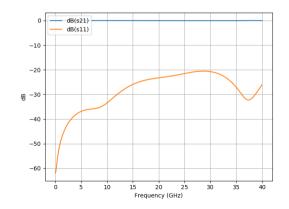
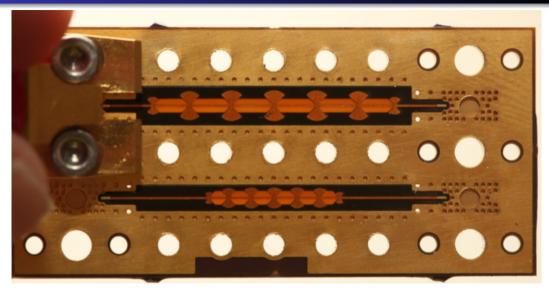

Microwave Design with KiCad and OpenEMS


Darrell Harmon

April 26 2019

OpenEMS


- Finite Difference Time Domain (FDTD) 3D electromagnetic field solver
- GPLv3 license
- Matlab/Octave or Python scripts describe geometry, ports, etc
- 3D viewer (CSXCAD) for resulting model

- written in Python 3, fairly small and simple
- originally a wrapper for OpenEMS which generated an Octave script and ran it
- OpenEMS is adding Python support in the next release
- generates a KiCad module for most PCB compatible geometry (planar, vias)
- has some helper functions and classes for common geometry used in a PCB (via, plane with hole, etc)
- being simplified to be a very thin wrapper only requiring minor changes to standard OpenEMS scripts
- primarily a tool for use at Harmon Instruments

Low Pass Filter (examples/LPF_DGS_bowtie_7)

Figure 1: photo of filters

Lumped filter prototype - QUCS

P1 Num=1 Z=50 Ohm	L1 L=1.548nH C1 C=444.5fF	L2 .L=1.779nH C2. C=851.9fF	L3 L=1.817nH C3 C=0.895pF	L4 L=1.817nH C4 C=0.9024pF	L5 .L=1.779nH C5 C=0.895pF	L6 L=1.548nH C6 C=851.9fF	C7. C=444.5iF	P2 Num=2 Z=50 Ohm
Sparamete simulation Sp1 Type=log Start=780MHz Stop=78GHz Points=201.	Eqn1 S21_d	on Cheby 7.8GH B=dB(S[2,1]) imped B=dB(S[1,1])	shev low-pass filter (z ciutóff, pi-lype, ance matching 50 C	yhm;				
P3. Num=3 Z=50 Ohm	L7 L=754.6pH C8 C=216.71F	L8 L=867.2pH C9 C=415.3fF	L9 L=0.8856nH C10. C=436.9fF	L10 L=0.8856nH C11. C=439.9fF	L11. L=867.2pH C12. C=436.3fF	L12 L=754.6pH C13 C=415.3fF	C14 C≈216.7/F	P4. Num=4 Z=50 Ohm
S parame simulation SP2 Type=log Starl=1.6GHz	1 Eqn2 S21_	01100	yshev low-pass filte Hz cutoff, pi-type, dance matching 50					· · · · · · · ·

- No parts
- circuit board traces and vias
- can be implemented on a PCB, in metal, etc

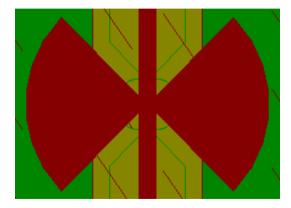
Material

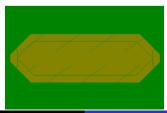
- OSHPark flex https://docs.oshpark.com/services/flex/
- 102 µm (4 mil) Polyimide (Panasonic Felios)
- $\epsilon_r = 3.2$, relative permittivity or dielectric constant
- Df = 0.002, dissipation factor as in a capacitor
- Copper is 35 µm each side
- Mask is about 25 um thick, Er = 3.3, Df = 0.020 (guess, mask not specified)
- Mask is retained over the circuit to avoid losses associated with ENIG plating
- moisture absorption causes dielectric properties to shift

tand=0.020, fc=fc)

Capacitors

- Pairs of radial stubs commonly referred to as a bowtie or butterfly
- enables better low pass performance than rectangles used in a stepped impedance filter
- The choice of the thin substrate reduces the required area for the stubs




Figure 2: bowtie stub

Inductors

A high impedance line can be used to approximate an inductor. On OSHPark flex, the highest achievable impedance is about 60 ohms with the design rule minimum trace over a ground plane. Adding the ground cutout increases the impedance to around 200 ohms.

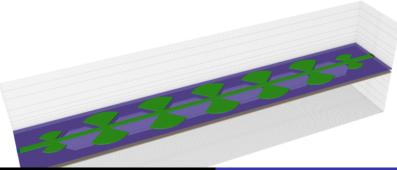
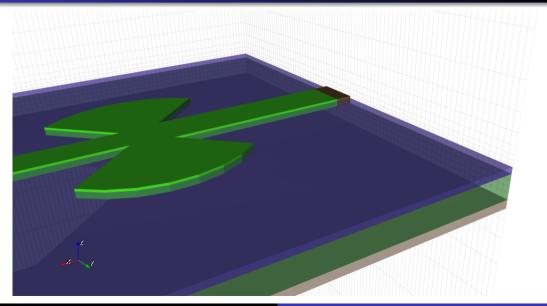
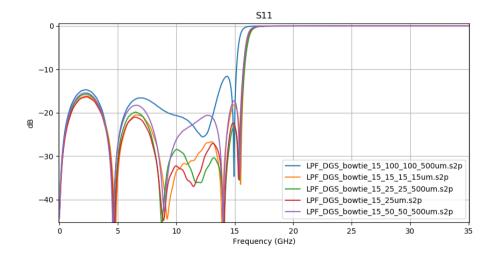


Figure 3: inductor top layer



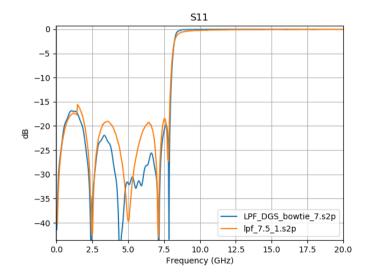
Simulation Box

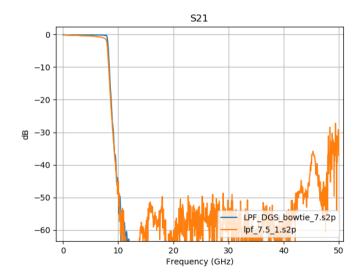
- Boundaries default to PEC (perfect electrical conductor), lossless metal
- Other available boundaries include PMC (useful for symmetry), PML (absorptive), etc
- Unused space is vacuum $\varepsilon_r = 1.0$, close enough to air $\varepsilon_r \approx 1.0006$
- Best to break a problem up into pieces don't model an entire board


Ports

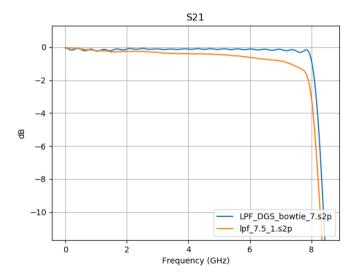
Mesh

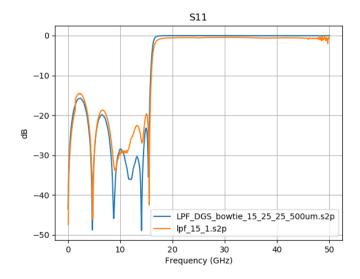
- The mesh does not have to be uniform
- Smaller cells decrease the minimum time step. Halving the cell size in x, y and z can result in a 16x increase in run time.
- Times on an i7-3820 PC, 8 threads, x, y, z are maximum cell size in µm

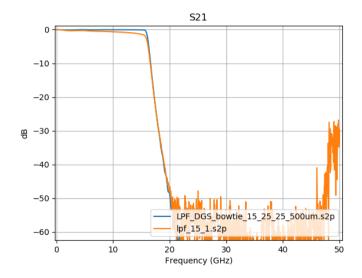

x	У	z	cells	run time MM:SS
15	15	15	25.6 M	144:48
25	25	25	5.7 M	14:29
25	25	500	1.1 M	03:16
50	50	500	293 k	00:38
100	100	500	95 k	00:21

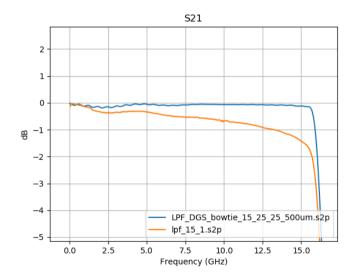


- Ground plane is composed of two overlapping custom shape pads
- Top copper is a polygon and two normal pads, net tie
- Requires adding a polygon pour keepout on the bottom layer

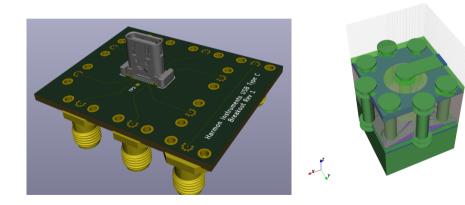

Results - 7.5 GHz S11 (reflection)

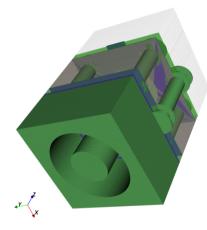

Results - 7.5 GHz S21 (transmission)

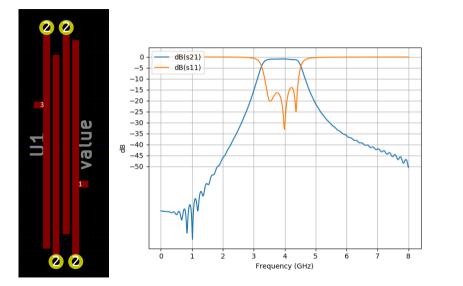

Results - 7.5 GHz S21 (transmission)


Results - 15 GHz S11 (reflection)

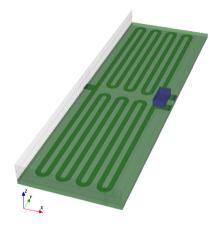
Results - 15 GHz S21 (transmission)

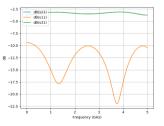



Results - 15 GHz S21 (transmission)


Connector

- examples/vert_connector_ms_oshpark.py
- 2.92 mm compression mount




Interdigital Bandpass

• examples/wilkinson_1.py

- Documentation
- move many models from private repository to examples

• Live demo if time allows

Software

- pyopenems https://github.com/dlharmon/pyopenems
- OpenEMS https://openems.de
- ATLC http://atlc.sourceforge.net
- QUCS http://qucs.sourceforge.net

Darrell Harmon

- Blog https://harmoninstruments.com/blog/
- Twitter: harmoninst
- https://harmoninstruments.com