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Stephen Pelc is the managing director of MicroProcessor Engineering, a provider of hardware, software, and firmware development tools. Stephen
confesses to having programmed in DIBOL, Fortran, and Algol-60 amongst other languages.

In the article, Modern Forth, I focused on the impact of modern Forth compiler design on current register-oriented CPUs. In this article, I examine the
relationship between software and silicon, and discuss a search for simplicity to improve performance and reduce chip size and power consumption.

For those of you whose software life is based around C and other "Pasgol" languages, shift your perspective of Forth and start thinking of it as a two-stack
silicon machine. Forth compilers for conventional CPUs just map this model onto a register-oriented model. We will also see how to map the C virtual
machine (VM) onto a two-stack VM.

Chips designed to run Forth well have been produced for more than 20 years, including the Novix NC4000, the Harris/Intersil RTX2000, and Silicon
Composers SC32. There has been a flurry of cores for implementation in FPGAs, including MicroCore. Today, the state of the art is the 40-core SEAforth
processor from IntellaSys. (Later in this article, I look at the C18 core and interconnects used in the SEAforth chips.) But first, I examine changes to the
canonical Forth VM to achieve the goals of performance and code size.

Revisiting the Forth Virtual Machine

We will look again at the Forth and C VMs, see where the Forth VM is weak, and discover how to adjust it to improve execution of both languages. This
leads to some understanding of why the IntellaSys C18 core is as it is.

[Click image to view at full size]

Figure 1

The canonical Forth virtual machine is weak in several areas:

It does not execute C well, which is important for commercial exploitation of general-purpose silicon stack machines. C requires a frame pointer for
access to local variables and buffers in main memory. The two stacks are not in addressable memory.
It is weak for DSP operations, which restricts performance in embedded applications without changes to the VM or increased compiler complexity.
Without index operations, dealing with complex data structures is cumbersome, especially when a base address is passed as an argument to a
word/function.

DSP operations often require three or four parameters to be manipulated. For example:

source address, destination address and length,
first source address, second source address, destination address and length.
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Canonical Forth requires ugly source code to deal with these situations. Several silicon implementations provide index and scratch registers, and others
have provided more access to the top of the return stack. Using the top of the return stack as a loop counter has been common for a long time; for
example, the FOR ... NEXT loop structure.

The Forth community has long talked about TOS (top of data stack), NOS (next/second on data stack) and TOR (top or return stack). These are not quite
enough for DSP operations. Chuck Moore's current silicon includes A and B registers which are used both as index registers and for scratch storage.
Efficient execution of C requires a frame pointer, and a spare index register is always useful. We end up with the model in Figure 2.

[Click image to view at full size]

Figure 2

The A and B registers are used as scratch locations and for stepping through memory using auto-increment and auto-decrement addressing modes. The X
and Y index registers have base+index addressing and can be used as frame and thread-local storage pointers. The X and Y registers are important for
general-purpose CPUs, and are not implemented in the IntellaSys C18 core.

The impact of the A and B registers can be seen in this biquad filter implementation by Gary Bergstrom for a 16-bit embedded system. Gary commented
on the previous article about Forth's return stack not getting in the way of parameters:

This has to be one of the most underrated points in Forth. Factoring words in Forth is natural and the lack of return addresses interspersed
with the data allows this to be very efficient. In most languages you can't factor to the degree that you can in Forth without having severe run-
time speed consequences. You can't keep passing data to lower and lower layers without building new stack frames, with the same data
repeated in them, again and again.

$4000 constant +1. \ -- n 
\ Integer +1 in 2.14 fractional arithmetic format. 
: *.  \ fr1 fr2 -- fr3 
\ Fractional multiply. 
  +1. */  ; 
: 1STEP+ \ sum -- sum' 
\ Perform a multiply/accumulate step, incrementing both 
\ pointers. 
  B@+ A@+ *. +  ; 
: 1STEP- \ sum -- sum' 
\ Perform a multiply/accumulate step, incrementing the 
\ coefficient pointer and decrementing the data pointer. 
  B@+ A@- *. +  ; 
: SHIFT2 \ fr -- 
\ The last step of the filter. The current data item 
\ is shifted into the next data slot and replaced by fr. 
  A@ SWAP A!+ A!+ ; 
: (BIQUAD) \ frx -- fry 
\ The core of the biquad filter operation. 
  DUP >R  B@+ *.              \ initial sum = B0*input 
  1STEP+ 1STEP-  R> SHIFT2 
  1STEP+ 1STEP-  ; 
: BIQUAD \ fx addr-filt addr-coef -- fry 
\ A single order biquad filter. 
  >B >A  (BIQUAD) DUP SHIFT2  ; 
: 2xBIQUAD \ fx addr-filt addr-coef -- fry 
\ A second order biquad filter. 
  >B >A (BIQUAD) (BIQUAD) DUP SHIFT2  ; 

In this example, the A and B registers are set up by the words A and B in BIQUAD. These registers are now parameters to the lower layers with no
parameter passing overhead. Use of these registers has removed the need for local variables while permitting additional factorisation. They have also
considerably reduced stack manipulation in both the source code and the compiled code. Because parameter passing is efficient, what would be inline
code in other languages is encapsulated as factors, which in turn reduces code size. The importance of code density will become apparent in the next
section.

The X and Y registers above show their worth in larger systems for indexed addressing into structures in memory. They will be used in a conventional
Forth system to access local variables and buffers, and to provide a pointer to thread-local storage. One of them will be used as a frame pointer by a C
compiler.

These changes to the Forth VM improve code density and performance in Forth. They also permit two-stack machines to run C efficiently. A more in-
depth look at this VM will appear in the EuroForth 2008 conference proceedings and on the EuroForth conference website in October 2008.

Extreme Stack Machines

http://www.complang.tuwien.ac.at/anton/euroforth/ef08.html
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Chuck Moore is the founding father of Forth. He has always sought simplicity in implementing software and silicon. Savage minimalism is apparent in
the design of the SEAforth chips produced by IntellaSys, for whom Chuck Moore is the CTO. Everything about these chips is different. The result is
astonishing processing power in a tiny chip that uses very little power. The SEAforth 40C18 has gone to production and will be shipping in December
2008. A full toolchain is available based around VentureForth, a Forth system tuned to the needs and capabilities of the SEAforth chips.

I do not have the space to do more than outline the capabilities of such a device and to discuss some of the software issues involved in writing applications
for it. Technical information is available at the IntellaSys website.

Each chip has 40 cores. Each core contains a C18 stack machine, ROM, RAM, and interconnects to its nearest neighbors. The ROM for each core
contains a BIOS that can be used by application code in RAM. A BIOS for an edge core can contain code that emulates a serial port, an SPI port, or a
DRAM controller. Interconnects on cores at the edge of the chip can include I/O. The inner cores lacking I/O provide functions needed by their neighbors.

Each core runs asynchronously -- there is no common clock or crystal. When a CPU reads or writes data to/from a neighbour that is not ready, it just goes
to lowpower sleep until the neighbor completes the transfer. Each core runs at 600+ MHz, giving a total processing power of up to 26 billion operations
per second. Programs are loaded from an external EEPROM or Flash.

[Click image to view at full size]

Figure 3

That was the good news. Each core is tiny with an 18-bit data bus, and 64 18-bit words each of ROM and RAM. Instructions are packed four to a word.
The core implements a subset of the A and B register system discussed in the previous section. The B register is optimized to be a pointer. The two stacks
cache the top items (two for the data stack and one for the return stack), and then contain an additional eight items arranged as a circular list. Every time a
stack is pushed or popped, the next or previous item is selected. An odd but useful side effect of this is that a pop does not actually destroy data, it just
goes to the bottom of the stack. Devious programmers take advantage of this feature to use the stacks as small data caches. Unless you have followed
Chuck Moore's work over the last 10 or so years, you will find this design radically different from anything else. It's actually just another CPU whose
subtleties you have to learn.

[Click image to view at full size]
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Figure 4

With a maximum of a few hundred opcodes in each core, your major problem is not programming each core, it's floor planning. Chuck Moore says that he
can program a core in a day. People with more experience programming SEAforth than me repeatedly say that getting the floor plan and interconnects
right is the major part of programming a SEAforth chip.

You have to decide how to partition the cores and explore the consequences of how each core is used. To illustrate the issues of floor planning, I look at a
QPSK transmitter and receiver system implemented on the previous IntellaSys 24-core device. Compared to a conventional microcontroller, the SEAforth
devices have very few peripherals in hardware, the main ones being digital-to-analogue and analogue-to-digital converters. The ring of cores around the
edge of the chip are programmed to perform functions that would normally be performed in hardware. Later versions of the SEAforth family will have
enough cores to approach the "one core per pin" model.

[Click image to view at full size]
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Figure 5

The 24-core chip is a 6x4 array. The reference clock input (core 4), and the two outputs (cores 21 and 22) have to be at an edge. Because of other
functions needed in other cores, the path though the chip includes one core (core 9) which simply passes data. Core 16 provides data to the modulator in
core 15. What we see here is that each core performs a simple task, and then passes data to the next core in the chain. In this example the partitioning is
relatively simple. The receiver is a different matter.

It is at this point that we see the need for a model to help us partition programs across cores. We can view each core as a node executing a process block.
Each node is connected to its neighbors by signal carriers (sometimes called "wires"). Thinking of the chip as a set of process blocks and signal carriers is
the key to successfully factoring problems to fit the SEAforth chip. Multicore chip programming introduces communication as a design element that is as
important as the programming of the cores.

[Click image to view at full size]

Figure 6

Here we see the designer taking account of where the analogue-to-digital converters are placed on the chip. The majority of application code runs from
RAM. This permits a programmer to redefine the function of a core during run-time. One example of this is for selecting the modulation in a multi-mode
receiver. Because the SEAforth 40C18 is a low-power device, it is ideal for software defined radio (SDR) applications. All this begs the question of how
programs are loaded into RAM.

The architecture of the core places the I/O ports in memory from which code can be executed. If the BIOS code sets the core to execute an instruction
from an interconnect port and there is no data, the core goes to sleep until the data is available. If the data is an opcode set (up to four instructions), the
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instructions are executed. It is possible in these four instructions to read a data block into core memory or to pass it on to another port. The latter is known
colloquially as a "port pump". Port pumps need not use any local RAM space. When a chip is reset, the BIOS in one or more edge cores looks for data,
e.g., from a serial SPI Flash device. The start of this stream triggers a port pump to transfer data (code) to a neighboring core which in turn passes the
stream to its neighbours.

You can take advantage of this mechanism to aid development and debugging. The compiler remains interactive when your code has compiled, and is
connected to a core on the target device through an umbilical link.

[Click image to view at full size]

Figure 7

The use of interactive compilers and umbilical debugging links is common practice in cross-compiled Forth systems. These same techniques are used to
load and execute programs in multicore chips. Because port pumps can be essentially non-invasive, they can be used for debugging as well as for loading
programs. Once you have selected a boot core for the umbilical link, you can get to any core you want to debug. However, there is not quite a free lunch.

[Click image to view at full size]

Figure 8

In practice, you work by debugging the nodes furthest away, and pull back to the boot/umbilical link core. Because each core is asynchronous, the
simulator cannot be cycle accurate across multiple cores. As with any software, you have to do some testing on the real target. You have to design
testability into the system as well as design the code.

Debugging is a major issue in multicore programming, regardless of the interconnect system, and is a work in progress for all multicore architectures. The
approach used in the IntellaSys SEAforth chips provides small low-power multicore chips that can be programmed by mortals like us. It is the change in
thought processes in going from single core programming to multicore programming that causes the learning curve.
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