5
3

iRy,

Context-Oriented Programming: Evolution of Vocabularies

M.L.Gassanenko
Russia

Abstract

Context-Oriented Programming (COP) came into being as
a result of simplification and adaptation to Forth of
Object-Oriented Programming (OOP) ideas. Like OOP, it allows
the use of late binding and run—time inheritance. Unlike OCP,
1) class information is separated from data;
2) late binding methods are supported even for primitive
data elements (such as values on the stack, addresses, etc.)
that are not objects in an OOP sense);
3) the class of object may be determined at run time by
conventional means of the programming language:
4) no special encapsulation support is provided.
Through the use of COP idea, the mechanism of adding new definitions
to vocalkularies was generalized and extended to support operation
tables and other vocabulary-like structures. A wordset for
controlling the search order is also presented.

ST,
W

g

Introduction

Existing attempts to introduce OOP to Forth were not very
successful and typically led to creation of ancther reversal polish
lanquage [2,4]. The OOP came into being as a result of evolution of a
record (structure), but Forth does not support records. The two Forth
random access data structures are memory and a vocabulary. In this
paper we will not build records from memory but extend the vocabulary
concept to suport various radom access structures.

among the various object-oriented systems the language SELF
[9,3] should ke mentioned. In this prototype-based object—-oriented
langquage objects are pare contexts.

The implementation technique uses multiple code fields words
that are described in [1,5,6].

To facilitate translation of this paper back into Russian the
original Russian terms are given in quotes. The Russian alphabet
encoding is given before the references list.

Useful Non-Standard Words

RUSH (cfa —> ; exit) works as EXECUTE EXIT except that it
loads new IP from return stack before executing cfa.

RUSH> (—> ; control transfer) exits the current colon
definition and executes the word compiled after it. In
F-PC it is called GOTO.
: RUSH> R> @ RUSH ;

i { —> cfa) last name code field.
¢ IT TATEST NaMe> ;
or
: IT IAST @ NAME> ;

TO and IS Aliases. State-smart prefixes that allow to
compile/execute the first additional code field of
a multi-cfa word. Typically this code field is used to
assign a value.

AT State-smart prefix that allows to compile/execute the
second additional code field of a word. Typically this
code field returns the parameter field address.

HAS (2 —>) execute the lst additional (assignment)
code field of the last word.
E.g.:

VECT X ¢ DUP HAS
is equivalent to

VECT X rDUP TO X
or

VOCABULARY XXX HAS

<definitions>
is equivalent to

VOCABULARY XXX

TO XXX

<definitions>

e,

™
Y

IT IS An idiom:

CF! (cfc cfa =—>) write code field contents cfc into the
code field at cfa.

CF@ (cfa —> cfc) fetch cfc from the code field at cfa

CF, (cfc —>) add a code field into the dictionary

and f£ill it with cfe.

Mechanisms

A mechanism is a set of tools intended for work in the same
application area ("predmetnaja oblast’"). In a particular case it may
be a set of functions. Inabroadsensethlstermalsomayreferto
the application area objects (e.g. memory, etc.). It should be noted
that a Forth system is a set of mechanisms, e.qg.: memory management
one (@ ! C@ C! CMOVE), stack (DUP SWAP , etc.), dictionary (HERE
ALIOT , C,), etc.

Mechanisms may be nested one into ancther (i.e. implemented one
by means of ancther), e.g. the dictionary resides in the memory and
the dictionary management words are defined via the memory management
ones. Taking this into account, the cases of mechanisms misnesting
should be considered as design errors. For example, in F-PC the words
8 , !, etc. work not with all the memory but only with the code
segment (i.e. with a memory subset). The dicticnary is housed not in
the @-addressable memory but in the "long" memory, outside the code
segment. This results in importability of any code that uses the
misnested mechanisms. The ANSI standard team follows the path of
1gnor1ng some of Forth mechanisms and proclaiming that all what has
left is Forth - yet another misdesign example.

So, a mechanism is a set of tools. The next step would ke to
1mp1ement the mterchangeable mechanisms to work in different
application areas by similar methods. Since application areas cannot
be exchangeg or removed, we have only to implement interchangeable
sets of functions that will work in these areas and will be addressed
via the same "messages".

An actual mechanism is a set of functions that work in an
application area. These functions are called actions ("fakticheskoe
dejstvie"). They are analogous to the OOP methods and we will use
this term as well as the first one. An envelope (“obolochka) of
mechanism is a set of words (messages) that invoke the actual
mechanism actions. Depending on which actual mechanism is active,
envelope messages address to different actions.

The (vocabulary-like) structures that contain functions will be
called contexts. The examples of such structures are: wordlists,
operation tables, a sequence of actions that should be perfomed on
ABORT and are specified in different modules, a definition with
several code fields, etc.

st

Y,
Pl

Operation Tables

Operation tables allow to implement the interchangeable function
sets that work in similar application areas. They are not a something
new in the Forth commnity.

The most general defining word for messages is defined as:

: FMSG (n cfa —>) \ n is a message nmunber and cfa calculates
\ the current active operation table address
CREATE
SWAP CELIS (offset) , (function) ,
DOES> >R
R@ CELI+ @ EXECUTE R> @ + @ RUSH ;
\ RUSH works as EXECUTE EXIT

If the word F leaves the active operation table address on the stack,
messages to this table may be defined as:

1’ F FMSG msgl
2 ! F FMSG msg2

(In current implementation the 0-th cell in a table is reserved for
extentions and has not yet been used.)

In most cases the table address calculation boils down to
fetching a variable value. In these cases we may use a simple
version:

: @MSG (n addr ——>)
CRFATE
SWAP CELLS (offset) , (address) ,
DOES>
2@ SWAP @ + @ RUSH ;

(Of course, it should be better done in assembler.)

In practice, for the cases that require more complex address
calculation it is advisable to define special defining words.

Managing Vocabularies via Operation Tables

The words : , CREATE , etc. are defined as messages that
execute an action from the active table. This enables managing
diverse vocabulary-like structures by means of these words, and not
just the wordlists. The structure of resulting system is quite
recursive: the operation tables and the messages that work with them
are elements of a wordlist; wordlists are managed via operation
tables and the messages.

CURRENT is implemented as a stack rather than a variable. It
contains an operation table address (top element), an address of
target object (i.e. the cbject being filled) (the 2nd element), and
probably some other information (e.g. it is convenient to keep the
object length as the 3rd element). The operation table that contains
the target cbject filling methods is called parent operation table
{of the target).

T

The Context Filling Mechanism Messages Specification

Here we describe the set of messages that allow to add new
definitions to a variety of vocabulary-like structures. Some of
these words are best explained in Forth, so the code will be given.
The question sign (?) in stack diagrams shows that parameters are
not specified. We also do not specify what is an identifier -— a
number, an address, or a something else.

This set of messages is a framework that may be customized for
many Kinds of vocabulary-like structures by means of operation tables
(that it supports). These messages do not necessarily have a meaning
for all possible vocabulary-like structures (contexts). For example,
the actions HIDE , REVEAL , TMMEDIATE are defined as NOOP for
operation tables. To customize this framework for a new context
structure one needs to define a new operation table and fill it with
proper functions.

1. Building an entry

iD (?2-—>1id) Leaves an identifier on the stack.
Different id sources are possible.

ID, (id —>) Compile the identifier into the
dictionary.
ROOM (id ~—> room) Room is the address where a reference

to a new object named id should be placed.
PROPER (id —> id flag) Flag is true if id is aliowable.

?PROPER (id —> id) An error message if id is impermissible.
! 7PROPER PROPER 0= ABRORTY impermissible identifier" ;

TWORD (id —> val flag) Flag is true if the context contains an
object named id. Val is the same as id when flag is
false, and is the object address if flag is true.

TWARNING (id —> id) Prints a warning if the object is
already defined, or does nothing.

IATEST (—> nfa) Last definition name field address.

IT (=—> cfa) Last definition code field address.
In the 1st version it was called LASTCF.

IIATEST (nfa -—>) Sets LATEST to nfa.

T (cta —>) Sets IT to cfa.

HEADFR (id ==) Builds a header for id.

DEFINE (2?2 —) Adds a new entry to the context.

Does not build code fields.
: DEFINE ID 7PROPER 7WARNING HFADER ;

(ALIAS) (cfa —>) Make the last DEFINEd entry an alias of
the given cfa. Implies that no code fields were built.

e

e

CREATE (2 ~>)
: CREATE DEFINE HERE !IT (VAR) CF, ;

(1]
~~

?-—>7) Start a : definition.
: : ?EXEC CREATE (NEST) !CODE !CSP HIDE] ;

—~
W

? —> } End the colon definition.

T 7 P00MP ?CSP COMPILE EXIT REVEAL [COMPILE] [;

The message words that call these (: and ;) actions
are immediate, ut they may not be immediate for some
operation tables and non-immediate for cthers.
Immediacy is a message attribute, not an action

one, ard should therefore be specified in message
definitions rather than in actions ones.

2. Modification of the last entrv

ICODE (cfo —>) Write the code field contents (cfc)
into the last word code field.
: IQODE IT CFl ;

#1CODE (ncfc—>) Write the code field contents (cfc)

into the last word n~th code field.
: #1CODE SWAP CFL * IT + CF! ;

HIDE { —>) Make the last defined entry invisible,
if it is possible.

REVEAL (—>) Make the last defined entry visible,
does nothing if HIDE does so.

IMMEDIATE (—>) Make the last defined entry immediate,
if it is possble.

3. System demands

PARENTP (——> addr) Addr is the address (within the CURRENT
stack) of a pointer to the active operation table.

PARENT (—> addr) Active operation table address.
: PARENT PARENTP @ ;

OBJECT (—> addr) The address of the target object being
filled. It may be a wordlist, operation table, etc.
¢ OBJECT PARENTP CELIA+ @ ;

OBJECTL, (—> len) The object length.

: OBJECTL PARENTP 2CELIS+ @ ;
or calculates the length.

4. CURRENT stack manimlations

RECUR (—>) Discard the information about the
current target object from the CURRENT stack and recur
to the previous one.

STRAIGHTEN (—>) Discard an inflector (see below).

g

RESUME (—>) Set the context necessary for the
current active operation table to work. This message
is executed every time the current stack changes,
and prevents the operation tables from misbehaviour
in a wrong context. This supports mechanism nesting.

5. Affecting the whole target obtiect

INHERIT (addr —>) Copy the object housed at addr into the
current target one. Useful for operation tables.
s INHERTT OBJECT OBJECTL, CMOVE ;

(FORGET)} (addr —>) Forget the definitions above the addr.

Since the words PROPER , 7PROPER , etc. do not consume id, it is
possible to define them as:

DEF 7PROPER NOOP
arnd
TRUE CONSTANT PROPER

(remeber that the defining words are redefined to add new functions
to different targets, in particular, to operation tables).

Probably, the word RESUME should be subdivided into three —
INITIALIZE , REMOVE and RESUME. The first would be executed on adding
a new table onto the cwrrent stack the second would work on its
removal, and the third --- on RECURring to it. Yet another candidate
to be included here is the word DOES>.

The word INHERTT is used in the form:

TO <objectl>
AT <cbject2> INHERIT
<definitions of <cbjectl> methods that override inherited ones>

and copies the contents of <object2> into <objectl>. By this means
the methods that may be reused are inherited.

By way of illustration how the use of messages allows to define
words what can work for different contexts let us consider the
following definitions:

ITS’ (2 -—=> cfa) Fetches an identifier from its source,
searches for it in the current object and returns the
object address. Analogous to / (tick), except that
tick searches the search order.

ITS’ ID TWORD C= ABORT" -?" ;
: CONSTANT CREATE , (CONST) !CODE ;

: (DOES>) R> ICCDE ;
: DOES> 7COMP OOMPILE (DOES>) COMPILE~INSIR ; IMMEDIATE

o,

T

DEF angd ALIAS are two words that define aliases.

DEF DEFINE ’ (ALIAS)
ALIAS DEFINE (ALTAS)

e ms

\ E.g
\ DEF <BUILDSCREA‘I’E
\ ' CREATE ALTAS <BUIIDS

OPERATION TABLES MANAGING METHODS

In current implementation these functions are defined via a
special defining word (::) since the standard colon that doesn’t
support operation tables cannot be used for creation the first
operation table. Here these definitions are given as if this
mechanism was always present in system.

A name field in operation tables is a cell that points to the
action routine; an identifier is an offset from the operation table

TO OPTAB \ OPFTAB is the operation table
\ that will contain the following functions

: ID 7 >BODY @ ; \ It is important to know
\ where the message number is stored
DEF ID, DROP

OVER DUP ALIGNED = AND ;
: ?PROPER PROPER 0= ABORT" impermissible identifier" ;
: TWORD PROPER IF ROCM @ TRUE
FISE 0 THEN ;
DEF 7WARNING NOOP

IATEST PARENT [CURRENT MSG# 1+]CELLS+ @
T PARENT [CURRENT _MSG# 2+]CELIS+ @
!TATEST PARENT [CURRENT MSG# 1+ JCELIS+ !
IIT PARENT [CURRENT MSG# 2+]CELLIS+ !

s 30 W
- e e w4

HEADER ALIGN ROCM DUP !LATEST HERE SWAP ! ;
DEFINE ID ?PROPER ?WARNING HEADER ;
(ALTAS) IATEST ! ;

CREATE DEFINE HERE !IT (VAR) CF, ;

ICODE IT CF! ;

#!CODE SWAP CFL * IT + CF! ;
DEF HIDE NOOP

DEF REVEAL NOOP

DEF IMMEDTIATE NOOP

PARENT PARENTP @ ;

OBJECT PARENTP CELI+ @ ;
OBJECTL, PARENTP 2CELIS+ @ ;

e o¢ aw

¢ RECUR PARENTP [3]CELLS+ CURP! RESUME ;

DEF RESUME NOOP \ No additional settings

DEF STRATGHTEN NOOP \ Inflectors discard themselves, parent
\, tables do nothing (see about weak
\ inflectors below)

¢ INHERIT OBJECT OBJECTL CMOVE ;

DEF STRAIGHTEN NOOP

RECUR \ Ernd of OPTAB definitions

VOCABULARY MANAGING METHODS

TO WORDLIST \ WORDLIST is the operation table
\ that will contain the following functions
AT OPTAB INHERIT \ The methods that are not redefined are the same
\ as for operatiion tables (they are shown in comments)
ID BL WORD ;
D, ", ;
ROOM HASH THREADS-MASK AND OBJECT >THREADS + ;
TRUE CONSTANT PROPER
DEF 7PROPER NOOP
: 7WORD DUP ROOM SEARCH-THREAD ;
TWARNING DUP TWCRD
IF OVER .NAME ." already defined" CR THEN DROP ;

IATEST OBJECT [4]CELIS+ @
IT OBJECT [5]CELLS+ @
ILATEST OBJECT [4]CELLS+
ITT OBJECT [5 JCELIS+

" de #8 we
e s M wp

: HEADFR (id) DUP ROOM ALIGN
(id room) HERE CEII#+ +LINK
(id) HERE !1ATEST
(id) ID, ALIGN ;
\, : DEFINE ID ?PROPER TWARNING HEADER ;
: (ALIAS) (cfa —>)
\ A cludge that builds 5 code fields that are aliases of the 5 code
\ fields starting from cfa. Had the headers reside in a separate
\ segment, only a pointer assignment would be needed.

CREATE DEFINE HERE !IT (VAR) CF, ;
ICODE IT CF! ;

: #!CODE SWAP CFL % IT + CF! ;

HIDE LATEST N>FLAG SMUDGE-FLAG TUCK !BITS ;
REVEAL O LATEST N>FLAG SMUDGE-FLAG !BITS ;
IMMEDIATE TATEST N>FLAG IMM-FLAG TOGGLE ;

"o e 7

\ PARENTP PARENT OBJECT
: OBJECTL THREADS-MASK CELI+ [7]CELISH ;
DEF INHERTT WRONG-OPER

RECUR N\ End of WORDLIST definitions

e
e

Syntax for Changing the Target Object

All the contexts are implemented as multi-cfa words. The main
(0-th) one executes the default action: a wordlist adds to
the search order, an operation table takes parameters (the target
and probably its length) from the stack and adds them and itself onto
the CURRENT stack. The 1lst additional code field invokes the
context parent operation table to add the context onto the CURRENT
stack. The 2nd additional code field returns the parameter field
address. The word RECUR allows to recur to the previous target
object.

Adding new definitions to different target object locks like
this:

TO FORTH

<FORTH definitions>

OP-TABLE PROCSEQ \ We define a new operation table
HAS \ HAS here is equivalent to TO PROCSEQ
<PROCSEQ definitions>
RECUR

<FORTH definitions>
TO ASSEMBLER
<ASSFMRBIFR definitions>
RECUR

<FORTH definitions>

RECUR

<the CURRENT stack contains what it contained before-

BUMPER is an operation table a pointer to which always resides
below the CURRENT stack bottom. Its methods print an error message
and prevent the system from crush if the CURRENT stack is empty.
RESUME is its only action defined as NOOP.

Inflectors and the Delegation Interpreter

Inflectors are operation tables that modify the behaviour of the
parent operation table when are placed onto the CURRENT stack. A
message word invokes an action from the top operation table (i.e. the
table which address is on the top of CURRENT stack). This action may
be the PASS routine that causes execution of the action corresponding
to the message from the next operation table (i.e. the table which
address is the next element of the CURRENT stack). Thus an inflector
intercepts some messages while delegating others to the next
operation tables.

Delegation Interpreter Implementation

Implementation of the delegation interpreter ("interpretator
soobsh’enij", message interpreter) requires two processor registers
whose values will not be destroyed by other Forth routines such as
NEST and NEXT.

Pl

The first version of the delegation interpreter was written in
Forth rather than assembler and looks as follows:

\ CURPE@ (—> addr) retuwrns the address of CURRENT stack top.
3 QUANS R1 R2 R3

\ The values of Rl (delegation pointer) and R3 (message offset)
\ should not be destroyed by the Forth interpreter.

:QMSG ((n —>) \, define a message word
CREATE CELLS ,
DOES> @ IS R3
CURP@ IS R1
RL @ IS R2
Rl R2 + @ RUSH ;
: PASS CELL AT R1 +!
RL @8 IS R2
R3 R2 + @ RUSH :

If we define words DELEGATE arxd MP>

: DELEGATE (message offset delegation pointer ——>)
IS RL
15 R3
Rl @ IS R2
Rl R2 + @ RUSH ;

\ Message Pointer —— leaves the values of message offset and
\ delegation pointer on the stack. Should be the first word in
\ a volon definition, otherwise these values may be destroyed!

: MP> (—> message offset delegation_pointer }
R3 R1 ;

we can define the above words as:

t CMSG ((n —>) \, define a message word
CREATE CELIS ,
DOES> @ CURPQ DELEGATE ;

: PASS MP> CELI+ RUSH> DELEGATE ;

Inflectors Implementation

When an inflector is created, all its methods are defined as
PASS , except STRAIGHTEN that is defined as

: STRATGHTEN R1 CELL+ CURP! ;
(or : STRAIGHTEN MP> CELL+ CURP! DROP ;)

An useful example of inflectors is GIVEN that causes the
active operation table to take id from the data stack and not from
the input stream or any other source:

INFLECTOR GIVEN
TO GIVEN

DEF ID NOOP
RECUR

If we had defined STRAIGHTEN for parent operation tables as

\, Discard anything above
¢ STRATGHTEN MP> CUPR! DROP ;

we could implement weak inflectors. A weak inflector is an inflector
that does not intercept the STRATGHTEN message and therefore gets
discarded. The word STRAIGHTEN would discard all the weak inflectors
and the first non-weak one, if it occurs. To make an inflector weak
one can simply define its STRAIGHTEN action as NOOP , althought
there’s a questionable reason for weak inflectors.

Search Order Control Wordset

The current implementation uses executable vocabulary stack
(ORDER stack) that allows the use of vocalularies of diverse
structures,

The executable vocahulary stack may contain objects of several
types:

1. Vocabularies (to be more precise, their search code field
addresses).

2. BOTIOM , the ORDER stack end mark.

3. LIMIT , the end-of-search mark.

4. MARK , the group end mark. The provided tools allow elimination
of a group rather than of one element from the ORDER.

In searching, the vocabularies are searched, the group end marks
are ignored, LIMIT and BOTTOM cause the end of search.

The word HERFAFTER adds the group end mark onto the CRDER stack.
The word JUST adds the end-of-search mark onto the ORDER stack. This
mark may be removed by means of the word THUS that scans the ORDER
from the top and removes all the elements until it encounters a group
end mark (that also gets removed). It is i1l advised to use the word
JUST in the interpretation mode because the system will cease to know
any words.

The pseudo~vocabularies NUMBERS and VOC-NAMES recognize the
mmbers and the vocabularies. Both vocabularies and
pseudo-vocalularies add themselves to the search order when executed
(i.e. when their default code fields are executed).

VOCABULARY is a defining word for vocabularies and the word INIT>
{ or INHERITS> , they are aliases) allows to specify additional
actions that are taken before adding the vocabulary to the search
order.

For example, we may define

VOCABULARY ASMMACROS
INHERITS> FORTH HIDDEN ASSEMBLER ;

When we will execute ASMMACROS, the code from the INIT> part will be
executed first, i.e. the vocabularies FORTH, HIDDEN and ASSEMBLER
will add themselves to the search order and only then ASMMACROS will
add itself to it.

T

e
i B

The word ONLY is defined as

VOCABULARY CNLY
INPT> JUST VOC-NAMES NUMBERS ;

and contains the most necessary words: HERFAFTER , JUST , ONLY ,
THUS , TO , AT , IS and some others.

Note that because of VOC-NAMES is coded in Forth, not in
assembler, and works slowly, a name is first tried to be a mmber and
only then it is tested on being a vocabulary. This results in that
VOC-NAMES is rarely tried and does not slow down the search.

The word ! !ORDER (reset-order) is defined as:
+ {10RDER [‘] BOTTOM ORDERO @ DUP OPDERP! ! ONLY ;

an example of the search order manipulations is given below. The
marks that are present on the search order stack are not shown.

ONLY FORTH
\ The search order is: FORTH ONLY NUMBERS VOC-NAMES
HEREAFTER HIDDEN EDTIOR
\ The search order is: EDITOR HIDDEN FORTH ONLY NUMBERS VOC-NAMES
HERFAFTER ONLY FORTH ASSEMBLER
\ The search order is: ASSEMBLER FORTH ONLY NUMBERS VOC-NAMES
THUS
\ The search order is: EDITOR HIDDEN FORTH ONLY NUMBERS VOC-NAMES
THUS
\ The search order is: FORTH ONLY NUMBERS VOC-NAMES
THUS
\ The search order is the same as before the execution of the first
\ line of this example

WHAT IS DIFFERENT FROM OOP?
FORTH, OOP AND ESOTERIC TEACHINGS
An object in Yang.
an enviromment (a context) is ¥Yin.
Encapsulated Yin is Yang. Yang inside is Yin.
A set of objects forms an environment (sometimes).
This is Yin-Yang cycle.
Yin becomes Yarg on the next layer of a system.

Many Yang constitute Yin on the next layer of a system.

OOP supports the envirorment ---> object layer transition.
COP supports the objects —> enviromment layer transition.
From this point of view it is interesting to consider the

process-oriented programming [7,8] that appears to work at the third
level (an active object acts in an envirorment).

oy,

N
\

d,_gw»s\

CONCLUSION

The benefits of this technique are:
flexibility;
code reuse;

late binding;

applicability of late binding methods to primitive cbjects that have
no informatiocn about their structure (the words ID, and ROOGM serve
as good examples).

Given these tools, it is easy to implement an cbject-oriented
system: we need just to assoclate data structures with their
operation tables.

References

[1] Baranoff S.N., Nozdrumoff N.R.
Jazyk Fort i ego realizatsii. - L:Mashinostroenie, 1988. (The
Forth ILanguage and Tts Implementations, in Russian.)

{2] Dahm M., "OOF, an Object Oriented Forth", 1991 FORML Conference
Proceedings, p.338-352 , FIG, Oakland, USA, 1992.

[3] Craig Chambers, David Undar, "Customization: Optimizing
Compiler Technology for SELF, a Dynamically-Typed
Object-Oriented programming Ianguage“ Proceedings of the
SIGPLAN’89 Conference on Programming Language Design and
Implementation, in SIGPLAN Notices, v.24 n.7, July 1989.

[4] Pliss O.A.
gb*ektno-orientirovarmaija sistema MEDIUM. /Instrumentalnye
sredstva podderzhki programmirovanija. — L:LITAN, 1988.
(MEDIUM: an Object-Oriented System, in Russian)

[5] Rosen, Evan. "High Speed, Low Memory Consumption Structures
(QUAN and VECT)." Proc. of the 1982 FORML Conf., pl9l-196.

[6] Schleisiek, Klaus. Multiple Code Fields Data Types and Prefix
Operators. The Journal of Forth Application and Research,
Vol.1l,No.2, Dec. 1983, pp.55-68.

[7] ‘Tuzov V.A.
Funktsional ‘nye mtody programnlrovanlja / Instrumentalnye
sredstva programmirovanija - L:LITAN, 1988. - p.129-143. (The
Functional Methods of Programmuing [not functional
programning; subsequently this technique was called the
process—oriented programming], in Russian)

[8] Tuzov V.A.
Jazyki predstavienija znanij. - L:IGU, 1990. (The Languages of
Knowledge Representation [what an ideal language of knowledge
representation should be}, in Russian.)

[9] David Ungar, Randall B. Smith, "SELF: the Power of Simplicity",
OOPSLA’87 Conference Proceedings, SIGPLAN Notices, v.22, n.12,
December 1987.

