
Lucas De Marchi
ProFUSION Embedded Systems

Embedded Linux Conference 2012
Redwood Shores, CA

Managing kernel modules
with kmod

● Software Engineer at ProFUSION

● Contributor to some open source projects: Kernel,

BlueZ, oFono, ConnMan, EFL, WebKit

● Creator of others: dietsplash, codespell, and... kmod

● http://www.politreco.com/

● IRC: demarchi

 Who am I?

● Introduction

● How module management works on Linux

● Current status: desktop, embedded, Android

● Packaging, coding, testing

 Outline

Introduction

 What's kmod?

 About

"The goal of the new library libkmod is to offer to
other programs the needed flexibility and fine

grained control over insertion, removal,
configuration and listing of kernel modules."

Lucas De Marchi -- announcement of kmod 1

 What's wrong with module-init-tools (m-i-t)?

 About - Why?

"module-init-tools: provide a proper libmodprobe.
so from module-init-tools:

Early boot tools, installers, driver install disks
want to access information about available

modules to optimize bootup handling."
Plumber's Wish List for Linux - October, 2011

 That means: udev, systemd, initrd tools and others

 What's different from m-i-t?

 About - Why?

● Library is designed first

Initial goal was to export only part of the needed functions
(libmodprobe.so), later we decided to export all of them (libkmod.
so)

Based on libabc (See Kay's e Lennart's talk at Kernel Summit 2011)

● Tools are created on top of the library

Project is renamed to kmod

 History

12/17/11
Jon Masters
joins the
project

12/20/11
m-i-t is
declared
deprecated

kmod 4
01/16/12

Feature
complete

kmod 5
02/06/12

Stabilization,
testsuite,
cleanup.
systemd starts
using libkmod

kmod 6
??/??/??

kmod 1
12/15/11

kmod 2
12/20/11

kmod 3
01/06/11

Almost
complete -
udev starts
using libkmod

t

How module management
works on Linux

 module insertion:

long init_module(const void *mem,
 unsigned long len,
 const char *args)

 module removal:

long delete_module(const char *name,
 unsigned int flags)

 module list, params, state:

/sys/module

 Module management

 Module management

● Pretty simple interface with kernel, but...

● Much more complicated when all use cases must be

handled:

- Hotplug (resolving aliases)
- Blacklist
- Dependencies and soft-dependencies
- Install and remove commands
- ELF tweaking

 Dependencies

● A module may depend on symbols from another

module

● Too heavy to check dependencies at insertion time

- Offload calculation: depmod

- Read dependencies info and do TheRightThing®

 Dependencies - depmod

● Read .symtab and .ksymtab sections of each module

● Match who provides a symbol with who requires a

symbol

● Calculate dependencies (topological sort) and write

modules.dep.
kernel/drivers/bluetooth/btusb.ko: \
 kernel/net/bluetooth/bluetooth.ko

● modules.dep.bin: same information, but stored in a

Trie

 Dependencies - depmod

● Actually it does a bit more. Indexes:

- modules.alias{,.bin}
- modules.dep{,.bin}
- modules.devname
- modules.softdep
- modules.symbols{,.bin}

● All indexes are saved per-kernel:

- /lib/modules/$(uname -r)

 Dependencies - modprobe

● Basically it reads dependencies and load modules in

the right order

● Configurations:

- Blacklist
- Alias
- Install and remove commands
- Options
- Softdeps

 Dependencies - modprobe

● --force-modversion, --force-vermagic, -f

These are the bad guys

● Kernel refuses to load modules with mismatching

versions. It checks the .modinfo section (the same

read by modinfo)

● Solution: remove that information from module before

handing over to kernel

Current status

 m-i-t phase out plan

1. Put all (part) of the features inside a library

2. Port all (part of the) tools to use the library

3. Allow library to be installed in parallel to m-i-t

4. Allow kmod to completely replace m-i-t

5. Eventually get rid of all tools and use only 'kmod' tool

(a la git, systemctl, udevadm and others)

 Status
● ~ 14.5 KLOC (libkmod and tools - insmod, rmmod,

modprobe, depmod, modinfo and lsmod)

 Status

● Close to release v6 (waiting some pending bugs and

repository on kernel.org)

● Udev, systemd and other initrd tools already depend

on libkmod

● Architectures supported: x86, x86-64, ARM, PPC,

PPC64, SH4, MIPS, SPARCv9, SPARC64, HPPA, S390

● libc: known to work with glibc, eglibc, uClibc and

dietlibc (with some patches)

 Status - Desktop distros

● Major distros adopting kmod

- Archlinux: replaced m-i-t with kmod 5

- Fedora (F17): replaced m-i-t with kmod 5

- Opensuse: replaced m-i-t with kmod 5

- Debian: package in Experimental

- Ubuntu: ??

- Mageia, Openmamba and others reported to be

using

 Status - embedded

● Angstrom: using libkmod 3

● Buildroot: using libkmod 5

● Poky, Yocto: ??? (Darren Hart said there are patches

pending to add kmod)

● Android: ... more later

 Status - embedded

● Why embedded should care about kmod?

- Allow module loading / hotplug

- Link init/udev/mdev/your-home-made-solution

directly to libkmod:

>> avoid several fork/exec calls during boot

>> having configurations and indexes in

memory, we can be faster

 Module loading on Android

● Very primitive module handling - the equivalent of

insmod/rmmod

- Used by toolbox (adb shell)

- Used by init (it's a command available for init.rc

file)

● Vendors don't allow module loading -> no external

devices. See talk at ABS 2012: "USB Device Support

Workshop", Bernie Thompson - Plugable Technologies

 Module loading on Android

● Linking Android's init to libkmod

- Very few code to add support for module loading

with all the necessary goodies for hotplug

Packaging, coding, testing

 Packaging

● 2 ways of using kmod

- Only as a library

- As a replacement to m-i-t

● ./configure [--enable-tools] && make &&

make install

 Packaging

● Create symlinks (there's only 1 tool, named kmod)

Typical configuration:

/usr/bin
insmod -> kmod
kmod
lsmod -> kmod
modinfo -> kmod
rmmod -> kmod

/sbin/
modprobe -> ../usr/bin/kmod
depmod -> ../usr/bin/kmod

 Coding

● How to use libkmod?

● Steps:

i. Init library: grab context object, setup logging

function, pre-load indexes, etc

ii. Create module object by path, name or through

index lookup

iii. Operate on that module: insert, insert with

dependency handling, remove, get info, etc

 Coding - example

Hands on - udev or systemd

Automated testing

 Testsuite

● Testsuite added on kmod 5

● Need to address regression reports that were being

received from different architectures and different

distributions

 Testsuite - features

● Each test runs isolated on a separate process

● Trap calls to libc functions, modifying the result:

- All functions dealing with path: open(),

fopen(), opendir(), stat(), etc

- uname()

- init_module()

- delete_module()

 Testsuite - features

● Goal of function traps: allow each test to have a fake

rootfs and don't touch current state of the system

● Test both library API and tools:

- Inline tests in test definition

- Exec built binaries: modprobe, insmod, modinfo,

depmod, etc

 Testsuite - anatomy

Hands on - Anatomy of a test

Thanks

Thank you for your attention
Questions?

Repository: git://git.profusion.mobi/kmod.git
Mailing list: linux-modules@vger.kernel.org
IRC: #kmod at freenode

