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ABSTRACT 
This paper is concerned with the design and implementation of a 

32bit  Reduced Instruction Set Computer (RISC) processor on a 

Field Programmable Gate Arrays (FPGAs). We are designing the 

processor  with VHDL and the  simulation using  Altera Quartus 

Plus2, and we will implement on Altera cyclone II in FPGA.The 

test bench waveforms for the different parts of the processor are 

presented and the system architecture is demonstrated. 

 

1.  INTRODUCTION 
Computer organization and design is a common engineering 

course where students learn concepts of modern computer 

architecture. This project targets the computer architecture 

courses and presents an FPGA (Field Programmable Gate Array) 

implementation design of a   RISC (Reduced Instruction Set 

Computer) Processor using VHDL (Very high speed integrated 

circuit Hardware Description Language). Furthermore, the goal of 

this work is to enhance the simulator-based approach by 

integrating some hardware design to help the computer 

architecture  gain a better understanding of both the RISC single-

cycle and pipelined processor.. 

 

Computer Engineering and Computer Design are very much 

concerned with the cost and performance of components in the 

implementation domain. Reduced  Instruction Set Computer 

(RISC) focuses on reducing the number and complexity of 

instructions in the machine [1, 2]. Field Programmable Gate 

Arrays (FPGAs) are growing  

fast with cost reduction compared to ASIC design [3]. In this 

paper we are designing a  low cost 32bit RISC Processor , the 

design has been described using VHDL, and some components 

have been implemented  and tested on Altera FPGA [4, 5, 6, and 

7]. CycloneII development board, extension boards from Digilent   

will be  used for the hardware implementation.  

 

The text in this article is organized as follows  the introduction is 

given in section I; section II is talking about the system 

architecture; the design of the Control Unit is given in section III; 

in section IV  the instruction fetch unit is given in section V Risc 

Instruction Set Architecture is given  in section VI  Data Memory 

is given and in section VII   presents the simulation results for the 

different parts of the processor; the conclusion and future work 

will be given at the end in section VII. 

 

2.   PROPOSED SYSTEM ARCHITECTURE 
The RISC processor presented in this paper consists of following 

components as shown in Figure .1, These components are, the 

Control Unit (CU), the DataMemory, and the Register Unit. The 

Central Processing Unit (CPU) has 17 instructions 

 
Fig1 Block Diagram of  Proposed Architecture 

 

3.  DESIGN OF THE CONTROL UNIT 
The control unit of the RISC single-cycle processor examines 

the instruction opcode bits [31 – 26] and decodes the instruction to 

generate nine control signals to be used in the additional modules as 

shown in Figure2. The RegDst control signal determines which register 

is written to the register file. The Jump control signal selects the jump 

address to be sent to the PC. The Branch control signal is used to select 

the branch address to be sent to the PC. The MemRead control signal is 

asserted during a load instruction when the data memory is read to load 

a register with its memory contents. The MemtoReg control signal 

determines if the ALU result or the data memory output is written to 

the register file. The ALUOp control signals determine the function the 

ALU performs. (e.g. and, or, add, sbu, slt) The MemWrite control 

signal is asserted when during a store instruction when a registers value 

is stored in the data memory. The ALUSrc control signal determines if 

the ALU second operand comes from the register file or the sign 

extend. The RegWrite control signal is asserted when the register file 

needs to be written. Table  shows the control signal values from the 

instruction decoded.  

 

 

 

 

 

 

Ff 

Fig2.  Control Unit  Signals Generated 

 

 

4. INSTRUCTION  FETCH  UNIT 
The function of the instruction fetch unit is to obtain an instruction 

from the instruction memory using the current value of the PC and 

increment the PC value for the next instruction as shown in Figure3. 

Since this design uses an 8-bit data width we had to implement byte 

addressing to access the registers and word address to access the 

instruction memory. The instruction fetch component contains the 

following logic elements that are implemented in VHDL: 8-bit 

program counter (PC) register, an adder to increment the PC by four, 

the instruction memory, a multiplexor, and an AND gate used to select 

the value of the next PC.  
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Fig3 RISC  Instruction Fetch Unit 

 

5.  THE RISC INSTRUCTION SET 

ARCHITECTURE 
The RISC Architecture defines thirty-two, 32-bit general purpose 

registers (GPRs). Register $r0 is hard-wired and always contains 

the value zero. The CPU uses byte addressing for word accesses 

and must be aligned on a byte boundary divisible by four (0, 4, 8, 

…). RISC only has three instruction types: I-type is used for the 

Load and Stores instructions, R-type is used for Arithmetic 

instructions, and J-type is used for the Jump instructions as shown 

in . Table2  provides a description of each of the fields used in the 

three different instruction types.  

RISC is a load/store architecture, meaning that all operations are 

performed on operands held in the processor registers and the 

main memory can only be accessed through the load and store 

instructions (e.g lw, sw). A load instruction loads a value from 

memory into a register. A store instruction stores a value from a 

register to memory. The load and store instructions use 16 the 

sum of the offset value in the address/immediate field and the 

base register in the $rs field to address the memory. Arithmetic 

instructions or R-type include: ALU Immediate (e.g. addi), three-

operand (e.g. add, and, slt), and shift instructions (e.g. sll, srl). 

The J-type instructions are used for jump instructions (e.g. j). 

Branch instructions (e.g. beq, bne) are I-type instructions which 

use the addition of an offset value from the current address in the 

address/immediate field along with the program counter (PC) to 

compute the branch target address; this is considered PC-relative 

addressing.  

Table  shows a summary of the core RISC instructions. 

 

Field Description 

opcode 6-bit primary operation code 

rd 
5-bit specifier for the destination 

register 

rs 
5-bit specifier for the source 

register 

rt 

5 bit specifier for the 

targetsource/destination)register 

or used to specify functions 

within the primary opcode 

REGIMM 

Address/imme

diate 

16 bit signed immediate used for 

logical operands,airthematic 

signed operands,load/store 

address byte offsets,and PC –

relative branch signed 

instruction displacement. 

sa 5 bit shift amount 

function 

6-bit function field used to 

specify functions within the 

primary opcode SPECIAL 

 

Table1.  RISC Instruction Fields 

 

Field Size 6 bits 5-

bits 

5-

bits 

5-

bits 

5-

bits 

6-bits 

R-Format Opco

de 

Rs Rt Rd Shift Function 

I-Format Opco

de 

Rs Rt Address/Immediate value 

J-Format Opco

de 

Branch Target Address 

TABLE2 RISC Instruction Types 

 

Mnemonic  
For

mat  

Opc

ode  

Field  

Funct

ion  

Field  

Instruction  

Add  R  0  32  Add  

Addi  I  8  -  Add Immediate  

Addu  R  0  33  Add Unsigned  

Sub  R  0  34  Subtract  

Subu  R  0  35  Subtract Unsigned  

And  R  0  36  
Bitwise And  

 

Or  R  0  37  Bitwise OR  

Sll  R  0  0  Shift Left Logical  

Srl  R  0  2  Shift Right Logical  

 

 

 

Slt  R  0  42  Set if Less Than  

Lui  I  15  -  Load Upper Immediate  

Lw  I  35  -  Load Word  

Sw  I  43  -  Store Word  

Beq  I  4  -  Branch on Equal  

Bne  I  5  -  Branch on Not Equal  

J  J  2  -  Jump  

Jal  J  3  -  
Jump and Link (used 

for Call)  

Jr  R  0  8  
Jump Register (used for 

Return)  

Table3. RISC Processor Core Instructions. 

 

6.  RISC SINGLE-CYCLE PROCESSOR 

VHDL IMPLEMENTATION 
The initial task of this project was to implement in VHDL the RISC 

single-cycle processor using Altera Quartus plus2 Text Editor to model 

the processor. The IEEE Standard VHDL Language Reference Manual 

[13], also helped in the overall design of the VHDL implementation. 

The first part of the design was to analyze the single-cycle datapath and 

take note of the major function units and their respective connections.  

The RISC implementation as with all processors, consists of two main 

types of logic elements: combinational and sequential elements. 
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Combinational elements are elements that operate on data values, 

meaning that their outputs depend on the current inputs. Such 

elements in the RISC implementation include the arithmetic logic 

unit (ALU) and adder. Sequential elements are elements that 

contain and hold a state. Each state element has at least two inputs 

and one output. The two inputs are the data value to be written 

and a clock signal. The output signal provides the data values that 

were written in an earlier clock cycle. State elements in the RISC 

implementation include the Register File, Instruction Memory, 

and Data Memory as seen in Figure5. 

 

It was determined that the full 32-bit version of the RISC 

architecture would not fit onto the chosen FLEX10K70 FPGA. 

The FLEX10K70 device includes nine embedded array blocks 

(EABs) each providing only 2,048 bits of memory for a total of 2 

KB memory space. The full 32-bit version of RISC requires no 

less than twelve EABs to support the processor’s register file, 

instruction memory, and data memory. In order for our design to 

model that in, the data 20 width was reduced to 8-bit while still 

maintaining a full 32-bit instruction. This new design allows us to 

implement all of the processor’s state elements using six EABs, 

which can be handled by the FLEX10K70 FPGA device. Even 

though the data width was reduced, the design has minimal 

VHDL source modifications from the full 32-bit version, thus not 

impacting the instructional value of the RISC VHDL model. 

 

With our new design, the register file is implemented to hold 

thirty-two, 8-bit general purpose registers amounting to 32 bytes 

of memory space. This easily fits into one 256 x 8 EAB within the 

FPGA. The full 32-bit version of RISC will require combining 

four 256 x 8 EABs to implement the register file. The register file 

has two read and one write input ports, meaning that during one 

clock cycle, the processor must be able to read two independent 

data values and write a separate value into the register file. 

Figure4  shows the RISC register file. The register file was 

implemented in VHDL by declaring it as a one-dimensional array 

of 32 elements or registers each 8-bits wide. (e.g. TYPE 

register_file IS ARRAY (0 TO 31) OF STD_LOGIC_VECTOR 

(7 DOWNTO 0) ) By declaring the register file as a one-

dimensional array, the requested register address would need to 

be converted into an integer to index the register file.(e.g. 

Read_Data_1 <= register_file ( CONV_INTEGER 

(read_register_address1 (4 DOWNTO 0))) ) Finally, to save from 

having to load each register with a value, the registers get 

initialized to their respective register number when the Reset 

signal is asserted. (e.g. $r1 = 1, $r2 = 2, etc.) 

                 
Fig4. RISC Register File 

 

Altera Quartus Plus2 is packaged with a Library of 

Parameterized Modules (LPM) that allow one to implement RAM 

and ROM memory in Altera supported PLD devices. With our 

design this library was used to declare the instruction memory as 

a read only memory (ROM) and the data memory as a random 

access memory (RAM). Using the lpm_rom component from the 

LPM Library, the Instruction memory is declared as a ROM and 

the following parameters are set: the width of the output data port 

parameter lpm_width is set to 32-bits, the width of the address 

port parameter lpm_widthad is set to 8-bits, and the parameter 

lpm_file is used to declare a memory initialization file (.mif) that 

contains ROM initialization data. This allows us to set the indexed 

address data width to 8-bits, the instruction output to 32-bits wide, and 

enables us to initialize the ROM with the desired RISC program to test 

the RISC processor implementation. With these settings, four 256 x 8 

EABs are required to implement the instruction memory. An example 

of the RISC instruction memory can be seen in Figure5 and the VHDL 

code implementation can be seen in Figure6.  

                  
Fig 5 RISC Instruction Memory 

 

 

 

 

 

        

 

 

 

 

 
Fig 6 VHDL – RISC Instruction Memory 

 
The data memory is declared using the lpm_ram_dq component of the 

LPM library. This component is chosen because it requires that the 

memory address to stabilize before allowing the write enable to be 

asserted high. The input Address width (lpm_widthad) and the Read 

Data output width (lpm_width) are both declared as 8-bit wide, in lieu 

of our altered design. Using these settings allows us to use one 256 x 8 

EAB instead of the 4 combined EABs required for the full 32-bit 

version of RISC. An example of the RISC data memory can be seen in 

Figure7 and the VHDL code implementation can be seen in Figure8. 

 Fig 

7 RISC Data Memory 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 4. VHDL – RISC Data Memory 

 

7.  DATA MEMORY UNIT 
The data memory unit is only accessed by the load and store 

instructions. The load instruction asserts the MemRead signal and uses 

Instr_Memory: LPM_ROM  

GENERIC MAP(  

LPM_WIDTH => 32,  

LPM_WIDTHAD => 8,  

LPM_FILE => "instruction_memory.mif",  

LPM_OUTDATA => 

"UNREGISTERED",  

LPM_ADDRESS_CONTROL => 

"UNREGISTERED")  

PORT MAP (  

address => PC,  

q => Instruction ); 

 

Data_Memory : LPM_RAM_DQ  

GENERIC MAP(  

LPM_WIDTH => 8,  

LPM_WIDTHAD => 8,  

LPM_FILE => "data_memory.mif",  

LPM_INDATA => "REGISTERED",  

LPM_ADDRESS_CONTROL => 

"UNREGISTERED",  

LPM_OUTDATA => "UNREGISTERED")  

PORT MAP(  

inclock => Clock,  
data => Write_Data,  

address => Address,  

we => LPM_WRITE,  

q => Read_Data); 
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the ALU Result value as an address to index the data memory. 

The read output data is then subsequently written into the register 

file. A store instruction asserts the MemWrite signal and writes 

the data value previously read from a register into the computed 

memory address. Figure8  shows the signals used by the memory 

unit to access the data memory.  

 
 

8.  SIMULATION RESULTS 
In this section we are going to show some test bench waveforms 

that will verify the working operation of our RISC Processor. In 

Fig9.1 , the following simple program was hard coded and 

simulated on the CPU: 

 
There are 5 main signals that are viewed in throughout the 

simulation. The sim_clock signal is the clock generated for the 

simulation and runs at 50Mhz, instruction_fetch signal shows 

when the control unit requests data from the ROM, the 

instruction_address 32bit bus is the address of the instruction 

being fetched, the instruction_data 32bit bus is the data sent out 

from the ROM, and the reset state is enabled for 3.5 cycle to give 

enough time for all units to reset and initialize, after that we can 

see the first instruction beginning at address 0 is executed 

followed by all the proceeding instructions until the instruction at 

address 40 Which is the shift half word “SHW”.  

 

Figure 9.2 shows the simulation results of the cpu depending 

upon the opcode given.In which we are attempting to use the 

different opcodes depending upon the program written. And 

depending upon the opcode we get the result.In Figure 9.3 we get 

the simulation result of the instruction fetch. 

In Fig9.4 the initialization of the instruction memory location is 

shown.  

 
Fig9.1 Simulation Results for Control Unit  Depending on 

opcode 100011 

 
Fig9.2Simulation Results for Control Unit  Depending on 

opcode 000100 

 
Fig9.3Simulation Results for Ifetch 

 

 
Fig9.4  Results for Instruction Memory 

 

9.  CONCLUSION AND FUTURE WORK 

 
We are designing 32bit RISC Processor  and implementing  in 

hardware on Altera CycloneII in FPGA. The design has been achieved 

using VHDL and simulated with Altera Quartus Plus 2 development 

board has been used for the hardware part. Most of the goals were 

achieved and simulation shows that the processor is working perfectly,  

implemented and test in a real hardware.. 

 

In the Future we are trying to implement the reconfigurable unit which 

can reconfigure the data memory,instruction memory and may be in 

future to reconfigure ALU according to application requirement. Extra 

work will be added by increasing the number of instructions and make 

a pipelined design with less clock cycles per instruction and more 

improvement can be added in the future work.In this project in the 

future we are going to reconfigure the data memory and instruction 

memory 
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