
Journal of

Low Power Electronics
and Applications

Article

A Fresh View on the Microarchitectural Design of
FPGA-Based RISC CPUs in the IoT Era

Giovanni Scotti and Davide Zoni *

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano MI, Italy;
giovanni2.scotti@mail.polimi.it
* Correspondence: davide.zoni@polimi.it

Received: 14 January 2019; Accepted: 6 February 2019; Published: 19 February 2019
����������
�������

Abstract: The Internet-of-Things (IoT) revolution has shaped a new application domain where
low-power RISC architectures constitute the standard computational backbone. The current de-facto
design practice for such architectures is to extend the ISA and the corresponding microarchitecture
with custom instructions to efficiently manage the complex tasks imposed by IoT applications, i.e.,
augmented reality, artificial intelligence and autonomous driving, within narrow energy and area
budgets. However, the new IoT application domain also offers a unique opportunity to revisit and
optimize the RISC microarchitectural design flow from a more communication- and memory-centric
viewpoint. This manuscript critically explores and optimizes the design of a RISC CPU front-end
for IoT delivering a two-fold objective: (i) provide an optimized CPU microarchitecture; and (ii)
present a set of three design guidelines to steer the implementation of IoT CPUs. The exploration
sits on a newly proposed Systems-on-Chip (SoC) and RISC CPU implementing the RISC-V/IMF
ISA and accounting for area, timing, and performance design metrics. Such SoC offers a reference
design to evaluate pros and cons of different microarchitectural solutions. A wide combination of
microarchitectures considering different branch prediction schemes, cache design architectures and
on-chip bus solutions have been evaluated. The entire exploration is focused on the FPGA-based
implementation due to the renewed interest for this technology demonstrated by both the research
community and companies. We note that ARM launched the DesignStart FPGA program to make
available the Cortex-M microcontrollers on Xilinx FPGAs in the form of IP blocks.

Keywords: FPGA design; IoT; computer microarchitecture; low power

1. Introduction

The Internet-of-Things (IoT) revolution delivers a tightly interconnected world made of smart
objects that are constantly collecting, processing, and distributing different data streams.

The embedded systems represent the computational backbone of such smart objects and are
constantly evolving to meet the ever-increasing application and market requirements. Traditionally,
32-bit microcontroller-based platforms are used to ensure the required application performance
while the ASIC-style implementation contributes to match low-power and small-area footprint
requirements. However, the IoT scenarios are constantly evolving by continuously shaping novel
and more demanding applications, i.e., high definition image processing, machine learning and
artificial intelligence tasks, thus application-specific hardware accelerators have been coupled to
microcontroller-based CPUs to offload the computation specific load. The use of such accelerators
comes at the cost of a dramatically reduced platform flexibility thus making each device suitable for
a narrow set of IoT applications. To fully restore the flexibility of the RISC computational platforms
still meeting low area and energy requirements, the current de-facto practice is to extend the ISA
with custom instruction sets to efficiently manage the complex tasks imposed by IoT applications,

J. Low Power Electron. Appl. 2019, 9, 9; doi:10.3390/jlpea9010009 www.mdpi.com/journal/jlpea

http://www.mdpi.com/journal/jlpea
http://www.mdpi.com
https://orcid.org/0000-0002-9951-062X
http://www.mdpi.com/2079-9268/9/1/9?type=check_update&version=1
http://dx.doi.org/10.3390/jlpea9010009
http://www.mdpi.com/journal/jlpea


J. Low Power Electron. Appl. 2019, 9, 9 2 of 19

e.g., artificial intelligence, autonomous driving [1] and mesh processing [2] and computer graphics
applications [3], within the RISC CPU still meeting low area and energy requirements. In this
scenario, the IoT revolution contributed to the new golden age of RISC-based CPUs [4]. The RISC-V
foundation [5] represents the most remarkable initiative to deliver a flexible ISA allowing several
instruction extensions to accelerate the heavy tasks found in IoT applications. In particular, dozens of
projects focused on the implementation of RISC-V-based CPUs and the related Systems-on-Chip (SoCs)
to address different IoT applications by means of ad-hoc ISA extensions.

Such research domain is focused on the design and implementation of distinct microarchitectures
to cope with the different computing challenges highlighted by the IoT. Each newly proposed
microarchitecture sits on consolidated design practices and offers improved performance as well
as low-power and area property by mostly leveraging the ISA extension opportunity. Such design
practices have been taken from the high-performance computing (HPC) domain, where GPU- and
High-Level-Synthesis-based (HLS) computing units are used to overcome the performance wall.
We note that the IoT offers totally different challenges from the high-performance computing (HPC)
for which energy-performance strategies for caches [6], on-chip interconnect [7,8] and computational
units have been extensively explored. In particular, the HPC domain focuses on energy optimization
under quality of service constraints, while the IoT domain aims to performance maximization subject
to a given energy budget. To this extent, we strongly believe that the IoT revolution also offers the
unique opportunity to critically revise the traditional microarchitectural design flow for RISC CPUs.
Such new microarchitectural design approach can deliver an optimized general-purpose RISC CPU
that can be enhanced in terms of custom ISA instruction extensions within a second design step.

The manuscript starts by revising the standard microarchitectural building blocks of the RISC
CPUs and SoCs in the IoT domain focusing on the communication- and a memory-centric design
approach with two final goals. First, we explore the intricate relationship between the on-chip
interconnect, the cache hierarchy and the CPU microarchitecture considering three orthogonal design
metric, (i) performance, (ii) timing and (iii) area. Second, we deliver a set of three guidelines to
optimally design the CPU microarchitecture in the IoT domain. In particular, the focus is on the
microarchitecture of the CPU front-end as it can severely impact the overall CPU design metrics.
Both the analysis and the proposed microarchitectural optimizations employ a newly proposed SoC
and RISC CPU, matching the RISC-V/IMF ISA specification. The proposed SoC and CPU have
been designed and implemented focusing on the FPGA design flow. Such focus is due to the recent
technological improvements of FPGA technology and the great interest demonstrated by both the
research community and the companies. We note that several RISC-V projects for IoT target FPGA
chips. Moreover, ARM Ltd has recently launched the DesignStart FPGA program to make available
the Cortex-M series microcontrollers for Xilinx FPGA users in the form of IP blocks [9] with the clear
intent to support FPGA-based IoT platforms.

Contributions—This research is focused on the standard microarchitectural components only,
without considering any ISA extension since they have been widely explored in the available open
literature [10,11] and contributes to the state of the art in two different directions:

• Communication and memory-centric design evaluation. We explored the intricate relationship between
the cache, the on-chip interconnect and the branch prediction schemes to optimally design the
SoC microarchitecture of IoT platforms. The analysis considers timing, area and performance
design metrics to offer a complete set of pros and cons for different microarchitectural solutions
still ensuring their implementation feasibility.

• Set of design guidelines for IoT RISC CPU on FPGA. Such guidelines are drawn from the results
obtained after the complete evaluation of all the proposed microarchitectural variations on a
newly designed RISC CPU implementing the RISC-V ISA. The newly proposed RISC CPU
represents a common substrate that enables the focused evaluation of pros and cons for each
microarchitectural variation.



J. Low Power Electron. Appl. 2019, 9, 9 3 of 19

The rest of the manuscript is organized in five parts. Section 2 reviews the state of the art
on publicly available load-store RISC CPUs also highlighting the differences between this work
and the contributions in the open literature. The microarchitecture of the proposed CPU and SoC
implementation used as reference platform as well as the proposed microarchitectural optimizations
are discussed in Section 3. Section 4 reports the results in terms of timing, area, and performance for
each considered microarchitecture. A set of guidelines to design IoT RISC CPU on FPGAs is provided
in Section 5. Conclusions and future works are drawn in Section 6.

2. Related Works and Background

The IoT greatly fueled the research effort in RISC architectures with a dramatic increase in the
number of open-hardware solutions delivering a full set of non-obfuscated CPUs targeting the low-
and middle-end IoT domains (see Table 1). We note that each proposal in the open literature is
focused on performance optimization considering a specific ISA extension also employing standard
microarchitectural design patterns for both CPU and SoC without evaluating possible optimizations of
the latter. In contrast, this manuscript focuses on the optimization of the standard microarchitectural
design patterns for CPU and SoC employed in the IoT and low-end embedded domains.

Table 1. Open-hardware CPUs and relative key microarchitectural attributes.

Core ISA Pipeline Out-of-Order Issue Width Caches Branch
Stages Prediction

Mor1kx Cappuccino [12] OpenRISC 5 in-order 1 yes no
Mor1kx Espresso [12] OpenRISC 3 in-order 1 no no

Mor1kx ProntoEspresso [12] OpenRISC 3 in-order 1 no yes
ORPSoC v3 [13] OpenRISC 5 in-order 1 yes yes

Rocket [14] RV32/64/IMAFD 5 in-order 1 yes yes
ORCA [15] RV32/IM 4,5 in-order 1 no no

BOOM v1 [16] RV64/IMAFD 6 out-of-order up to 3 yes yes
BOOM v2 [17] RV64/IMAFD 6 out-of-order up to 4 yes yes

PULP Ariane [11] RV32/IMF 6 in-order 1 yes yes
PULPino [18] RV32/IMCF 4 in-order 1 yes (+FIFO) no
VexRiscv [19] RV32IM 5 in-order 1 yes no
mriscv [11] RV32/I 3 in-order 1 no no

dualIssueRiscv [10] RV32/IMCF 6 in-order up to 2 yes yes

The OpenRISC Platform SoC (ORPSoC) Version 3 [13] is the first complete example of open-hardware
processor implementing the royalty-free OpenRISC 1000 architectural specification [20]. The AR100 power
management unit in Allwinner SoCs [21] employed an OpenRISC 1000 processing unit and the OpenRISC
1000 architecture is supported in the mainline Linux Kernel since version 3.1 [22].

Several OpenRISC 1000 compliant CPUs have been developed in recent years implementing
standard caches, on-chip bus as well as branch prediction schemes [12].

The RISC-V ISA is a recent ISA specification that represents the de-facto standard for open-hardware
computing platforms for IoT and embedded domains.

The PULP project [11] offers single- and multi-core accelerators for embedded platforms
implementing the RISC-V ISA [5] where PULPino is the ultra-low-power platform for IoT applications.
The PULP project primarily targets ASIC implementations to deliver low-power solutions. However,
the technology improvements of FPGA solutions fueled the introduction of the HERO platform,
an FPGA-based architecture made of PULP-based soft-cores [23].

The Berkeley Rocket chip generator [14] is written in Chisel domain specific language and
can generate different instances of the Rocket RISC-V processing unit. The Rocket processing
unit is the computing CPU of the Celerity [24] and the VELOUR [25] SoCs. The Celebrity SoC
employs a parallel accelerator fabric coupled with a neural network accelerator implemented using
Rocket CPUs. The VELOUR SoC features a Rocket-based CPU coupled with a deep neural network



J. Low Power Electron. Appl. 2019, 9, 9 4 of 19

accelerator. In addition, the Berkeley BOOM-v1 [16] and Berkeley BOOM-v2 [17] are two super-scalar,
out-of-order RISC-V processors targeting high-end embedded applications.

The open literature also reports several RISC-V-based SoC targeting FPGA implementations.
The VexRiscv project [18] offers a set of simple, FPGA-compliant high-clock-frequency RISC-V CPUs.
Some of the proposed CPUs offer interactive debug support and extensive performance, area and clock
frequency statistics. However, the implemented CPUs do not consider any optimized microarchitecture
for caches, on-chip bus, and branch predictions schemes.

The Orca CPU [15] is a simple RISC-V scalar core targeting FPGA implementation. The mriscv
SoC implements a complete RISC-V-based microcontroller [26] offering ADCs, DACs, GPIO,
and SPI interfaces.

The GRVI Phalanx FPGA-based accelerator framework [19] is a shared-memory platform made
of simple RISC-V scalar cores coupled with specialized accelerators. Similarly, Taiga is a RISC-V
32-bit soft processor that can be used in configurable FPGA-based multi-core frameworks used for
heterogeneous computing [27].

Despite the wide variety of FPGA- and ASIC-based open-hardware IoT platforms, all the proposals
are focused on delivering new CPU implementations for different application domains. In particular,
each solution reports the performance comparison between different CPU implementations without
considering pros and cons, i.e., performance, timing and area increase/decrease, that different
microarchitectural optimizations can have on the same baseline microarchitecture. For example,
the PULP-based Ariane solution employs a FIFO queue in place of a standard instruction cache as
the one employed some of the OpenRISC CPU implementations. However, no comparison in terms
of performance or feasibility between the two cache solutions has been proposed so far. Moreover,
the intricate relationship between the on-chip interconnect and the cache hierarchy has not been
evaluated yet. To the best of our knowledge, this work is the first research that analyzes and optimizes
the design of FPGA-based load-store RISC CPU considering the combined pros and cons of four
microarchitectural components: (i) instruction cache, (ii) on-chip interconnect, (iii) branch prediction
schemes and (iv) instruction bus width.

3. Architectural View of the Proposed IoT Processor

This section overviews the developed RISC-V, in-order CPU and the related SoC that are used
in the rest of the manuscript as representative use-case to explore the microarchitectural design
space. The goal is to deliver a reference CPU and SoC implementation to carefully evaluate pros and
cons of different microarchitectural solutions for the CPU front-end design in terms of performance,
area and timing (see Section 3). In general, the architectural and microarchitectural exploration of
general-purpose multi-cores sits on cycle accurate simulators [28] eventually equipped with power
and area models for a part or the entire simulated platform [29,30]. In contrast, IoT scenarios leverage
simpler architectures for which the gate-level exploration is feasible and is far more informative thanks
to the accurate timing and area estimates of a fully implemented design.

The reference SoC is made of a 32-bit RISC-V compliant CPU, a 64KiB main memory implemented
employing Xilinx BRAMs and a Wishbone [31] compliant bus connecting the two, implementing both
burst as well as single read/write transactions. The debug unit (duGlobal) represents a second on-chip
data bus master that is used to interface the entire platform with the host laptop, via the system UART
(sysUart), for in-circuit debugging and on-prototype simulations. Last, a user UART is implemented
to allow read and write operations at software level.

A schematic view of the proposed SoC is depicted in Figure 1. We implemented two separate bus
interconnects for instructions and data to minimize the contention problem. Moreover, the instruction
bus is a point-to-point connection when a single CPU is implemented, thus no bus arbitration is
required. In contrast, a round-robin bus arbiter is used to arbitrate the data bus where both the CPU
and the duGlobal can request the access as masters. In the baseline SoC, a Simple-Read/Write transaction
on the instruction bus takes 2 clock cycles, i.e., the first to open the transaction and the second to read



J. Low Power Electron. Appl. 2019, 9, 9 5 of 19

(write) data from (to) the synchronous memory. The same transaction requires three clock cycles on
the data bus due to the bus arbitration stage that takes one extra clock cycle. We note that the baseline
SoC also implements the burst transactions as defined in the Wishbone protocol specification [31] to
optimize multiple data transfers.

The proposed CPU features a single-issue, in-order, 5-stage pipeline implementing the standard
Integer (I), Multiply (M), Floating Point (F) extensions of the RISC-V ISA.

Next PC
logic

IF Stage ID Stage

ALUM

TRG ADR

LSU ADR

CSR

ALIGNER

EX Stage MEM Stage WB Stage

sysUART

duLocal

CPU

wbUncore

ram0 ram1

wbRam

dBus

iBus

TX RX

3232,64

duGlobal

BP

Data Bus Interface

branch
prediction

TX RX

duFrontEnd

duBackEnd

wbArbiter

adrDecoder

userUART

BTA

instruction cache/FIFO

Cache/FIFO
memory

instrAdr fetchedInstr

PC

RV32I

RV32M

RV32F

RF

FP
RF

ALUI

Branch
logic

FPU

Figure 1. Schematic view of the proposed system-on-chip. A 5-stage RISC CPU implementing the
RISC-V/IMF ISA is used as reference design. A physically split (data and instruction) Wishbone
bus implementing both simple and burst transactions is used as on-chip interconnect. Two slaves,
i.e., the RAM and the UART complete the SoC allowing complete observability for user program
on the prototype FPGA-based board. Last, the global (duGlobal) and local (duLocal) debuggers allow
to load the binary and control the CPU execution on the prototype FPGA-based board by offering
GDB-like commands.

The Instruction Fetch (IF) stage of the CPU can fetch up to a single, 32-bit, fixed-length instruction
per clock cycle. Moreover, the program counter is updated in the same clock cycle following the
standard RISC-V ISA architectural specification manual [5].

In the baseline CPU, the IF stage takes two clock cycles to load each instruction leveraging a
Simple-Read Wishbone transaction since no caches are implemented as well as the branch prediction
schemes. The complete evaluation of the branch prediction schemes and cache microarchitecture is
part of the contribution of this work and is carefully detailed in Section 3.

The Instruction Decode (ID) stage extracts from the fetched instruction the information required
to drive the Register File (RF), the Floating Point Register File (FP-RF) and the immediate operand logic
to set up the operands for the execution stage. A separate Instruction Decoder for each implemented
RISC-V extension is provided to easily allow disabling different ISA extensions at synthesis time.
The ID stage also forwards the signals derived from the instruction operation code (opcode) to the five
Functional Units (FUs) implemented in the EX stage, i.e., the Arithmetic-Logic Unit (ALUI), the Integer
Multiply and Divide (ALUM), the Load-Store Adder Unit (LSU-ADR), the Floating Point Unit (FPU)
and the jump/branch ALU (TRG-ADR). In the EX stage, the operands are multiplexed with the results
from the memory (M) and write-back (WB) stages to implement the EX-EX and M-EX forwarding
paths [32]. Moreover, the M-M forwarding path is also implemented in the M stage to optimize the
load-store instruction patterns [32]. We note that both the address and the condition of the branch
instructions are computed in the EX stage while the PC update due to a control-flow instruction is
delayed up to the M stage as in the standard RISC pipeline [32]. The implemented branch evaluation



J. Low Power Electron. Appl. 2019, 9, 9 6 of 19

microarchitecture is sub-optimal compared to those that anticipate the PC update in the EX or even
in the ID stages. However, we leverage such implementation to magnify the penalty of any branch
misprediction thus the gap between different evaluated solutions.

Microarchitectural Optimization of the Instruction Fetch Stage

This section describes the three microarchitectural parts that are explored in the rest of this work:
(i) branch prediction scheme, (ii) instruction cache/FIFO and (iii) the use of 32-/64-bit instruction bus
width on 32-bit architectures.

The branch prediction scheme represents a critical microarchitectural component to sustain
the CPU performance. It minimizes the number of branch mispredictions and the corresponding
misprediction penalty. It is important to note that we are not proposing novel branch prediction
schemes. In contrast, the contribution sits on the critical evaluation of reference branching schemes
from performance area and timing viewpoint. Such analysis allows to pinpoint the correct scheme to
implement considering the performance requirements as well as the energy and timing constraints.
Figure 2 shows the four standard branch prediction schemes considered in this work. We use the
always not taken (alwNT) when the CPU is not implementing any branch prediction scheme. Moreover,
we consider the standard static and dynamic branch prediction schemes, i.e., the backward taken forward
not taken (backT/fwdNT)—static—as well as the saturation (sat) and the gShare—dynamic. The sat
scheme is a gShare with a single 2-bit state finite state machine and no global-history vector. Moreover,
the proposed gShare branch predictor features 32 entries and a 5-bit global-history vector since the
experimental results show no performance improvement from a larger number of entries or a longer
global-history vector.

fetchedInstr

opcode is
branch

extended
to 32-bit

Branch Address

0

0 1

+
glob_hist

alwNT backT/fwdNT sat/gShare

branch predictor
(BP)

branch target address
(BTA) resolved at impl. time

0 1

PC

2-bit state
predictor

NT WNT

T WT

predictor state
update

BT

BNT
BT

BT

BNT

BNT

imm ext
to 32-bit ext imm[31]

Figure 2. Schematic view of the branch prediction scheme. At design time it is possible to select the
scheme to implement (see resolved at impl. time multiplexer). Each saturation branch predictor in the
gShare model features the classical four state finite state machine (FSM), i.e., taken (T), weakly taken (WT),
weakly not taken (WNT), not taken (NT). The FSM is updated by the signal reporting branch taken (BT)
or branch not taken (BNT). Such signal is generated during the evaluation of the branch in the EX
pipeline stage.

The backT/fwdNT offers a simple implementation with low area footprint since the scheme has no
internal state. In particular, the direction of the branch, is evaluated by checking the 31-st bit of the
extended immediate value that is expressed as two’s complement number (see Figure 2). In contrast,
both the sat and gShare implementations impose a bigger area footprint due to the 2-bit state saturation
predictors as discussed in Section 4. We note that no branch target buffer is used thus if the address
cannot be computed from the branch/jump instruction, e.g., jump register instruction type, the fetch
stage loads the next instruction in program order. Such implementation choice is motivated by the
need to contain both the area footprint and the timing slack. In particular, our evaluation considers the



J. Low Power Electron. Appl. 2019, 9, 9 7 of 19

cache/FIFO lookup and the branch prediction in a single clock cycle to avoid splitting the IF stage in
two stages, thus making the pipeline deeper. In this scenario, the cache architecture can constraint the
selection of the branch prediction scheme.

The instruction bus width represents another considered design parameter in our evaluation.
We considered a 32-bit architecture with the possibility to implement a 32- or 64-bit instruction bus.
The 32-bit instruction bus represents the standard solution adopted in the majority of the implemented
32-bit architectures. In contrast, the 64-bit instruction bus offers a low latency solution since two 32-bit
instructions can be fetched for each clock cycle. As the results reported in Section 4 confirm, the use of
a 64-bit instruction bus does not severely affect timing or area and offers superior performance to both
miniCache and FIFO queue designs.

The 64-bit bus allows a faster cache-line refill for the miniCache architecture with a net miss penalty
reduction. In contrast, the FIFO scheme coupled with the prefetcher can reach full throughput for all
the programs that execute instructions in strict program order.

The instruction cache in the form of a regular cache or a FIFO queue represents the second
analyzed microarchitectural component. As the instruction cache strongly supports the CPU
performance, its use can severely affect both area and timing. To this extent, the use of either a
small cache or even no instruction cache represents a common implementation strategy for several
low- and high- end microcontrollers [33], e.g., ARM Cortex-M0, M3, M4, and M7. We explore the use
of both a miniCache and a FIFO queue to boost the performance, still ensuring a limited impact on
timing and area design metrics. The proposed instruction miniCache controller and cache memory are
depicted in Figure 3 also showing the connecting signals to the instruction fetch and to the instruction
bus. The proposed microarchitecture allows a combinational cache lookup. In the same clock cycle,
either the data is returned, in case of a lookup hit, or a new Wishbone burst transaction is started to
load the cache line containing the IF stage requested address. The miniCache is a 4-line, fully associative
cache and each line contains four 32-bit instructions. The proposed miniCache implements a simple
prefetcher that starts prefetching the four next instructions, i.e., the next cache line in program order,
if the last loaded cache line that is currently accessed by the IF stage contains no branch nor jump
instructions. It is worth noticing that the prefetch starts a separate Wishbone transaction to preload.

IDLE

wbRead wbAdr wbDat wbAck

req instrAdr fetchedInstr ack

hit /
fetchedInstr, ack

prefetch / -

miss / wb_read,
wbAdr = instrAdr

wb_ack /
fetchedInstr, ack,

wrBlock

endOfBurst / -

prefetch / -

miss / -

!miss / -

- / wbRead,
wbAdr = instrAdr

tag
req

instr
hit

miss

prefetch
prefetchAdr

wrBlock
wbDat

miniCache

read iface

prefetch iface

write iface

REFILL
wr_block

INIT_NEW_BURST_
PREFETCH

READ_REPLY

INIT_NEW_BURST

TERMINATE_REFILL

- / wbRead,
wbAdr = prefetchAdr

V Tag Data

miniCache FSM

Figure 3. Schematic view of the instruction miniCache microarchitecture.

Starting from the proposed cache design, we highlight two different aspects that can severely
degrade the overall CPU performance. First, the miniCache must finish refilling an entire cache



J. Low Power Electron. Appl. 2019, 9, 9 8 of 19

line before start fetching a new line. This is a general rule for any cache design regardless its
actual size. Second, the Wishbone communication protocol, and in general any on-chip protocol
(e.g., AMBA), impose to any master to free up the bus for an entire clock cycle at the end of each
transaction. This allows another master to take control over the bus thus avoiding starvation issues.
The combination of these two observations can severely affect the CPU performance if a cache miss
happens during a cache-line refill. In this scenario, the IF stage must wait for the cache to close the
current cache line refill and the additional idle bus cycle imposed by the on-chip communication
protocol. We note that such scenario happens any time during a cache line refill where one of the
fetched instructions is a predicted-taken branch. In light of these two observations, the proposed
miniCache features a cache line made of four 32-bit words to trade the refill cost with the need to
completely fetch a cache line even in case of a cache miss. Figure 4 shows a 3-clock cycle burst
transaction to fetch 4 instructions considering a miniCache supported by a 64-bit instruction bus.
Such configuration allows full throughput for the CPU while executing a sequence of single clock
latency instructions, i.e., ALU instructions. Moreover, a cache miss during a cache-line refill suffers a
maximum penalty limited to two clock cycles.

Version February 6, 2019 submitted to J. Low Power Electron. Appl. 7 of 19

32-bit instruction bus represents the standard solution adopted in the majority of the implemented221

32-bit architectures. In contrast, the 64-bit instruction bus offers a low latency solution since two 32-bit222

instructions can be fetched for each clock cycle. As the results reported in Section 4 confirm, the use223

of a 64-bit instruction bus does not severely affect timing or area and offers superior performance224

to both miniCache and FIFO queue designs. The 64-bit bus allows a faster cache line refill for the225

miniCache architecture with a net miss penalty reduction. In contrast, the FIFO scheme coupled with226

the prefetcher can reach full-throughput for all the programs that execute instructions in strict program227

order.

IDLE

wbRead wbAdr wbDat wbAck

req instrAdr fetchedInstr ack

hit /
fetchedInstr, ack

prefetch / -

miss / wb_read,
wbAdr = instrAdr

wb_ack /
fetchedInstr, ack,

wrBlock

endOfBurst / -

prefetch / -

miss / -

!miss / -

- / wbRead,
wbAdr = instrAdr

tag
req

instr
hit

miss

prefetch
prefetchAdr

wrBlock
wbDat

miniCache

read iface

prefetch iface

write iface

REFILL
wr_block

INIT_NEW_BURST_
PREFETCH

READ_REPLY

INIT_NEW_BURST

TERMINATE_REFILL

- / wbRead,
wbAdr = prefetchAdr

V Tag Data

miniCache FSM

Figure 3. Schematic view of the instruction miniCache microarchitecture.
228

clock

busReq

busAdr A0 A2 A4 A6

busDat I0+I1 I2+I3 I4+I5 I6+I7

busAck

cpuEX EX(I0) EX(I1) EX(I2) EX(I3) EX(I4) EX(I5) EX(I6)

0 1 2 3 4 5 6 7 8

miniCache 4x32-bit cache-line and 64-bit instruction bus

Figure 4. The use of a 64-bit instruction bus combined with the miniCache allows to completely shadow
the idle cycles between two consecutive transactions imposed by the Wishbone specification. Such
implementation allows full throughput for the CPU that is processing a stream of single cycle latency
instructions without control instructions in the between.

The instruction cache in the form of a regular cache or a FIFO queue represents the second analyzed229

microarchitectural component. As the instruction cache strongly supports the CPU performance, its230

use can severely affect both area and timing. To this extent, the use of either a small cache or even231

no instruction cache represents a common implementation strategy for several low- and high- end232

microcontrollers [33], e.g., ARM Cortex-M0, M3, M4 and M7. We explore the use of both a miniCache233

and a FIFO queue to boost the performance, still ensuring a limited impact on timing and area design234

metrics. The proposed instruction miniCache controller and cache memory are depicted in Figure 3235

Figure 4. The use of a 64-bit instruction bus combined with the miniCache allows to completely
shadow the idle cycles between two consecutive transactions imposed by the Wishbone specification.
Such implementation allows full throughput for the CPU that is processing a stream of single cycle
latency instructions without control instructions in the between.

The instruction FIFO queue represents a low area overhead scheme to solve the performance
problems identified in the miniCache. We designed an 8-instructions FIFO queue coupled with a simple
stride prefetcher (see Figure 5). Similar to the miniCache, the FIFO queue offers a combinational lookup
for any incoming request from the instruction fetch stage. To this extent, a fetch request can be resolved
within the requesting clock cycle in case of a hit event. Otherwise a Wishbone burst transaction is
started in the same clock cycle to completely refill the FIFO. The FIFO leverages on the program order
execution property to optimize its performance. In particular, on a miss, the missing instructions
and the seven subsequent ones are fetched. We note that the FIFO queue can better handle a branch
missprediction during a FIFO refill action, since the refill transaction can be aborted in any time,
thus minimizing the penalty to serve a request out of program order. Moreover, we coupled the FIFO
with a simple prefetcher that starts a FIFO refill transaction when the last FIFO slot is accessed.

The FIFO features 8-instruction slots to guarantee CPU full throughput when a 64-bit instruction
bus is implemented. and a flow of single cycle latency, i.e., ALU instructions, is executed without
branches. Figure 6 shows the execution of two burst transactions according to the Wishbone
specification considering 32- and 64-bit for the instruction bus. The use of a 32-bit instruction bus can
force two stall cycles in the CPU between the end of the first burst and the beginning of the next one.
The first stall is due to the Wishbone specification. For each master issuing two consecutive transactions
on the bus, the Wishbone imposes an entire idle clock cycle to avoid starvation issues for the other
masters. The second stall is due to the beginning of the new transaction for which the corresponding
data will be available in the following clock cycle. In contrast, the use of a 64-bit instruction bus allows



J. Low Power Electron. Appl. 2019, 9, 9 9 of 19

to fetch up to two instructions for each clock cycle, thus completely shadowing the delay that induce
the stall cycles.

We note that from the architectural viewpoints the FIFO queue and the miniCache require the
same amount of storage since despite the smaller data storage, the FIFO requires a tag address for each
instruction slot. However, the detailed evaluation of the two schemes is discussed in Section 4.2.

IDLE

hit /
fetchedInstr, ack

prefetch / wbRead,
wbAdr = prefetchAdr

miss / wbRead,
wbAdr = instrAdr

wbAck /
fetchedInstr, ack,

wrNextSlot

!miss &&
endOfBurst / -

miss / -

miss / -

!miss / -
- / wbRead,

wbAdr = instrAdr

- / -

tag
req

instr
hit

miss

prefetch
prefetchAdr

wrNextSlot
wbDat

V Tag Data

FIFO

read iface

prefetch iface

write iface

READ
wrNextSlot

ABORT_READ

READ_REPLY

INIT_NEW_BURST

TERMINATE_READ

req instrAdr fetchedInstr ack

wbRead wbAdr wbDat wbAck

FIFO FSM

Figure 5. Schematic view of the instruction FIFO microarchitecture.

Version February 6, 2019 submitted to J. Low Power Electron. Appl. 9 of 19

instructions and the seven subsequent ones are fetched. We note that the FIFO queue can better267

handle a branch miss-prediction during a FIFO refill action, since the refill transaction can be aborted268

in any time, thus minimizing the penalty to serve a request out of program order. Moreover, we269

coupled the FIFO with a simple prefetcher that starts a FIFO refill transaction when the last FIFO slot270

is accessed. The FIFO feature 8-instruction slots to guarantee CPU full throughtput when a 64-bit271

instruction bus is implemented. and a flow of single cycle latency, i.e., ALU instructions, is executed272

without branches. Figure 6 shows the execution of two burst transactions according to the Wishbone273

specification considering 32- and 64-bit for the instruction bus. The use of a 32-bit instruction bus can274

force two stall cycles in the CPU between the end of the first burst and the beginning of the next one.275

The first stall is due to the Wishbone specification that impose that the same master enforces an entire276

idle clock cycle between two consecutive transactions. The second stall is due to the beginning of277

the new transactions for which the corresponding data will be available in the following clock cycle.278

In contrast, the use of a 64-bit instruction bus allows to fetch two instructions for each clock cycle,279

thus completely shadowing the delay that induce the stall cycles. We note that from the architectural280

viewpoints the FIFO queue and the miniCache require the same amount of storage since despite the281

smaller data storage, the FIFO requires a tag address for each instruction slot. However, the detailed282

evaluation of the two schemes is discussed in Section 4.2.283

clock

busReq

busAdr A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

busDat I0 I1 I2 I3 I4 I5 I6 I7 I8 I9

busAck

cpuEX EX(I0) EX(I1) EX(I2) EX(I3) EX(I4) EX(I5) EX(I6) EX(I7) STALL STALL EX(I8)

busReq

busAdr A0 A2 A4 A6 A8 A10 A12 A14

busDat I0+I1 I2+I3 I4+I5 I6+I7 I8+I9 I10+I11 I12+I13 I14+I15

busAck

cpuEX EX(I0) EX(I1) EX(I2) EX(I3) EX(I4) EX(I5) EX(I6) EX(I7) EX(I8) EX(I9) EX(I10)

0 1 2 3 4 5 6 7 8 9 10 11 12

8-slot FIFO and 32-bit instruction bus

8-slot FIFO and 64-bit instruction bus

Figure 6. The use of a 64-bit instruction bus combined with an 8-slot FIFO allows to completely shadow
the idle cycles between two consecutive transactions imposed by the Wishbone specification. Such
implementation allows full throughput for the CPU that is processing a stream of single cycle latency
instructions without control instructions in the between.

4. Experimental results284

This section provides a detailed evaluation of the microarchitectural variations to the Instruction285

Fetch (IF) stage proposed in Section 3.1. Each microarchitectural variation is evaluated in terms of area,286

timing and performance using the baseline micro-architecture presented in Section 3 as reference design.287

By using a common vanilla CPU implementation we can carefully identify pros and cons of each288

solution with respect to the FPGA-base hardware design flow. In particular, Table 2 reports the set of289

evaluated microarchitectures and the short names that are used in the rest of this part to name each one290

of them. In addition, we defined the Best-uArch-gShare and the Worst-uArch-alwNT microarchitectures291

as the two extreme points in terms of offered performance. The Best-uArch-gShare represents our292

Figure 6. The use of a 64-bit instruction bus combined with an 8-slot FIFO allows to completely
shadow the idle cycles between two consecutive transactions imposed by the Wishbone specification.
Such implementation allows full throughput for the CPU that is processing a stream of single cycle
latency instructions without control instructions in the between.

4. Experimental Results

This section provides a detailed evaluation of the microarchitectural variations to the Instruction
Fetch (IF) stage proposed in Section 3. Each microarchitectural variation is evaluated in terms of
area, timing, and performance using the baseline microarchitecture presented in Section 3 as reference
design. By using a common vanilla CPU implementation we can carefully identify pros and cons of
each solution with respect to the FPGA-based hardware design flow. In particular, Table 2 reports the



J. Low Power Electron. Appl. 2019, 9, 9 10 of 19

set of evaluated microarchitectures and the short names that are used in the rest of this part to name
each one of them.

Table 2. Taxonomy of the different microarchitectures explored in this work for which results are
reported. A label is assigned to each combination of branch prediction scheme, instruction bus width
and the use of an instruction FIFO or a miniCache.

Instruction Bus 32 bit Instruction Bus 64 bit

Instruction FIFO Instruction Cache Instruction FIFO Instruction Cache

always FIFO32-alwNT Cache32-alwNT FIFO64-alwNT Cache64-alwNTnot taken

backward taken FIFO32-BackT/FwdNT Cache32-BackT/FwdNT FIFO64-BackT/FwdNT Cache64-BackT/FwdNTforward not taken

saturation FIFO32-sat Cache32-sat FIFO64-sat Cache64-sat

gShare FIFO32-gShare Cache32-gShare FIFO64-gShare Cache64-gShare

In addition, we defined the Best-uArch-gShare and the Worst-uArch-alwNT microarchitectures
as the two extreme points in terms of offered performance. The Best-uArch-gShare represents our
performance golden model. It implements a 32-bit instruction bus, a 32-entry gShare branch prediction
scheme and a combinational instruction RAM to avoid any instruction fetch penalty. We note that
the instruction bus width, i.e., 32 or 64-bit, does not affect the performance of Best-uArch-gShare since
each instruction fetch request is completed within the requesting clock cycle. The Worst-uArch-alwNT
represents the worst possible architecture implementing no caches nor branch prediction scheme and
a 32-bit instruction bus. Each instruction fetch request starts a Wishbone single read transaction taking
2 clock cycles.

The proposed RISC-V CPU microarchitecture and all the variations have been described in
SystemVerilog 2012 passing through the entire FPGA flow of synthesis and implementation and the
final design has been tested on a Digilent Nexys 4 DDR board featuring a Xilinx Artix 100t FPGA
chip. In particular, we constrained the clock frequency to 70MHz in the implementation to allow a
shared operating frequency for all the evaluated microarchitectural variations. The validation of each
CPU implementation has been carried out considering both ad-hoc benchmarks, to selectively stress
portion of the design, as well as a set of 29 WCET benchmarks for which the taxonomy is reported
in Table 3 [34]. The WCET benchmarks include a representative mix of algorithm-types from both
embedded and general-purpose computing domains. The same benchmarks have been executed on
an x86-64 laptop to check the computational correctness.

Table 3. WCET applications employed in our evaluation. For each benchmark the total number of
executed instructions is reported considering the FIFO 32 implementation with the always not taken
static branch prediction scheme. Moreover, the mix of instruction types and the number of taken
branches are also reported.

Benchmark
Total # of # of Taken Number of Instructions Per Type (%)

Instructions Branch Branch Jump ALU NOP MUL/DIV FPU LD/ST

bs 158 8 7.5 3.8 32.2 9.4 0.0 0.0 46.8
bsort100 251,516 5452 6.2 0.0 38.5 2.2 0.0 0.0 52.8

cnt 7575 220 4.5 4.3 62.1 7.2 1.3 0.0 20.3
cover 4222 180 8.6 8.7 34.8 13.0 0.0 0.0 34.7

crc 56,028 3493 8.5 3.2 41.1 9.4 0.0 0.0 37.6
duff 2149 105 5.0 0.2 33.5 5.5 0.0 0.0 55.6

expint 3714 151 6.8 2.8 20.8 6.9 8.1 0.0 54.4
fac 527 21 5.3 9.3 29.9 13.2 2.8 0.0 39.2
fdct 5305 16 0.3 0.0 44.5 0.4 3.6 0.0 50.9
fft1 55,939 3065 9.8 4.1 58.8 10.6 3.2 1.3 12.0



J. Low Power Electron. Appl. 2019, 9, 9 11 of 19

Table 3. Cont.

Benchmark
Total # of # of Taken Number of Instructions Per Type (%)

Instructions Branch Branch Jump ALU NOP MUL/DIV FPU LD/ST

fibcall 562 30 10.5 0.5 17.9 5.8 0.0 0.0 65.1
fir 478,682 25,541 5.4 0.1 20.5 5.4 5.2 0.0 63.1

insertsort 2052 54 3.1 0.4 53.5 3.1 0.0 0.0 39.7
janne_complex 398 40 15.0 2.0 26.1 12.0 0.0 0.0 44.7

jfdctint 5548 80 1.5 0.0 44.3 1.5 4.6 0.0 47.8
lcdnum 302 15 8.6 6.9 31.7 11.9 0.0 0.0 40.7
ludcmp 6113 213 4.7 1.1 39.4 4.6 5.0 4.9 39.9
matmult 9133 215 2.8 1.6 70.3 4.1 1.9 0.0 19.1
minver 4880 145 4.6 1.4 48.5 4.5 0.3 3.2 37.1

ndes 106,484 3437 4.4 3.0 41.6 6.2 0..0 0.0 44.6
ns 23,321 1404 6.6 0.6 58.4 6.7 0.0 0.0 27.4

prime 13,508 863 6.4 6.4 25.9 12.8 6.4 0.0 41.8
qsort-exam 2078 80 6.5 2.3 38.4 6.8 0.0 3.4 42.4

qurt 1205 93 9.2 3.7 14.6 11.4 0.0 16.6 44.2
recursion 4960 241 6.6 9.4 33.0 14.2 0.0 0.0 36.6

select 1033 31 6.0 1.0 44.0 4.1 0.0 2.6 42.1
sqrt 451 38 11.1 3.9 13.7 12.6 0.0 15.7 42.7
st 254,551 7156 2.8 4.7 31.5 7.6 1.5 12.8 38.7
ud 5855 207 4.7 0.9 42.0 4.5 7.0 0.0 40.6

The rest of this section is organized in two parts. The performance results are reported in
Section 4.1 for each microarchitecture defined in Table 3. Section 4.2 reports the area and timing results
for the same set of microarchitectures.

4.1. Performance evaluation

This section reports the performance evaluation in terms of number of clock cycles to execute a
benchmark considering each microarchitecture described in Table 2. Moreover, the Best-uArch-gShare
and the Worst-uArch-alwNT are employed to bound optimal and worst performance results.

Branch prediction schemes. Considering an in-order processor, the performance of a branch
prediction scheme, i.e., number of misspredicted branches, remains the same regardless the cache
microarchitecture or the instruction bus width since it only depends on the program control-flow and
its actual input data. To this extent, Figure 7 reports the number of branch misspredictions for all the
considered microarchitectures on the 29 executed WCET benchmarks.

0.00

0.25

0.50

0.75

1.00

bs

bs
or
t1
00 cn

t

co
ve
r
cr
c
du
ff

ex
pin
t
fa
c
fd
ct fft

1

fib
ca
ll fir

ins
er
tso
rt

jan
ne
_c
om
ple
x

jfd
cti
nt

lcd
nu
m

lud
cm
p

m
at
m
ult

m
inv
er
nd
es ns

pr
im
e

qs
or
t-e
xa
m
qu
rt

re
cu
rs
ion

se
lec
t
sq
rt st ud

.

AV
ER
AG
E

alwNT backT/fwdNT sat gShare

Figure 7. Misprediction rate for the evaluated branch predictor schemes. Results are normalized with
respect to the total number of branch instructions (see Table 3).

The always not taken (alwNT) branch predictor scheme offers the lower performance since no
branch prediction capability is actually offered. Moreover, the gShare always overcomes the saturation
(sat) scheme since the former implements a vector of sat branch predictors thus minimizing the
probability that two different branches modify the internal state of the same saturation predictor.
Last, the backward taken forward not taken (backT/FwdNT) branch predictor scheme offers reasonable



J. Low Power Electron. Appl. 2019, 9, 9 12 of 19

performance despite its simplicity especially for loop-dominated applications. We note a few outliers
to these set of rules, i.e., bsort100, cover, fibcall, expint, for which the saturation branch prediction scheme
offers lower performance than the BackT/FwdNT one. From a careful analysis, we note an intricate
application control-flow for which consecutive branches collide in the update of the internal state of a
few saturation predictors.

Furthermore, cover shows poor performance for the gShare predictor. A careful exploration of the
application behavior shows a gShare use below 20%. This means that different branch instructions
update the same sat predictor, and the same sat predictor is used to predict their outcome. Moreover,
the majority (80%) of the sat predictors implemented in the gShare are not used for the entire application
execution. This behavior shifts the performance of the gShare close to the performance of the single sat
branch predictor.

Performance and cache miss impact using a 32-bit instruction bus. For each microarchitecture and
branch prediction scheme, Figures 8 and 9 report the performance and the impact of the miss rate
for the considered WCET applications. All the results are extracted using a 32-bit instruction bus.
The performance results in Figure 8 are normalized to the Best-uArch-gShare microarchitecture, thus the
smaller the numbers the better the performance. We note that the number of clock cycles due to the
fetch misses is normalized to the total number of clock cycles to complete the execution of the specific
application. To observe the performance impact due to the instruction cache misses, we account for
the number of clock cycles for a miss and not only the number of instruction misses. In particular,
two instruction misses can take a different number of clock cycles to be resolved. For example,
an instruction miss takes longer when happens during a cache-line refill since the latter must be
completed before the former can be served.

In contrast the use of a FIFO queue in place of the miniCache shows the performance improvement
up to 10% (6.5% on average) due to two different observations. First, the FIFO queue can stop refilling
when a branch is taken thus the next program counter is not loading the subsequent instruction, i.e.,
PC+4. In contrast the miniCache must complete the refill of an entire cache line before start serving the
instruction fetch miss. Second, the FIFO implements an easier and more efficient prefetching scheme
that starts fetching the next eight instructions in program order when the last slot, i.e., instruction,
in the FIFO is accessed by the IF stage.

We also note that the applications with a low number of load/store or multicycle instructions
(see Table 3), e.g., fft1 or cnt, show higher sensitivity to the microarchitecture of the instruction fetch
stage. For these applications, the instruction fetch stage is greatly stressed by the few pipeline stalls
imposed by the other pipeline stages. In this scenario the superior performance of the FIFO against the
miniCache is magnified.

We also note that a few applications, e.g., fdct, jfdctint and insertsort, traverse a low number of
branches, i.e., less than 3% of their instructions are branches (see Table 3), thus showing no performance
variations due to the IF stage microarchitecture. In particular, these applications are not stressing the
FIFO/Cache and the branch prediction scheme since they execute the instructions in program order.

Performance and cache miss impact using a 64-bit instruction bus. For each microarchitecture and
branch prediction scheme, Figures 10 and 11 report the performance and the impact of the miss
rate for the considered WCET applications. All the results are extracted using a 64-bit instruction bus,
while the microarchitecture is still a 32-bit one and the data bus width is fixed to 32-bits. The 64-bit
bus allows fetching two instructions for each clock cycle thus reducing the latency of any Wishbone
burst transaction. Such lower latency reduces the number of clock cycles to serve a miss when the
miniCache is implemented (see Cache64- in Figure 11) due to faster cache-line refills. We note that the
miniCache forces an instruction miss to wait until when the current cache-line refill, if any, is over
before being served. In particular, the use of a 64-bit instruction bus (see Figure 10) in place of a
32-bit one (see Figure 8) allows a miniCache performance improvement up to 6% (5.25% on average).
However, the FIFO still overcomes the miniCache when both are employing a 64-bit instruction bus
(3.25% on average).



J. Low Power Electron. Appl. 2019, 9, 9 13 of 19

0

0.5

1

1.5

2

2.5

bs

bs
or
t1
00 cn

t

co
ve
r

cr
c

du
ff

ex
pin
t

fa
c

fd
ct fft

1

fib
ca
ll fir

ins
er
tso
rt

jan
ne
_c
om
ple
x

jfd
cti
nt

lcd
nu
m

Best-uArch-gShare FIFO32-alwNT FIFO32-backT/fwdNT FIFO32-sat FIFO32-gShare Cache32-alwNT Cache32-backT/fwdNT
Cache32-sat Cache32-gShare Worst-uArch-alwNT

(a) WCET benchmarks from 1 to 16

0

0.5

1

1.5

2

2.5

lud
cm
p

m
at
m
ult

m
inv
er

nd
es ns

pr
im
e

qs
or
t-e
xa
m

qu
rt

re
cu
rs
ion

se
lec
t

sq
rt st ud

. .

AV
ER
AG
E

(b) WCET benchmarks from 17 to 29 and average results.

Figure 8. Normalized execution time using a 32-bit instruction bus width. The microarchitectural
combinations described in Table 2 are considered. Results are normalized to Best-uArch-gShare.

0

0.2

0.4

0.6

bs

bs
or
t1
00 cn

t

co
ve
r

cr
c

du
ff

ex
pin
t

fa
c

fd
ct fft

1

fib
ca
ll fir

ins
er
tso
rt

jan
ne
_c
om
ple
x

jfd
cti
nt

lcd
nu
m

Best-uArch-gShare FIFO32-alwNT FIFO32-backT/fwdNT FIFO32-sat FIFO32-gShare Cache32-alwNT Cache32-backT/fwdNT
Cache32-sat Cache32-gShare Worst-uArch-alwNT

(a) WCET benchmarks from 1 to 16

0

0.2

0.4

0.6

lud
cm
p

m
at
m
ult

m
inv
er

nd
es ns

pr
im
e

qs
or
t-e
xa
m

qu
rt

re
cu
rs
ion

se
lec
t

sq
rt st ud

. .

AV
ER
AG
E

(b) WCET benchmarks from 17 to 29 and average results

Figure 9. Number of clock cycle delay due to instruction fetch miss using a 32-bit instruction bus.
The microarchitectural combinations described in Table 2 are considered. Each result is normalized to
the corresponding total number of executed clock cycles.



J. Low Power Electron. Appl. 2019, 9, 9 14 of 19

0

0.5

1

1.5

2

2.5

bs

bs
or
t1
00 cn

t

co
ve
r

cr
c

du
ff

ex
pin
t

fa
c

fd
ct fft

1

fib
ca
ll fir

ins
er
tso
rt

jan
ne
_c
om
ple
x

jfd
cti
nt

lcd
nu
m

Best-uArch-gShare FIFO64-alwNT FIFO64-backT/fwdNT FIFO64-sat FIFO64-gShare Cache64-alwNT Cache64-backT/fwdNT
Cache64-sat Cache64-gShare Worst-uArch-alwNT

(a) WCET benchmarks from 1 to 16

0

0.5

1

1.5

2

2.5

lud
cm
p

m
at
m
ult

m
inv
er

nd
es ns

pr
im
e

qs
or
t-e
xa
m

qu
rt

re
cu
rs
ion

se
lec
t

sq
rt st ud

. .

AV
ER
AG
E

(b) WCET benchmarks from 17 to 29 and average results

Figure 10. Normalized execution time using a 64-bit instruction bus width. The microarchitectural
combinations described in Table 2 are considered. Results are normalized to Best-uArch-gShare.

0

0.2

0.4

0.6

bs

bs
or
t1
00 cn

t

co
ve
r

cr
c

du
ff

ex
pin
t

fa
c

fd
ct fft

1

fib
ca
ll fir

ins
er
tso
rt

jan
ne
_c
om
ple
x

jfd
cti
nt

lcd
nu
m

Best-uArch-gShare FIFO64-alwNT FIFO64-backT/fwdNT FIFO64-sat FIFO64-gShare Cache64-alwNT Cache64-backT/fwdNT
Cache64-sat Cache64-gShare Worst-uArch-alwNT

(a) WCET benchmarks from 1 to 16

0

0.2

0.4

0.6

lud
cm
p

m
at
m
ult

m
inv
er

nd
es ns

pr
im
e

qs
or
t-e
xa
m

qu
rt

re
cu
rs
ion

se
lec
t

sq
rt st ud

. .

AV
ER
AG
E

(b) WCET benchmarks from 17 to 29 and average results

Figure 11. Number of clock cycle delay due to instruction fetch miss using a 64-bit instruction bus.
The microarchitectural combinations described in Table 2 are considered. Each result is normalized to
the corresponding total number of executed clock cycles.



J. Low Power Electron. Appl. 2019, 9, 9 15 of 19

4.2. Area and Timing Evaluation

This section discusses area and timing results considering the microarchitectures reported in
Table 2. Table 4 reports the area overhead in terms of LUT and flip flop counts. All the results are
normalized with respect to the Worst-uArch-alwNT.

We note that the area overhead for LUT and flip-flops is limited to 9% and 3%, respectively,
since the numbers are averaged on the entire CPU occupation. While the flip-flop overhead is limited
the LUT one can be as high as 9% of the entire CPU.

In particular, the LUT overhead mostly depends on the use of a FIFO or a miniCache and stays
independent from the instruction bus width. Moreover, the LUT overhead is not directly related to the
size of the cache but depends on the additional logic to implement the replacement policy. We note that
the miniCache implements a FIFO replacement. The gShare branch predictor scheme shows a similar
relationship with the LUT overhead due to the additional decoding logic used to access and update
the list of saturation predictors.

Table 4. Area overhead (LUT/Flip-Flops) for the implementation of the reference RISC core employing
different combination of instruction bus width, branch prediction schemes and instruction cache type.
Results are normalized to the implementation featuring a 32 bit instruction bus with an instruction
FIFO and an always not taken static branch prediction scheme.

Instruction Bus Width 32 bit

Instruction FIFO Instruction Cache

Always Backward Taken Saturation gShare Always Backward Taken Saturation gShareNot Taken Forward Not Taken Not Taken Forward Not Taken

1.00/1.00 1.01/1.00 1.01/1.00 1.02/1.01 1.05 /1.02 1.08/1.02 1.06/1.02 1.09/1.02

Instruction Bus Width 64 bit

Instruction FIFO Instruction Cache

Always Backward Taken Saturation gShare Always Backward Taken Saturation gShareNot Taken Forward Not Taken Not Taken Forward Not Taken

1.01/0.99 1.01/0.99 1.01/0.99 1.03/1.00 1.06/1.02 1.07/1.02 1.07/1.02 1.08/1.03

Table 5 reports the timing slack for the considered implementations using a 70 MHz clock
frequency. For each microarchitecture the absolute timing slack is reported in nanoseconds and as
normalized value with respect to Worst-uArch-alwNT microarchitecture.

We note that the timing slack is mostly affected by the employed branch prediction scheme
while there is no clear evidence of a worse or better scheme with respect to the timing slack design
metric. For example, the gShare shows a timing slack of 0.88 ns and 0.22 ns when used within the
Cache32-gShare and FIFO32-gShare architectures, respectively (see Table 5). A careful analysis for each
microarchitecture at the post-implementation stage highlights that the timing variations are not due to
a more or less complex logic within different branch predictors or cache implementations. In contrast,
such timing slack difference is primarily due to net delays, i.e., the geometry placement of the different
cells during the place and route (PAR) stage of the hardware design flow. We note that such numbers
are, then, perfectly aligned with the implemented heuristics to fulfill the PAR stage. As soon as the
PAR algorithm finds an implementation instance that meets all the timing and physical constraints
the algorithm stops executing and such solution is returned. The choice to constrain the operating
frequency at 70 MHz leaves a decent timing slack to avoid routing congestion and logic duplication to
optimize the fan-out still ensuring that the post-implementation timing slack stays within 10% of the
imposed clock period, i.e., around 14 ns at 70 MHz.

To summarize, the results in Figure 5 report a similar timing slack for all the considered configurations.



J. Low Power Electron. Appl. 2019, 9, 9 16 of 19

Table 5. Timing slack (absolute ns/normalized to FIFO32-alwNT) for the implementation of the
reference RISC core employing different combinations of instruction bus width, branch prediction
schemes and instruction cache type. Results are normalized to the implementation featuring a 32-bit
instruction bus with an instruction FIFO and an always not taken static branch prediction scheme.

Instruction Bus Width 32 bit

Instruction FIFO Instruction Cache

Always Backward Taken Saturation gShare Always Backward Taken Saturation gShareNot Taken Forward Not Taken Not Taken Forward Not Taken

1.81 (1.00) 0.27 (0.15) 0.74 (0.41) 0.22 (0.12) 2.10 (1.16) 0.90 (0.49) 0.47 (0.26) 0.88 (0.49)

Instruction Bus Width 64 bit

Instruction FIFO Instruction Cache

Always Backward Taken Saturation gShare Always Backward Taken Saturation gShareNot Taken Forward Not Taken Not Taken Forward Not Taken

1.91 (1.05) 0.23 (0.12) 0.78 (0.43) 0.62 (0.34) 2.11 (1.17) 0.84 (0.46) 0.80 (0.44) 0.50 (0.27)

5. FPGA-Based Design Suggestions for IoT CPUs

The goal of this part is two-fold. First, we aim to deliver a final performance comparison between
the best microarchitectures employing a FIFO queue and a miniCache with a regular set-associative
instruction cache. Second, we deliver a set of three design guidelines to design the front-end of IoT
CPU for FPGA implementation.

Performance comparison with a set-associative instruction cache. The regular set-associative instruction
cache represents a standard architectural component used in high-end embedded systems to sustain
performance. Considering FPGA implementations of RISC CPUs the use of a regular cache imposes
the use of Block RAM (BRAM) primitives as cache memory instead of the regular flip-flop cells
since the latter are a scarce FPGA resource. In particular, Xilinx BRAMs are synchronous primitives
thus their use shows a performance penalty for each cache access even in case of a hit. To allow
a fair comparison between the miniCache and the FIFO, we implemented a flip-flop-based regular
set-associative cache featuring a 2-way per set architecture where each cache line contains 4 32-bit
instructions. Such configuration allows a successful implementation at 70 MHz. We note that our
goal is to assess the required regular cache size to match or even to overcome the performance of the
proposed instruction FIFO queue.

Figure 12 reports the performance results considering 3 sizes for the regular set-associative
cache, i.e., 4 cache lines (2way128B-gShare), 8 cache lines (2way256B-gShare) and 16 cache lines
(2way512B-gShare). Moreover, the results for the best FIFO and miniCache configurations from Section 4,
i.e., FIFO64-gShare and Cache64-gShare are also reported for comparison purposes. All the evaluated
microarchitectures, i.e., miniCache, FIFO and regular cache, employ the 64-bit instruction bus and the
gShare branch prediction scheme. The results are normalized to the Cache64-gShare microarchitecture.

0.8

0.9

1

1.1

bs

bs
or
t1
00 cn

t

co
ve
r
cr
c
du
ff

ex
pin
t
fa
c
fd
ct fft

1

fib
ca
ll fir

ins
er
tso
rt

jan
ne
_c
om
ple
x

jfd
cti
nt

lcd
nu
m

lud
cm
p

m
at
m
ult

m
inv
er
nd
es ns

pr
im
e

qs
or
t-e
xa
m
qu
rt

re
cu
rs
ion

se
lec
t
sq
rt st ud

.

AV
ER
AG
E

Cache64-gShare 2way128B-gShare 2way256B-gShare 2way512B-gShare FIFO64-gShare

Figure 12. Normalized execution time using a 64-bit instruction bus width and the best configurations
for miniCache and FIFO as well as a 2-way set-associative instruction cache with different parameters.
Results are normalized with respect to the Cache64-gShare microarchitecture.



J. Low Power Electron. Appl. 2019, 9, 9 17 of 19

The regular cache featuring 2048-bit memory, i.e., 2way512B-gShare, cannot overcome the
performance of the FIFO queue by more than 8% for all the considered benchmarks. For example,
lcdnum show a performance improvement limited to 8% when a regular cache (2way512B-gShare) is
used in place of the FIFO queue. However, the 2way512B-gShare features 8-time bigger data storage than
FIFO64-gShare. Moreover, the proposed standard instruction cache sits on a flip-flop implementation
to allow a combinational cache lookup. The use of a flip-flop implementation severely limits the
maximum size of the standard cache due to the limited number of available flip-flops on the FPGA
chip. As already stated, the alternative solution is the use of BRAM ad-hoc memory resources that,
however, critically affect the overall CPU performance.

Design guidelines. Starting from the results presented in Sections 4 and 5, we formalize three
design guidelines:

• Guidelines 1: FIFO for area constrained designs. The instruction FIFO represents the best design
choice when the area overhead is critical. It offers good performance due to its high flexibility that
permits to abort a burst transaction and start serving an instruction miss. Moreover, the simple
prefetch scheme offers a full-throughput pipeline if the instructions are executed in program order.
In particular, it always offers superior performance compared to a miniCache. By contrast, the use
of a bigger standard cache coupled with a 64-bit instruction bus can offer better performance in a
multi-master platform.

• Guidelines 2: use 64-bit instruction bus on 32-bit architectures. The use of a 64-bit instruction bus
offers superior performance by dramatically reducing the latency of any on-chip burst transaction.
Moreover, the implementation results demonstrated a negligible impact on both timing and area
design metrics. Last, a wider bus reduces the contention in multi-master platforms.

• Guidelines 3: Branch prediction scheme. We note that the branch prediction scheme greatly improves
the overall performance even if the scheme is as simple as the backT/FwdNT one. In particular,
the selected branch predictor scheme can marginally affect the area while the reported timing
slack is not dominated by a specific scheme. To this extent, we suggest the use of a backT/FwdNT
scheme for area constrained designs or a more capable gShare with a small number of saturation
predictors. We also note that it is always important to check the percentage of actually used
saturation predictors implemented in the gShare scheme to avoid wasting resources.

6. Conclusions

The IoT revolution shaped a new application domain where the low-power RISC architectures
constitute the standard computational backbone. The current de-facto practice is to extend the ISA
with custom instruction sets to efficiently manage the complex tasks imposed by IoT applications,
i.e., augmented reality, artificial intelligence, and autonomous driving, within narrow energy and
area budgets. However, we think that the newly IoT applications offers a unique opportunity to
revisit and optimize the RISC microarchitectural design flow from a more communication- and
memory-centric viewpoint.

From this perspective, the manuscript proposed a complete exploration and optimization of the
microarchitecture of a RISC CPU front-end considering area timing and performance design metrics.

The analysis has leveraged a newly developed SoC and RISC CPU compliant with the RISC-V
IMF ISA standard extensions. The complete design acts as reference design to isolate pros and cons of
each evaluated microarchitectural change. The proposed SoC has been implemented and validation
on a prototype Xilinx Artix 7 100t FPGA chip with a clock frequency set at 70 MHz.

The extracted results highlight the possibility of using a 64-bit instruction bus on a 32-bit
architecture to boost the performance by ensuring low cache-line refill latency. Moreover, we note that
the use of a FIFO queue in place of a standard instruction cache ensures great performance advantages
with low area overhead and no timing penalty. Last, the use of a complex branch predictor show good
performance results with minimal area overhead and no timing overhead. All the microarchitectural



J. Low Power Electron. Appl. 2019, 9, 9 18 of 19

observations emerged from the analysis have been carefully shaped in a set of three guidelines to steer
the microarchitectural design of RISC CPU for IoT platforms.

Author Contributions: Investigation, G.S. and D.Z.; Methodology, D.Z.; Supervision, D.Z.

Funding: This work was partially supported by two EU grants within the EU H2020 Research and Innovation
Programme: “MANGO” Grant agreement no. 671668 and “RECIPE” Grant agreement no. 801137.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Piazza, E.; Romanoni, A.; Matteucci, M. Real-Time CPU-Based Large-Scale Three-Dimensional Mesh
Reconstruction. IEEE Rob. Autom. Lett. 2018, 3, 1584–1591. [CrossRef]

2. Romanoni, A.; Ciccone, M.; Visin, F.; Matteucci, M. Multi-view Stereo with Single-View Semantic Mesh
Refinement. In Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCVW),
Venice, Italy, 22–29 October 2017; pp. 706–715.

3. Romanoni, A.; Fiorenti, D.; Matteucci, M. Mesh-based 3D textured urban mapping. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada,
24–28 September 2017; pp. 3460–3466.

4. Hennessy, J.; Patterson, D. A new golden age for computer architecture: Domain-specific hardware/software
co-design, enhanced security, open instruction sets, and agile chip development. In Proceedings of the 2018
ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA), Los Angeles, CA,
USA, 1–6 June 2018; pp. 27–29.

5. Foundation, R.V. RISC-V Instruction Set Architecture (ISA). Available online: https://riscv.org/ (accessed on
19 Feburary 2019).

6. Zoni, D.; Colombo, L.; Fornaciari, W. DarkCache: Energy-Performance Optimization of Tiled Multi-Cores by
Adaptively Power-Gating LLC Banks. ACM Trans. Archit. Code Optim. 2018, 15, 21:1–21:26. [CrossRef]

7. Zoni, D.; Flich, J.; Fornaciari, W. CUTBUF: Buffer Management and Router Design for Traffic Mixing in
VNET-Based NoCs. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 1603–1616. [CrossRef]

8. Zoni, D.; Canidio, A.; Fornaciari, W.; Englezakis, P.; Nicopoulos, C.; Sazeides, Y. BlackOut: Enabling fine-grained
power gating of buffers in Network-on-Chip routers. J. Parallel Distrib. Comput. 2017, 104, 130–145. [CrossRef]

9. arm Ltd. Designstart FPGA. Available online: https://www.arm.com/resources/designstart/designstart-
fpga (accessed on 19 Feburary 2019).

10. Patsidis, K.; Konstantinou, D.; Nicopoulos, C.; Dimitrakopoulos, G. A low-cost synthesizable RISC-V
dual-issue processor core leveraging the compressed Instruction Set Extension. Microprocess. Microsyst. 2018,
61, 1–10. [CrossRef]

11. Conti, F.; Rossi, D.; Pullini, A.; Loi, I.; Benini, L. PULP: A Ultra-Low Power Parallel Accelerator for
Energy-Efficient and Flexible Embedded Vision. J. Signal Process. Syst. 2016, 84, 339–354. [CrossRef]

12. openrisc. Mor1kx Project. 2016. Available online: https://github.com/openrisc/mor1kx (accessed on
19 February 2019).

13. Project, O. OpenRISC Reference Platform SoC Version 3. 2016. Available online: https://github.com/
fusiled/ORPSocv3 (accessed on 19 February 2019).

14. Asanović, K.; Avizienis, R.; Bachrach, J.; Beamer, S.; Biancolin, D.; Celio, C.; Cook, H.; Dabbelt, D.; Hauser, J.;
Izraelevitz, A.; et al. The Rocket Chip Generator; Technical Report UCB/EECS-2016-17; EECS Department,
University of California: Berkeley, CA, USA, 2016.

15. VectorBlox. Orca Core. Available online: https://github.com/vectorblox/orca (accessed on 19 February 2019).
16. Celio, C.; Patterson, D.A.; Asanović, K. The Berkeley Out-of-Order Machine (BOOM): An Industry-Competitive,

Synthesizable, Parameterized RISC-V Processor; Technical Report UCB/EECS-2015-167; EECS Department,
University of California: Berkeley, CA, USA, 2015.

17. Celio, C.; Chiu, P.F.; Nikolic, B.; Patterson, D.A.; Asanović, K. BOOM v2: An Open-Source Out-of-Order
RISC-V Core; Technical Report UCB/EECS-2017-157; EECS Department, University of California: Berkeley,
CA, USA, 2017.

18. VexRiscv Core. SpinalHDL. 2017. Available online: https://github.com/SpinalHDL/VexRiscv (accessed on
19 February 2019).

http://dx.doi.org/10.1109/LRA.2018.2800104
https://riscv.org/
http://dx.doi.org/10.1145/3186895
http://dx.doi.org/10.1109/TPDS.2015.2468716
http://dx.doi.org/10.1016/j.jpdc.2017.01.016
https://www.arm.com/resources/designstart/designstart-fpga
https://www.arm.com/resources/designstart/designstart-fpga
http://dx.doi.org/10.1016/j.micpro.2018.05.007
http://dx.doi.org/10.1007/s11265-015-1070-9
https://github.com/openrisc/mor1kx
https://github.com/fusiled/ORPSocv3
https://github.com/fusiled/ORPSocv3
https://github.com/vectorblox/orca
https://github.com/SpinalHDL/VexRiscv


J. Low Power Electron. Appl. 2019, 9, 9 19 of 19

19. Gray, J. GRVI Phalanx: A Massively Parallel RISC-V FPGA Accelerator. In Proceedings of the 2016 IEEE
24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM),
Washington, DC, USA, 1–3 May 2016; pp. 17–20.

20. OpenRISC 1000 Architectural Manual. Available online: https://openrisc.io/or1k.html (accessed on
19 Feburary 2019).

21. Kristiansson, S. Bare-Metal Introspection Application for the AR100 Controller of Allwinner A31 SoCs.
Available online: https://github.com/skristiansson/ar100-info (accessed on 19 Feburary 2019).

22. Linux Kernel OpenRISC Subtree. Available online: https://github.com/kdgwill/OR1K/wiki/Build-Linux-
Kernel-For-OpenRisc-1000 (accessed on 19 Feburary 2019).

23. Kurth, A.; Vogel, P.; Capotondi, A.; Marongiu, A.; Benini, L. HERO: Heterogeneous Embedded Research
Platform for Exploring RISC-V Manycore Accelerators on FPGA. arXiv 2017, arXiv:1712.06497.

24. Davidson, S.; Xie, S.; Torng, C.; Al-Hawai, K.; Rovinski, A.; Ajayi, T.; Vega, L.; Zhao, C.; Zhao, R.; Dai, S.; et al.
The Celerity Open-Source 511-Core RISC-V Tiered Accelerator Fabric: Fast Architectures and Design
Methodologies for Fast Chips. IEEE Micro 2018, 38, 30–41. [CrossRef]

25. Eldridge, S.; Swaminathan, K.; Verma, V.; Joshi, R. A Low Voltage RISC-V Heterogeneous System
Boosted SRAMs, Machine Learning, and Fault Injection on VELOUR. 2017. Available online: https:
//pdfs.semanticscholar.org/608e/831e8ab14c0e5700eb5f3a01cc054b0d663e.pdf (accessed on 19 February 2019).

26. onchipuis. mriscv. Available online: https://github.com/onchipuis/mriscv (accessed on 19 February 2019).
27. Matthews, E.; Shannon, L. Taiga: A configurable RISC-V soft-processor framework for heterogeneous

computing systems research. In Proceedings of the First Workshop on Computer Architecture Research
with RISC-V (CARRV 2017), Boston, MA, USA, 14 October 2017.

28. Binkert, N.; Beckmann, B.; Black, G.; Reinhardt, S.K.; Saidi, A.; Basu, A.; Hestness, J.; Hower, D.R.; Krishna, T.;
Sardashti, S.; et al. The Gem5 Simulator. SIGARCH Comput. Archit. News 2011, 39, 1–7. [CrossRef]

29. Zoni, D.; Fornaciari, W. Modeling DVFS and Power Gating Actuators for Cycle Accurate NoC-based
Simulators. J. Emerg. Technol. Comput. Syst. 2015, 12, 1–15. [CrossRef]

30. Zoni, D.; Terraneo, F.; Fornaciari, W. A DVFS Cycle Accurate Simulation Framework with Asynchronous
NoC Design for Power-Performance Optimizations. J. Signal Process. Syst. 2016, 83, 357–371. [CrossRef]

31. OpenCores. Wishbone System-on-Chip (SoC) Interconnection Architecture for Portable IP Cores.
Available online: http://docplayer.net/6521799-Wishbone-system-on-chip-soc-interconnection-
architecture-for-portable-ip-cores.html (accessed on 2 Feburary 2019).

32. Patterson, D.A.; Hennessy, J.L. Computer Organization and Design—The Hardware/Software Interface, 4th ed.;
The Morgan Kaufmann Series in Computer Architecture and Design; Academic Press: New York, NY,
USA, 2012.

33. Martin, T. The Designer’s Guide to the Cortex-M Processor Family, 2nd ed.; Elsevier: Amsterdam,
The Netherlands, 2016.

34. Gustafsson, J.; Betts, A.; Ermedahl, A.; Lisper, B. The Malardalen WCET Benchmarks: Past, Present and
Future. In Proceedings of the 10th International Workshop on Worst-Case Execution Time Analysis, Brussels,
Belgium, 6 July 2010.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://openrisc.io/or1k.html
https://github.com/skristiansson/ar100-info
https://github.com/kdgwill/OR1K/wiki/Build-Linux-Kernel-For-OpenRisc-1000
https://github.com/kdgwill/OR1K/wiki/Build-Linux-Kernel-For-OpenRisc-1000
http://dx.doi.org/10.1109/MM.2018.022071133
https://pdfs.semanticscholar.org/608e/831e8ab14c0e5700eb5f3a01cc054b0d663e.pdf
https://pdfs.semanticscholar.org/608e/831e8ab14c0e5700eb5f3a01cc054b0d663e.pdf
https://github.com/onchipuis/mriscv
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1145/2751561
http://dx.doi.org/10.1007/s11265-015-0989-1
http://docplayer.net/6521799-Wishbone-system-on-chip-soc-interconnection-architecture-for-portable-ip-cores.html
http://docplayer.net/6521799-Wishbone-system-on-chip-soc-interconnection-architecture-for-portable-ip-cores.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works and Background
	Architectural View of the Proposed IoT Processor
	Experimental Results
	Performance evaluation
	Area and Timing Evaluation

	FPGA-Based Design Suggestions for IoT CPUs
	Conclusions
	References

