
binarydebt.wordpress.com

Intel Virtualisation: How VT-x, KVM and QEMU
Work Together

Okash Khawaja

12-15 minutes

VT-x is name of CPU virtualisation technology by Intel. KVM is component of Linux

kernel which makes use of VT-x. And QEMU is a user-space application which

allows users to create virtual machines. QEMU makes use of KVM to achieve

efficient virtualisation. In this article we will talk about how these three technologies

work together. Don’t expect an in-depth exposition about all aspects here, although in

future, I might follow this up with more focused posts about some specific parts.

Something About Virtualisation First

Let’s first touch upon some theory before going into main discussion. Related to

virtualisation is concept of emulation – in simple words, faking the hardware. When

you use QEMU or VMWare to create a virtual machine that has ARM processor, but

your host machine has an x86 processor, then QEMU or VMWare would emulate or

fake ARM processor. When we talk about virtualisation we mean hardware assisted

virtualisation where the VM’s processor matches host computer’s processor. Often

conflated with virtualisation is an even more distinct concept of containerisation.

Containerisation is mostly a software concept and it builds on top of operating system

abstractions like process identifiers, file system and memory consumption limits. In

this post we won’t discuss containers any more.

A typical VM set up looks like below:

Intel Virtualisation: How VT-x, KVM and QEMU ... about:reader?url=https://binarydebt.wordpress.c...

1 of 8 5/3/20, 8:06 AM



At the lowest level is hardware which supports virtualisation. Above it, hypervisor or

virtual machine monitor (VMM). In case of KVM, this is actually Linux kernel which

has KVM modules loaded into it. In other words, KVM is a set of kernel modules that

when loaded into Linux kernel turn the kernel into hypervisor. Above the hypervisor,

and in user space, sit virtualisation applications that end users directly interact with –

QEMU, VMWare etc. These applications then create virtual machines which run their

own operating systems, with cooperation from hypervisor.

Finally, there is “full” vs. “para” virtualisation dichotomy. Full virtualisation is when

OS that is running inside a VM is exactly the same as would be running on real

hardware. Paravirtualisation is when OS inside VM is aware that it is being

virtualised and thus runs in a slightly modified way than it would on real hardware.

VT-x

VT-x is CPU virtualisation for Intel 64 and IA-32 architecture. For Intel’s Itanium,

there is VT-I. For I/O virtualisation there is VT-d. AMD also has its virtualisation

technology called AMD-V. We will only concern ourselves with VT-x.

Under VT-x a CPU operates in one of two modes: root and non-root. These modes are

orthogonal to real, protected, long etc, and also orthogonal to privilege rings (0-3).

They form a new “plane” so to speak. Hypervisor runs in root mode and VMs run in

non-root mode. When in non-root mode, CPU-bound code mostly executes in the

same way as it would if running in root mode, which means that VM’s CPU-bound

operations run mostly at native speed. However, it doesn’t have full freedom.

Intel Virtualisation: How VT-x, KVM and QEMU ... about:reader?url=https://binarydebt.wordpress.c...

2 of 8 5/3/20, 8:06 AM



Privileged instructions form a subset of all available instructions on a CPU. These are

instructions that can only be executed if the CPU is in higher privileged state, e.g.

current privilege level (CPL) 0 (where CPL 3 is least privileged). A subset of these

privileged instructions are what we can call “global state-changing” instructions –

those which affect the overall state of CPU. Examples are those instructions which

modify clock or interrupt registers, or write to control registers in a way that will

change the operation of root mode. This smaller subset of sensitive instructions are

what the non-root mode can’t execute.

VMX and VMCS

Virtual Machine Extensions (VMX) are instructions that were added to facilitate VT-

x. Let’s look at some of them to gain a better understanding of how VT-x works.

VMXON: Before this instruction is executed, there is no concept of root vs non-root

modes. The CPU operates as if there was no virtualisation. VMXON must be

executed in order to enter virtualisation. Immediately after VMXON, the CPU is in

root mode.

VMXOFF: Converse of VMXON, VMXOFF exits virtualisation.

VMLAUNCH: Creates an instance of a VM and enters non-root mode. We will

explain what we mean by “instance of VM” in a short while, when covering VMCS.

For now think of it as a particular VM created inside QEMU or VMWare.

VMRESUME: Enters non-root mode for an existing VM instance.

When a VM attempts to execute an instruction that is prohibited in non-root mode,

CPU immediately switches to root mode in a trap-like way. This is called a VM exit.

Let’s synthesise the above information. CPU starts in a normal mode, executes

VMXON to start virtualisation in root mode, executes VMLAUNCH to create and

enter non-root mode for a VM instance, VM instance runs its own code as if running

natively until it attempts something that is prohibited, that causes a VM exit and a

switch to root mode. Recall that the software running in root mode is hypervisor.

Hypervisor takes action to deal with the reason for VM exit and then executes

VMRESUME to re-enter non-root mode for that VM instance, which lets the VM

instance resume its operation. This interaction between root and non-root mode is the

Intel Virtualisation: How VT-x, KVM and QEMU ... about:reader?url=https://binarydebt.wordpress.c...

3 of 8 5/3/20, 8:06 AM



essence of hardware virtualisation support.

Of course the above description leaves some gaps. For example, how does hypervisor

know why VM exit happened? And what makes one VM instance different from

another? This is where VMCS comes in. VMCS stands for Virtual Machine Control

Structure. It is basically a 4KiB part of physical memory which contains information

needed for the above process to work. This information includes reasons for VM exit

as well as information unique to each VM instance so that when CPU is in non-root

mode, it is the VMCS which determines which instance of VM it is running.

As you may know, in QEMU or VMWare, we can decide how many CPUs a

particular VM will have. Each such CPU is called a virtual CPU or vCPU. For each

vCPU there is one VMCS. This means that VMCS stores information on CPU-level

granularity and not VM level. To read and write a particular VMCS, VMREAD and

VMWRITE instructions are used. They effectively require root mode so only

hypervisor can modify VMCS. Non-root VM can perform VMWRITE but not to the

actual VMCS, but a “shadow” VMCS – something that doesn’t concern us

immediately.

There are also instructions that operate on whole VMCS instances rather than

individual VMCSs. These are used when switching between vCPUs, where a vCPU

could belong to any VM instance. VMPTRLD is used to load the address of a VMCS

and VMPTRST is used to store this address to a specified memory address. There can

be many VMCS instances but only one is marked as current and active at any point.

VMPTRLD marks a particular VMCS as active. Then, when VMRESUME is

executed, the non-root mode VM uses that active VMCS instance to know which

particular VM and vCPU it is executing as.

Here it’s worth noting that all the VMX instructions above require CPL level 0, so

they can only be executed from inside the Linux kernel (or other OS kernel).

VMCS basically stores two types of information:

1. Context info which contains things like CPU register values to save and restore during

transitions between root and non-root.

2. Control info which determines behaviour of the VM inside non-root mode.

More specifically, VMCS is divided into six parts.

Intel Virtualisation: How VT-x, KVM and QEMU ... about:reader?url=https://binarydebt.wordpress.c...

4 of 8 5/3/20, 8:06 AM



1. Guest-state stores vCPU state on VM exit. On VMRESUME, vCPU state is restored

from here.

2. Host-state stores host CPU state on VMLAUNCH and VMRESUME. On VM exit,

host CPU state is restored from here.

3. VM execution control fields determine the behaviour of VM in non-root mode. For

example hypervisor can set a bit in a VM execution control field such that whenever

VM attempts to execute RDTSC instruction to read timestamp counter, the VM exits

back to hypervisor.

4. VM exit control fields determine the behaviour of VM exits. For example, when a bit

in VM exit control part is set then debug register DR7 is saved whenever there is a

VM exit.

5. VM entry control fields determine the behaviour of VM entries. This is counterpart of

VM exit control fields. A symmetric example is that setting a bit inside this field will

cause the VM to always load DR7 debug register on VM entry.

6. VM exit information fields tell hypervisor why the exit happened and provide

additional information.

There are other aspects of hardware virtualisation support that we will conveniently

gloss over in this post. Virtual to physical address conversion inside VM is done using

a VT-x feature called Extended Page Tables (EPT). Translation Lookaside Buffer

(TLB) is used to cache virtual to physical mappings in order to save page table

lookups. TLB semantics also change to accommodate virtual machines. Advanced

Programmable Interrupt Controller (APIC) on a real machine is responsible for

managing interrupts. In VM this too is virtualised and there are virtual interrupts

which can be controlled by one of the control fields in VMCS. I/O is a major part of

any machine’s operations. Virtualising I/O is not covered by VT-x and is usually

emulated in user space or accelerated by VT-d.

KVM

Kernel-based Virtual Machine (KVM) is a set of Linux kernel modules that when

loaded, turn Linux kernel into hypervisor. Linux continues its normal operations as

OS but also provides hypervisor facilities to user space. KVM modules can be

Intel Virtualisation: How VT-x, KVM and QEMU ... about:reader?url=https://binarydebt.wordpress.c...

5 of 8 5/3/20, 8:06 AM



grouped into two types: core module and machine specific modules. kvm.ko is the

core module which is always needed. Depending on the host machine CPU, a

machine specific module, like kvm-intel.ko or kvm-amd.ko will be needed. As you

can guess, kvm-intel.ko uses the functionality we described above in VT-x section. It

is KVM which executes VMLAUNCH/VMRESUME, sets up VMCS, deals with VM

exits etc. Let’s also mention that AMD’s virtualisation technology AMD-V also has

its own instructions and they are called Secure Virtual Machine (SVM). Under

`arch/x86/kvm/` you will find files named `svm.c` and `vmx.c`. These contain code

which deals with virtualisation facilities of AMD and Intel respectively.

KVM interacts with user space – in our case QEMU – in two ways: through device

file `/dev/kvm` and through memory mapped pages. Memory mapped pages are used

for bulk transfer of data between QEMU and KVM. More specifically, there are two

memory mapped pages per vCPU and they are used for high volume data transfer

between QEMU and the VM in kernel.

`/dev/kvm` is the main API exposed by KVM. It supports a set of `ioctl`s which allow

QEMU to manage VMs and interact with them. The lowest unit of virtualisation in

KVM is a vCPU. Everything builds on top of it. The `/dev/kvm` API is a three-level

hierarchy.

1. System Level: Calls this API manipulate the global state of the whole KVM

subsystem. This, among other things, is used to create VMs.

2. VM Level: Calls to this API deal with a specific VM. vCPUs are created through

calls to this API.

3. vCPU Level: This is lowest granularity API and deals with a specific vCPU. Since

QEMU dedicates one thread to each vCPU (see QEMU section below), calls to this

API are done in the same thread that was used to create the vCPU.

After creating vCPU QEMU continues interacting with it using the ioctls and memory

mapped pages.

QEMU

Quick Emulator (QEMU) is the only user space component we are considering in our

VT-x/KVM/QEMU stack. With QEMU one can run a virtual machine with ARM or

Intel Virtualisation: How VT-x, KVM and QEMU ... about:reader?url=https://binarydebt.wordpress.c...

6 of 8 5/3/20, 8:06 AM



MIPS core but run on an Intel host. How is this possible? Basically QEMU has two

modes: emulator and virtualiser. As an emulator, it can fake the hardware. So it can

make itself look like a MIPS machine to the software running inside its VM. It does

that through binary translation. QEMU comes with Tiny Code Generator (TCG). This

can be thought if as a sort of high-level language VM, like JVM. It takes for instance,

MIPS code, converts it to an intermediate bytecode which then gets executed on the

host hardware.

The other mode of QEMU – as a virtualiser – is what achieves the type of

virtualisation that we are discussing here. As virtualiser it gets help from KVM. It

talks to KVM using ioctl’s as described above.

QEMU creates one process for every VM. For each vCPU, QEMU creates a thread.

These are regular threads and they get scheduled by the OS like any other thread. As

these threads get run time, QEMU creates impression of multiple CPUs for the

software running inside its VM. Given QEMU’s roots in emulation, it can emulate I/O

which is something that KVM may not fully support – take example of a VM with

particular serial port on a host that doesn’t have it. Now, when software inside VM

performs I/O, the VM exits to KVM. KVM looks at the reason and passes control to

QEMU along with pointer to info about the I/O request. QEMU emulates the I/O

device for that requests – thus fulfilling it for software inside VM – and passes control

back to KVM. KVM executes a VMRESUME to let that VM proceed.

In the end, let us summarise the overall picture in a diagram:

Intel Virtualisation: How VT-x, KVM and QEMU ... about:reader?url=https://binarydebt.wordpress.c...

7 of 8 5/3/20, 8:06 AM



Intel Virtualisation: How VT-x, KVM and QEMU ... about:reader?url=https://binarydebt.wordpress.c...

8 of 8 5/3/20, 8:06 AM


