's Hydra)
● Some words operate on multiple cells (“extended

precision”)

10

No Variables

● Most code operates on stack values
● Once you have “too many” values on your stack your

code gets confusing
● There is a word called VARIABLE

– It doesn't “declare” a “variable”, though.
– It allocates a cell and compiles a word which pushes the

address of that cell on the stack.

 VARIABLE FOO
 FOO @ 3 + \ Get contents of FOO, add 3

11

VALUE

● If a “variable” will be read more than written, you can
use VALUE instead.
– It places a value into a freshly-allocated cell and

compiles a word which fetches the contents of the cell
and pushes it on the stack

 0 value BAR
 BAR 3 + \ Get BAR contents, add 3
 4 TO BAR \ sets BAR to 4 - advanced

12

No Constants

● There is a word called CONSTANT, though.
– Can you guess what it does?

13

No Loops

● The language does ship with words which implement
loops

 10 1 DO I . CR LOOP

● But these words aren't privileged – you can write your
own which work just as well.
– UNLESS, UNTIL, WHEREAS... - go wild!

14

Is There Anything There?

● No...

– No syntax
1

– No operator precedence

● No operators

– No functions (no types)
– No variables
– No constants

– No loops
2

● So what is there?

15

Parts of Forth

● “The Stack”
– Really: the operand stack
– Versus the other stacks

● Call/return stack – (ab)used by loop words
● Exception stack – if exceptions are available

● The Dictionary
– Maps word names to execution tokens

● The “Compiler”
● The “Interpreter” (read loop)

16

“Compiler”

● “Compiler” stitches together code bodies of existing
words
 : addone 1 + ;

● Looks like a “function definition”, beginning with the “:”
token and ending with the “;” token
– Nope!

● : (a word like any other word) grabs a word from the
input stream, saves it “somewhere”, and turns on “the
compiler”

● “The compiler” creates code sequences for pushing
numbers and pushing calls to words

17

“Compiler”

● When “the compiler” sees ; it adds a dictionary entry
mapping the saved name-token to the execution-token
sequence

● Where's the code?
– Here comes a vague analogy...
– ...C code which when compiled would have similar effect

to Forth...

18

The Code

 /* “threaded code” style */

 typedef void (*notfun)(void);
 notfun push1, plus;
 notfun addone[] = { push1, plus, 0 };

 void execute(notfun a[])
 {
 while (a[0])
 (*(a++))();
 }

19

Threaded Code

● Easy to generate machine code which just calls other
machine code

● Also easy to generate machine code for “push integer
onto stack”

● Handful of built-in words must be written in assembly
language
– Peek, poke (@, !)
– +, -, *, /
– Compiler itself

20

Isn't Threaded Code Slow?

● Other organizations are possible
– Can peephole-optimize threaded code pretty well
– Can “cache” top N words of stack in registers
– Can do a real optimizing compiler if you want

21

Are We Having Fun Yet?

● Why would people do this?
– Great for memory-constrained environments

● Forth runtime, including compiler, editor, “file system”,
“virtual memory” can be implemented in a few kilobytes of
memory

● Stacks are very small for real applications (small number
of kilobytes)

– Very extensible
● Want software VM? Just redefine @, !

– “Hard” things may be trivial
● De-compiling Forth is often very easy...

22

Are We Having Fun Yet?

● Why would people do this?
– A trained person can bring up a Forth runtime on just

about any system in around a week given assembly-
language drivers for keyboard and screen

– GCC+glibc ports to new processors typically take a little
longer than that...

23

Is Forth Usable?

● It's missing:
– types, type-checking, pointer-checking

● How can code written this way work?

24

Is Forth Usable?

● It's missing:
– types, type-checking, pointer-checking

● How can code written this way work?
– Oddly enough, very well.
– Forth advocates claim it promotes careful thought. Also,

most words are short enough to be solidly tested.
– Another slant: No way to avoid paying attention.
– Another slant: anybody who can wrap their mind around

it is a very good programmer...

25

Curiosity or Language?

● Who uses this?
– OpenFirmware (every Macintosh ~1996-2006)
– PostScript allegedly was inspired by Forth
– Embedded firmware
– Astronomers...since the 1960's
– Lots of things in space run/ran Forth

– http://web.archive.org/web/20101024223709/http://forth.gsfc.nasa.gov/

26

Who Should Learn Forth?

● Long-hair hacker types might find it fun
● Embedded-systems programmers might find it useful
● CS majors might find it challenging
● Its era might be over...
● Don't tell your ML instructor I told you about it

27

Further Reading

● Forth - The Early Years
– http://www.colorforth.com/HOPL.html

● The Evolution of Forth
– http://www.forth.com/resources/evolution/

● Forth OS
– http://www.forthos.org

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

