
Proceedings of the 1987 Rochester Forth Conference 221

Forth as a language for Digital Signal Processing

by Martin J. Tracy, FORTH Inc.

The FB320 (Forth board 320), recently developed at FORTH, Inc., supports a digital
signal processor (DSP) with the interactive high-level Forth language. The chip used
in this first version of the DSP development system is the Texas Instrment
TMS32020. It is mounted on a Pacific Microcircuits IBM board, which includes a

50 KHz AID and D/A converter, up to 128K 16-bit cells of RAM or ROM, and an
external bus. The poly FORTH development package runs directly on the TMS32020
chip, using the IBM for termnal and disk support.

Many DSP chips use the Harvard architecture, in which the program and data
memory spaces are separated. This allows the DSP chip to use two data buses for
rapid evaluation of polynomials. Typically, the program bus is used for coeffcients
and the data bus for the numeric terms. The TMS32020 is capable of a 16 x 16
signed multiply and shifted 32-bit accumulation in a total of 200 nsec. This
architecture required a Forth implementation which combines ROM-abilty with
separated headers. Furthermore, to coach maximum speed from the Forth, a direct-
threaded coding (DTC) implementation was chosen.

Direct-threaded code

In a DTC Forth, the code field of each definition contains machine code rather than a
pointer to machine code. In definitions created by : ("colon") or CREATE, this is
usually a branch or call to the machine-code responsible for the run-time action of the
word. The branch instrction is usually the same size as the call instrction, so the
location of the body of the word can be determined by adding a fixed offset to the
code field, as it is done in most Forths. . CODE definitions simply begin with their
machine code and so have no body.

Data side Program side

link addr (High-level definitions)
name X

addr m______;: CALL addr
body 0(------- addr .

lik addr (CODE-level definitions)
name X

addr --m-m;: machine-code begins here

NEXT

222 The Journal of Forth Applìcation and Research Volume 5 Number 1

There are two related reasons for the increased speed of a DTC Forth over a
traditional ITC (indirect-threaded code) Forth. First, there is only one level of
indirection from the compilation address to the code field. Second, NEXT is shorter,
and so can be compiled in-line rather than by generating a branch to it. The
TMS32020 NEXT is only two instrctions. In high-level definitions, the code field
can be further optimized by tailoring the branch or call instrction to the class of
definition. In the FP320 poly FORTH, this means selecting one register for colon and
DOES;: code fields and another for CREATE code fields.

The increiise in performance is offset by an increase in the code field size, which is
one 16-bit cell larger than its ITC counterpar. On the other hand, CODE definitions
are one cell smaller. A DTC nucleus is actually smaller than an ITC nucleus.

The' ("tick") operator in a DTC Forth points to the code field of a word rather than
to its body,. since CODE definitions have no body. This also allows EXECUTE and
GEXECUTE to operate at maximum speed.

Harvard architecture

In the Harvard architecture, machine code can only run on the program side. Data
memory access, on the other hand, is reasonable only on the data side. This split-
memory system strongly resembles the CSEG vs DSEG architecture of the Intel 8086
chip. In either case, the línk and name fields of a definition should be on the data

side, followed by a pointer to the code field on the program side. Furthermore, the
code field of a high-level word must be followed by a pointer back to its body on
the data side.

Register discipline

The TMS32020 register assiignments are as follows:

ARO is scratch.
AR i is the Forth i register.
A R2 is the Forth S register.
AR3 is the Forth R register.
A R4 is scratch.

The machine stack of the TMS32020 is only four items deep. PolyFORTH uses only
one level of this stack. The data and return stacks are created in software using the

AR2 and AR3 registers. The return stack is a post-decrement stack. This means
R does not point to the top element on the stack but rather to the next available
location. In other words, R (alias AR3) points to a scratch RAM area.

The polyFORTH DS? development system was wrtten to be relocatable, by using
only the indirect addressing mode.. The page register is free to be used and changed
by the application software at any time.. The total address space is 64K cells on each
"side," ie both data and program memory.. For this reason, stacks are one cell wide.
Because the accumulator is two cells wide and is used for anthmetic, the SX sign-
extension bit is always kept on.

Proceedings öC the 1987 Rochester Forth Conference 223

The TMS32020 only allows one of the five auxilar registers to be active ata time.
In other words, while using the data stack, the return stack is not available;
However the active register can be changed as a "free" operation by any indirect
memory access instrction. Otherwise., changing the active register takes a full
instruction cycle. The proper register discipline for maximum speed is to select the I
(AR 1) register before NEXT.

Two Examples

Let us consider thecase where we are in the midstofa high-level definition, about to
caila variable followed bya colon definition:

Data side

:i -;:x
'?

Both X and '? 'are represented by. 'compilaiionaddresseson 'the program side of their
respective code fields. The I (AR1) register is assumed 10 be active as weprocede
ihroughNEXT:

Pro,gram 'side

BAreC

i(Increment ,tand load x into theaccumulatoi:~

:(Also'cha,n;ge itosregister)
i(J\;l'mp to ;address inaccumulatot)

,'* +SOClLAC

We make the aSSllHIl,ptiondnlit wewÌ'll 'beusing:thedata stacknex:t by :selectin,g :s
lAP2) as we ,go. lnthiscase, we are ri;ght.We :are ii:OW :runniflg inthe 'codefie:ld
dfxon !the pro:g,ra:mside:

address ,of .'.X dat.a

'('CaiU 'Ilachine ,code:a: ,constant')
(Also'decrements)
i(Com,pHed ìn;lineaddress)

iQonst;ant :.'-CAIi

ipôiyFOirra iis It'OMåble, which ,means:that vanåbles like xhave,thesameaciioIl :as

'constants, :ie, itopusih :a lliiteraU (onthes:radkWeassame :that,thecomect tcode 'field
action :fora'n,ywordoønstnictedwrth 'CREATE 'or iCON'STAlNT 'or ViA!IAiiLE is to
puS'h:s0ntethi~gon !the 'stack,:so 'We 'deC1~mentSaccordlngt\y. 'S'uchwoi:clsate
;invariab\ly ifoHøwed '~y 't1heoøinpiJleò'IIteral ,to ¡bepusheddofl ,the Stack, !in ;this,casea
¡pointer ¡back to ¡the ,data :tieh!ofx ion ¡ihedata memoryside.. 'Fomunately, (this H'lera)l
lis ;at ..the ;reHum:addTesswhièh ¡the ;CÄ~!L ¡instrction ¡has !obTig1inig'tYipushed ,on !the
¡machine :Stack. We ;are ¡nøw.,ru¡nniQig ¡at 'Qonstant oi: ¡the iprQgram'side:

NEXT

r(tPo;p:the ;returnaddress ,into ¡the :accumulatoi:~
i('R:ead ¡the ;¡¡iteralinto ;the 'datastack~
,t~lsose'lect ¡the¡¡,registeij)

\(''!heim:xT ,macrøi)

,PoP
*1 'T'B'!LR

224 The Journal of Forth Application and Research Volume 5 Number i

This completes the action of x for a total time of about 2 microseconds. NEXT takes
us next to the code field of ? , making the s register active, as before. In this case
we have guessed wrong:

colon * R CAL (Call machine code at colon)
(Also change to the R register)
(Compiled in-line address)address of ? body

The CALL to colon gives us a change to change our minds and select the R register
instead. The data stack is not decremented, since we wil be pushing nothing on it.
As before, CALL pushes the address of the body of? on the machine stack. We are
now running at colon:

I * - SAR
POP
* TBLRI*I:LA
NEXT

(Save i on the retur stack)
(Pop the return address into the accumulator)
(Read the literal into a scratch area)
(Put the literal into i and make it active)
(The NEXT macro)

PolyFORTH is now running in the? definition. The total time from NEXT to
colon and back again is well under 3 microseconds.

The development environment

The polyFORTH DSP development system includes a built-in full macro assembler
with local numeric labels. It includes three source editors: strng, function key, and
full screen editors. There are two fixed-point math packages: a mixed 32-bit fixed-
point (Q31,16) and a faster signed 16-bit fixed-point (Q15) package.

The IBM provides access to all normal IBM facilties: terminal, disk, printer, serial
interface and so on. The IBM and DSP polyFORTHs are so well matched that they
can share source code. Both polyFORTHs run concurrently, sharng information
through mail boxes. A spectrm analyser demo is provided in which the DSP
polyFORTH collects microphone data and runs a 256 point FFl in real time, while
the IBM polyFORTH displays iton the high-resolution graphics screen. The
polyFORTH DSP development system is available now from FORTH, Inc.

