
National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

24

A FPGA Implementation of a RISC Processor
for Computer Architecture

Vijay R. Wadhankar

Mtech(VLSI-IV Sem)
G.H.Raisoni College of Engg

Nagpur

Vaishali Tehre
Asst. Professor

Dept of Electronics & Communication
G.H.Raisoni College of Engg

Nagpur

ABSTRACT
This paper is concerned with the design and implementation of a

32bit Reduced Instruction Set Computer (RISC) processor on a

Field Programmable Gate Arrays (FPGAs). We are designing the

processor with VHDL and the simulation using Altera Quartus

Plus2, and we will implement on Altera cyclone II in FPGA.The

test bench waveforms for the different parts of the processor are

presented and the system architecture is demonstrated.

1. INTRODUCTION
Computer organization and design is a common engineering

course where students learn concepts of modern computer

architecture. This project targets the computer architecture

courses and presents an FPGA (Field Programmable Gate Array)

implementation design of a RISC (Reduced Instruction Set

Computer) Processor using VHDL (Very high speed integrated

circuit Hardware Description Language). Furthermore, the goal of

this work is to enhance the simulator-based approach by

integrating some hardware design to help the computer

architecture gain a better understanding of both the RISC single-

cycle and pipelined processor..

Computer Engineering and Computer Design are very much

concerned with the cost and performance of components in the

implementation domain. Reduced Instruction Set Computer

(RISC) focuses on reducing the number and complexity of

instructions in the machine [1, 2]. Field Programmable Gate

Arrays (FPGAs) are growing

fast with cost reduction compared to ASIC design [3]. In this

paper we are designing a low cost 32bit RISC Processor , the

design has been described using VHDL, and some components

have been implemented and tested on Altera FPGA [4, 5, 6, and

7]. CycloneII development board, extension boards from Digilent

will be used for the hardware implementation.

The text in this article is organized as follows the introduction is

given in section I; section II is talking about the system

architecture; the design of the Control Unit is given in section III;

in section IV the instruction fetch unit is given in section V Risc

Instruction Set Architecture is given in section VI Data Memory

is given and in section VII presents the simulation results for the

different parts of the processor; the conclusion and future work

will be given at the end in section VII.

2. PROPOSED SYSTEM ARCHITECTURE
The RISC processor presented in this paper consists of following

components as shown in Figure .1, These components are, the

Control Unit (CU), the DataMemory, and the Register Unit. The

Central Processing Unit (CPU) has 17 instructions

Fig1 Block Diagram of Proposed Architecture

3. DESIGN OF THE CONTROL UNIT
The control unit of the RISC single-cycle processor examines

the instruction opcode bits [31 – 26] and decodes the instruction to

generate nine control signals to be used in the additional modules as

shown in Figure2. The RegDst control signal determines which register

is written to the register file. The Jump control signal selects the jump

address to be sent to the PC. The Branch control signal is used to select

the branch address to be sent to the PC. The MemRead control signal is

asserted during a load instruction when the data memory is read to load

a register with its memory contents. The MemtoReg control signal

determines if the ALU result or the data memory output is written to

the register file. The ALUOp control signals determine the function the

ALU performs. (e.g. and, or, add, sbu, slt) The MemWrite control

signal is asserted when during a store instruction when a registers value

is stored in the data memory. The ALUSrc control signal determines if

the ALU second operand comes from the register file or the sign

extend. The RegWrite control signal is asserted when the register file

needs to be written. Table shows the control signal values from the

instruction decoded.

Ff

Fig2. Control Unit Signals Generated

4. INSTRUCTION FETCH UNIT
The function of the instruction fetch unit is to obtain an instruction

from the instruction memory using the current value of the PC and

increment the PC value for the next instruction as shown in Figure3.

Since this design uses an 8-bit data width we had to implement byte

addressing to access the registers and word address to access the

instruction memory. The instruction fetch component contains the

following logic elements that are implemented in VHDL: 8-bit

program counter (PC) register, an adder to increment the PC by four,

the instruction memory, a multiplexor, and an AND gate used to select

the value of the next PC.

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

25

Fig3 RISC Instruction Fetch Unit

5. THE RISC INSTRUCTION SET

ARCHITECTURE
The RISC Architecture defines thirty-two, 32-bit general purpose

registers (GPRs). Register $r0 is hard-wired and always contains

the value zero. The CPU uses byte addressing for word accesses

and must be aligned on a byte boundary divisible by four (0, 4, 8,

…). RISC only has three instruction types: I-type is used for the

Load and Stores instructions, R-type is used for Arithmetic

instructions, and J-type is used for the Jump instructions as shown

in . Table2 provides a description of each of the fields used in the

three different instruction types.

RISC is a load/store architecture, meaning that all operations are

performed on operands held in the processor registers and the

main memory can only be accessed through the load and store

instructions (e.g lw, sw). A load instruction loads a value from

memory into a register. A store instruction stores a value from a

register to memory. The load and store instructions use 16 the

sum of the offset value in the address/immediate field and the

base register in the $rs field to address the memory. Arithmetic

instructions or R-type include: ALU Immediate (e.g. addi), three-

operand (e.g. add, and, slt), and shift instructions (e.g. sll, srl).

The J-type instructions are used for jump instructions (e.g. j).

Branch instructions (e.g. beq, bne) are I-type instructions which

use the addition of an offset value from the current address in the

address/immediate field along with the program counter (PC) to

compute the branch target address; this is considered PC-relative

addressing.

Table shows a summary of the core RISC instructions.

Field Description

opcode 6-bit primary operation code

rd
5-bit specifier for the destination

register

rs
5-bit specifier for the source

register

rt

5 bit specifier for the

targetsource/destination)register

or used to specify functions

within the primary opcode

REGIMM

Address/imme

diate

16 bit signed immediate used for

logical operands,airthematic

signed operands,load/store

address byte offsets,and PC –

relative branch signed

instruction displacement.

sa 5 bit shift amount

function

6-bit function field used to

specify functions within the

primary opcode SPECIAL

Table1. RISC Instruction Fields

Field Size 6 bits 5-

bits

5-

bits

5-

bits

5-

bits

6-bits

R-Format Opco

de

Rs Rt Rd Shift Function

I-Format Opco

de

Rs Rt Address/Immediate value

J-Format Opco

de

Branch Target Address

TABLE2 RISC Instruction Types

Mnemonic
For

mat

Opc

ode

Field

Funct

ion

Field

Instruction

Add R 0 32 Add

Addi I 8 - Add Immediate

Addu R 0 33 Add Unsigned

Sub R 0 34 Subtract

Subu R 0 35 Subtract Unsigned

And R 0 36
Bitwise And

Or R 0 37 Bitwise OR

Sll R 0 0 Shift Left Logical

Srl R 0 2 Shift Right Logical

Slt R 0 42 Set if Less Than

Lui I 15 - Load Upper Immediate

Lw I 35 - Load Word

Sw I 43 - Store Word

Beq I 4 - Branch on Equal

Bne I 5 - Branch on Not Equal

J J 2 - Jump

Jal J 3 -
Jump and Link (used

for Call)

Jr R 0 8
Jump Register (used for

Return)

Table3. RISC Processor Core Instructions.

6. RISC SINGLE-CYCLE PROCESSOR

VHDL IMPLEMENTATION
The initial task of this project was to implement in VHDL the RISC

single-cycle processor using Altera Quartus plus2 Text Editor to model

the processor. The IEEE Standard VHDL Language Reference Manual

[13], also helped in the overall design of the VHDL implementation.

The first part of the design was to analyze the single-cycle datapath and

take note of the major function units and their respective connections.

The RISC implementation as with all processors, consists of two main

types of logic elements: combinational and sequential elements.

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

26

Combinational elements are elements that operate on data values,

meaning that their outputs depend on the current inputs. Such

elements in the RISC implementation include the arithmetic logic

unit (ALU) and adder. Sequential elements are elements that

contain and hold a state. Each state element has at least two inputs

and one output. The two inputs are the data value to be written

and a clock signal. The output signal provides the data values that

were written in an earlier clock cycle. State elements in the RISC

implementation include the Register File, Instruction Memory,

and Data Memory as seen in Figure5.

It was determined that the full 32-bit version of the RISC

architecture would not fit onto the chosen FLEX10K70 FPGA.

The FLEX10K70 device includes nine embedded array blocks

(EABs) each providing only 2,048 bits of memory for a total of 2

KB memory space. The full 32-bit version of RISC requires no

less than twelve EABs to support the processor’s register file,

instruction memory, and data memory. In order for our design to

model that in, the data 20 width was reduced to 8-bit while still

maintaining a full 32-bit instruction. This new design allows us to

implement all of the processor’s state elements using six EABs,

which can be handled by the FLEX10K70 FPGA device. Even

though the data width was reduced, the design has minimal

VHDL source modifications from the full 32-bit version, thus not

impacting the instructional value of the RISC VHDL model.

With our new design, the register file is implemented to hold

thirty-two, 8-bit general purpose registers amounting to 32 bytes

of memory space. This easily fits into one 256 x 8 EAB within the

FPGA. The full 32-bit version of RISC will require combining

four 256 x 8 EABs to implement the register file. The register file

has two read and one write input ports, meaning that during one

clock cycle, the processor must be able to read two independent

data values and write a separate value into the register file.

Figure4 shows the RISC register file. The register file was

implemented in VHDL by declaring it as a one-dimensional array

of 32 elements or registers each 8-bits wide. (e.g. TYPE

register_file IS ARRAY (0 TO 31) OF STD_LOGIC_VECTOR

(7 DOWNTO 0)) By declaring the register file as a one-

dimensional array, the requested register address would need to

be converted into an integer to index the register file.(e.g.

Read_Data_1 <= register_file (CONV_INTEGER

(read_register_address1 (4 DOWNTO 0)))) Finally, to save from

having to load each register with a value, the registers get

initialized to their respective register number when the Reset

signal is asserted. (e.g. $r1 = 1, $r2 = 2, etc.)

Fig4. RISC Register File

Altera Quartus Plus2 is packaged with a Library of

Parameterized Modules (LPM) that allow one to implement RAM

and ROM memory in Altera supported PLD devices. With our

design this library was used to declare the instruction memory as

a read only memory (ROM) and the data memory as a random

access memory (RAM). Using the lpm_rom component from the

LPM Library, the Instruction memory is declared as a ROM and

the following parameters are set: the width of the output data port

parameter lpm_width is set to 32-bits, the width of the address

port parameter lpm_widthad is set to 8-bits, and the parameter

lpm_file is used to declare a memory initialization file (.mif) that

contains ROM initialization data. This allows us to set the indexed

address data width to 8-bits, the instruction output to 32-bits wide, and

enables us to initialize the ROM with the desired RISC program to test

the RISC processor implementation. With these settings, four 256 x 8

EABs are required to implement the instruction memory. An example

of the RISC instruction memory can be seen in Figure5 and the VHDL

code implementation can be seen in Figure6.

Fig 5 RISC Instruction Memory

Fig 6 VHDL – RISC Instruction Memory

The data memory is declared using the lpm_ram_dq component of the

LPM library. This component is chosen because it requires that the

memory address to stabilize before allowing the write enable to be

asserted high. The input Address width (lpm_widthad) and the Read

Data output width (lpm_width) are both declared as 8-bit wide, in lieu

of our altered design. Using these settings allows us to use one 256 x 8

EAB instead of the 4 combined EABs required for the full 32-bit

version of RISC. An example of the RISC data memory can be seen in

Figure7 and the VHDL code implementation can be seen in Figure8.

 Fig

7 RISC Data Memory

Table 4. VHDL – RISC Data Memory

7. DATA MEMORY UNIT
The data memory unit is only accessed by the load and store

instructions. The load instruction asserts the MemRead signal and uses

Instr_Memory: LPM_ROM

GENERIC MAP(

LPM_WIDTH => 32,

LPM_WIDTHAD => 8,

LPM_FILE => "instruction_memory.mif",

LPM_OUTDATA =>

"UNREGISTERED",

LPM_ADDRESS_CONTROL =>

"UNREGISTERED")

PORT MAP (

address => PC,

q => Instruction);

Data_Memory : LPM_RAM_DQ

GENERIC MAP(

LPM_WIDTH => 8,

LPM_WIDTHAD => 8,

LPM_FILE => "data_memory.mif",

LPM_INDATA => "REGISTERED",

LPM_ADDRESS_CONTROL =>

"UNREGISTERED",

LPM_OUTDATA => "UNREGISTERED")

PORT MAP(

inclock => Clock,
data => Write_Data,

address => Address,

we => LPM_WRITE,

q => Read_Data);

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

27

the ALU Result value as an address to index the data memory.

The read output data is then subsequently written into the register

file. A store instruction asserts the MemWrite signal and writes

the data value previously read from a register into the computed

memory address. Figure8 shows the signals used by the memory

unit to access the data memory.

8. SIMULATION RESULTS
In this section we are going to show some test bench waveforms

that will verify the working operation of our RISC Processor. In

Fig9.1 , the following simple program was hard coded and

simulated on the CPU:

There are 5 main signals that are viewed in throughout the

simulation. The sim_clock signal is the clock generated for the

simulation and runs at 50Mhz, instruction_fetch signal shows

when the control unit requests data from the ROM, the

instruction_address 32bit bus is the address of the instruction

being fetched, the instruction_data 32bit bus is the data sent out

from the ROM, and the reset state is enabled for 3.5 cycle to give

enough time for all units to reset and initialize, after that we can

see the first instruction beginning at address 0 is executed

followed by all the proceeding instructions until the instruction at

address 40 Which is the shift half word “SHW”.

Figure 9.2 shows the simulation results of the cpu depending

upon the opcode given.In which we are attempting to use the

different opcodes depending upon the program written. And

depending upon the opcode we get the result.In Figure 9.3 we get

the simulation result of the instruction fetch.

In Fig9.4 the initialization of the instruction memory location is

shown.

Fig9.1 Simulation Results for Control Unit Depending on

opcode 100011

Fig9.2Simulation Results for Control Unit Depending on

opcode 000100

Fig9.3Simulation Results for Ifetch

Fig9.4 Results for Instruction Memory

9. CONCLUSION AND FUTURE WORK

We are designing 32bit RISC Processor and implementing in

hardware on Altera CycloneII in FPGA. The design has been achieved

using VHDL and simulated with Altera Quartus Plus 2 development

board has been used for the hardware part. Most of the goals were

achieved and simulation shows that the processor is working perfectly,

implemented and test in a real hardware..

In the Future we are trying to implement the reconfigurable unit which

can reconfigure the data memory,instruction memory and may be in

future to reconfigure ALU according to application requirement. Extra

work will be added by increasing the number of instructions and make

a pipelined design with less clock cycles per instruction and more

improvement can be added in the future work.In this project in the

future we are going to reconfigure the data memory and instruction

memory

10. REFERENCES
[1] John L. Hennessy, and David A. Patterson, “Computer

Architecture A Quantitative Approach”, 4th Edition; 2006.

[2] Vincent P. Heuring, and Harry F. Jordan, “Computer

 Systems Design and Architecture”, 2nd Edition,

 2003.

[3] Wayne Wolf, FPGABased System Design, Prentice

 Hall, 2005.

[4] Dal Poz, Marco Antonio Simon, Cobo, Jose Edinson

 Aedo, Van Noije, Wilhelmus Adrianus Maria,

 Zuffo,Marcelo Knorich, “Simple Risc microprocessor

 core designed for digital settopbox applications”,

 Proceedings of the International Conference on

 Application Specific Systems, Architectures and

 Processors, 2000, p 3544.

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

28

[5] Brunelli Claudio, Cinelli Federico, Rossi Davide,

 Nurmi Jari, “A VHDL model and implementation

 of a coarsegrain reconfigurable coprocessor for a

 RISC core”, 2nd Conference on Ph.D. Research in

 MicroElectronics and Electronics Proceedings,2006,

[6] Rainer Ohlendorf, Thomas Wild, Michael Meitinger,

 Holm Rauchfuss, Andreas Herkersdorf, “Simulated

 and measured performance evaluation of RISCbased

 SoC platforms in network processing applications”,

 Journal of Systems Architecture 53 (2007) 703–718.

[7] Luker, Jarrod D., Prasad, Vinod B., “RISC system

 design in an FPGA”, MWSCAS 2001,

[8] Jiang, Hongtu; “FPGA implementation of

 controllerdatapath pair in custom image processor

 design”; IEEE International Symposium on Circuits

 and Systems Proceedings;2004, p V141V144.

[9] Jiang Hongtu, Owall Viktor, “FPGA implementation

 of controllerdatapath pair in custom image processor

 design”, IEEE International Symposium on Circuits

 and Systems, Proceedings v 5, p V141V144.

