
Practical experiences based on MIPSfpga

Daniel Chaver1, Yuri Panchul2, Enrique Sedano2, David M. Harris3, Robert Owen2,
Zubair L. Kakakhel2, Bruce Ableidinger2, Sarah L. Harris4

Abstract— In this paper we describe how to use MIPSfpga,
a soft-core MIPS processor, to teach undergraduate and
masters-level computer architecture courses. The most recent
release of MIPSfpga (version 2.0), consists of three packages:
the MIPSfpga Getting Started Guide, MIPSfpga Labs, and
MIPSfpga System on Chip. After giving an overview of these
packages, we provide examples of how to integrate MIPSfpga
into curricula by describing three teaching experiences that
used the MIPSfpga packages: an undergraduate course at the
University Complutense of Madrid, a course at the Technical
University of Darmstadt, and several seminars held at various
Russian research centers and universities. MIPSfpga enabled
students to bridge the gaps between theoretical concepts, hands-
on practice, and industrial cores by allowing them to explore,
modify, and test the MIPS core and system with the support
of commercial compilers and tools.

I. INTRODUCTION

The MIPSfpga project, developed by Imagination Tech-
nologies, is a comprehensive resource for computer archi-
tecture education. This infrastructure not only provides open
access to the MIPS microAptiv UP soft-core processor, but
also includes a large set of teaching materials and software
tools. While soft-core processors have been available for
several decades, MIPSfpga is the first unobfuscated com-
mercial MIPS soft-core openly available to academics. The
availability of the MIPSfpga core bridges the gap between
existing curricula, that include toy MIPS processors, and
industrial-level work with a real MIPS processor and its
supporting tools.

The first version of MIPSfpga, released in June 2015,
includes the Getting Started Guide package, which, in ad-
dition to the microAptiv UP soft-core processor, provides a
thorough overview of the processor and system, the installers
for the programming and debugging tools, and a set of
scripts and examples. A companion MIPSfpga Fundamentals
package provides nine labs that guide the students through
setting up the hardware, programming and debugging the
MIPS soft-core processor, and extending the processor to
interact with various peripherals. Finally, a third package,
called MIPSfpga-SoC, shows how to synthesize a System-
on-Chip design centered on the MIPS soft-core that runs
Linux and includes interfaces such as memory (DDR),
UART16550, I2C, Ethernet, and an interrupt controller.

1Group of Architecture and Technology of Computing Systems
(ArTeCS), University Complutense of Madrid, Spain

2Imagination Technologies Ltd., Kings Langley, United Kingdom
3Department of Engineering, Harvey Mudd College, Claremont, CA,

U.S.A.
4Electrical and Computer Engineering, University of Nevada, Las Vegas,

Las Vegas, NV, U.S.A.

In June 2017 the second version of MIPSfpga (MIPSfpga
2.0) was released. This new version still includes three
packages: MIPSfpga Getting Started Guide (GSG), MIPSf-
pga Labs (which relpaces MIPSfpga Fundamentals), and
MIPSfpga System on Chip (SoC). The GSG is extended with
several new features in 2.0, such as a guide for downloading
and debugging programs on the FPGA board without using
the Bus Blaster probe, instructions for installing all MIPSf-
pga related software on either a Windows or Linux-based
computer, and VHDL versions of the top-level MIPSfpga
system modules. The MIPSfpga Labs package extends the
Fundamentals package to include 17 new labs that examine
and modify the core at a microarchitectural level, analyze
and modify the cache structures and the cache controller,
add user defined instructions (UDIs) via the CorExtend
Interface, use interrupts and direct memory access (DMA)
for Input/Output, and show how to modify the MIPS core
itself.

This paper gives an overview of the MIPSfpga 2.0 in-
frastructure in Section II by describing its three packages
(MIPSfpga GSG, MIPSfpga Labs, and MIPSfpga SoC)
and by discussing how well these materials adapt to the
IEEE/ACM Curriculum Guidelines for Undergraduate De-
gree Programs in Computer Engineering established at [1].
Section III shows how to integrate MIPSfpga into course
curriculum by describing three example courses using the
MIPSfpga 2.0 infrastructure. The last two sections discuss
related work (Section IV) and conclude (Section V).

II. OVERVIEW OF MIPSFPGA 2.0

The MIPSfpga project encompasses three main sets of
materials, available through [2], which we present in Subsec-
tions II-A, II-B and II-C (more details can be found in [3]).
These materials align perfectly with the theoretical concepts
explained in typical computer architecture courses. Actually,
in Subsection II-D, we briefly describe the IEEE/ACM
Curriculum Guidelines for Undergraduate Degree Programs
in Computer Engineering [1] and justify how all of the topics
included in those guidelines are covered by MIPSfpga 2.0.

A. MIPSfpga Getting Started Guide

The first package in MIPSfpga 2.0 is the MIPSfpga
Getting Started Guide (GSG), which offers access to an
unobfuscated commercial MIPS soft-core processor targeted
to a field programmable gate array (FPGA). This soft-core
is a version of the microAptiv UP core used in the popular
Microchip PIC32MZ microcontroller and is composed of
a set of Verilog HDL files that implement the MIPS32r3



Fig. 1. MIPSfpga System

instruction set architecture in a 5-stage pipeline [4]. The
package also includes the installers for the programming
and debugging tools (Codescape MIPS SDK Essentials and
OpenOCD), an overview of the MIPSfpga core and system,
instructions on how to use the MIPSfpga hardware and
programming tools, and a set of scripts and examples.

The MIPSfpga System illustrated in Figure 1 includes the
MIPS soft-core and peripherals that communicate with the
core via the AHB-Lite Interface. The peripherals include
memory, implemented as block RAM on the FPGA, and
general-purpose I/O (GPIO) that interacts with the LEDs and
switches on an FPGA board. Given that many universities
around the world opt to use Verilog or VHDL in their
curricula, MIPSfpga 2.0 provides both Verilog and VHDL
versions of the MIPSfpga top-level system modules.

The hardware required to use MIPSfpga are an FPGA
board and a Bus Blaster probe. Although two boards are
used as the example FPGA targets (Nexys4 DDR and DE2-
115 boards), a detailed guide is provided for those who wish
to retarget the MIPSfpga system to smaller boards (such as
Basys3 or DE0 boards). The MIPSfpga GSG describes how
to download, install, and use MIPSfpga development tools,
which include a CAD tool, such as Vivado or Quartus II, for
simulating and loading the MIPSfpga system onto an FPGA,
and programming tools. These tools require a Windows or
Linux-based operating system.

It is worth mentioning that Imagination Technologies has
partnered with Europractice and MOSIS to offer academics
and researchers access to a MIPS core for Multi Project
Wafer (MPW) runs of silicon up to 100 pieces. The cores
offered are the Warrior M-class 5100 or 5150 cores. The War-
rior M-class is an extension of the microAptiv family aimed
at the Internet of Things, wearable, and other embedded
applications. Therefore, researchers have access to the latest
evolution of the same core used in MIPSfpga. These cores
offer the full configuration options including a Floating Point
Unit (FPU), DSP, microMIPS Instruction set, and Hardware
Virtualisation for enhanced security. These agreements po-
sition MIPSfpga as a comprehensive collection of teaching
resources, providing materials to use from the first courses
in Computer Architecture up to advanced architectural topics
for master courses and a route to silicon for researchers.

B. MIPSfpga Labs

The second package in the MIPSfpga 2.0 infrastructure
uses the MIPSfpga core and system provided in the Getting

Started Guide to teach computer architecture and SoC design
through hands-on learning. Some prior knowledge of digital
design, computer architecture, and the MIPS instruction set
architecture (ISA), for example the topics taught in [5], is
required. Prior software programming experience is useful,
but it can be taught concurrently if necessary.

This package includes 25 labs that guide the student
through the underlying MIPSfpga setup and increasingly
complex interactions with and extensions of the MIPSfpga
core and system. The labs are divided into four parts: intro-
duction, I/O, core, and memory system. The introductory labs
(Labs 1-4) illustrate how to set up the MIPSfpga hardware
and how to program and debug the MIPS soft-core processor.
The I/O section (Labs 5-13) explains how to extend the
system to interact with new peripherals. The third group of
labs (Labs 14-19) delves into the microarchitectural details
of the microAptiv core at the heart of MIPSfpga. Finally,
the last set of labs (20-25) explore and modify the memory
hierarchy. Table I gives a brief description of each lab, and
further detail is given below.

TABLE I
MIPSFPGA LABS

Lab Description
1 Create a Project in Vivado or Quartus-II
2 Learn how to compile, debug and run C programs
3 Learn MIPS Assembly Programming system
4 More C Programming Practice (optional)
5 Expand the system to add 7-segment displays
6 Expand the system to add a counter
7 Expand the system to add a buzzer
8 Expand the system to add an SPI-Light Sensor
9 Expand the system to add a SPI-LCD

10 Interact with peripherals using interrupts
11 Build a DMA engine for transfers between peripherals
12 Build a Data Encryption Standard (DES) engine
13 Learn how to use the Performance Counters
14 Execution of ADD and other arithmetic instructions
15 Execution of AND and other logic instructions
16 Execution of LW and other related instructions
17 Execution of BEQ and other related instructions
18 Learn how the Hazard Unit is implemented
19 Learn how to use the CorExtend interface
20 Introduction to the caches available in MIPSfpga
21 Analyze the D$ and implement new configurations
22 Cache Controller: Analyze a cache hit and miss
23 Cache Controller: Analyze D$ management policies
24 Cache Controller: Analyze the Store and Fill Buffers
25 Implement an Instruction Scratchpad RAM

Part 1 consists of four labs that introduce the tools for
working with MIPSfpga. Lab 1 teaches how to build a
MIPSfpga project targeted to an FPGA using either Xilinx’s
Vivado or Altera’s Quartus II design software. This lab also
shows how to target MIPSfpga to other FPGA boards, using
the Basys3 and DE0 boards as examples. Labs 2 and 3
explain how to use the Codescape SDK (which consists of
gcc and gdb targeted to MIPS) and the Bus Blaster probe to
compile, download, run, and debug C and MIPS assembly
programs on the MIPS core running on an FPGA. Lab



4 provides optional exercises for additional programming
practice.

Part 2 begins with five memory-mapped input/output (I/O)
exercises (Labs 5-9) for interfacing MIPSfpga with increas-
ingly complex peripherals: the 7-segment displays on the
FPGA boards, a millisecond counter for timing, a buzzer to
play music, and two SPI devices (a liquid crystal display
and a light sensor). A few extra components are needed to
complete labs 7, 8, and 9, as detailed in [3].

Labs 10-12 analyze advanced I/O topics (such as interrupts
and DMA). Lab 10 explains the basic usage of interrupts in
MIPS CPUs. That lab also demonstrates how interrupts keep
a processor from needing to constantly poll I/O ports, thus
increasing the number of cycles available for computation
and other non-I/O tasks. The next two labs analyze how to
design, build, and test a direct-memory access (DMA) engine
(Lab 11) and a Data Encryption Standard (DES) engine (Lab
12). Finally, Lab 13 explains how to configure and use the
performance counters available in microAptiv. Example code
is provided that sets up and uses the performance counters,
and several exercises are proposed where the user evaluates
the performance of example programs using various events.
Labs 14-25 use this resource for evaluating the program
performance.

Part 3 of MIPSfpga Labs delves into the internals of the
core by showing how to use several microAptiv features
and CorExtend, as well as describing detailed instruction
flow through the pipeline. The first four labs (Labs 14 to
17) dive into the implementation of the microAptiv core
and its pipeline. Students learn how the ADD, AND, LW
and BEQ instructions are handled by the pipeline. The labs
first introduce the stages of the microAptiv pipeline, showing
how the analyzed instruction passes through each stage. This
is followed by a step-by-step example simulation, showing
where the main signals related to the given instruction are in
the Verilog code (RTL). Finally, students are asked to analyze
specific control signals, examine additional instructions, and
add new instructions to the ISA supported by microAptiv.

Lab 18 explains and demonstrates microAptiv’s Hazard
Unit. This lab also introduces a switchable clock so that
the system can run at a range of frequencies, from the
usual multi-megahertz frequency down to about 1 Hz. At the
slow frequency, users can explore program behavior in real-
time by connecting system signals (such as pipeline, hazard
control, or cache eviction signals) to LEDs.

The final lab in this part (Lab 19) shows how to use
the CorExtend Interface available in MIPS processors. This
interface is a powerful tool that allows designers to specify
and implement their own instructions (User Defined Instruc-
tions, or UDIs). Through this interface, users can connect
specialized hardware to boost the performance of critical
algorithms beyond what can be achieved through the standard
MIPS32 ISA. The lab describes the CorExtend interface,
its capabilities and limitations, the placement of the module
within the MIPS core, its timing properties, the interaction
of the UDI unit with the microAptiv pipeline, and several
exercises directing how to experiment with the UDI.

The final group of labs explores the MIPSfpga memory
system, starting with the cache memories (Labs 20-24) and
finishing with the implementation of a Scratchpad RAM
(Lab 25). The analysis of MIPSfpga’s cache memory system
begins by demonstrating cache hits and misses using LEDs
(Lab 20) in several example programs.

Lab 21 analyzes the various cache arrays that make up
the cache used by microAptiv (i.e. the Data, Tag, and Way
Select Arrays). The lab describes both the array interfaces
and their internal implementations. After these detailed ex-
planations, the students are asked to implement and test new
cache configurations and to test several code optimization
techniques using the performance counters.

The next three labs (22-24) delve into the cache con-
troller. Lab 22 analyzes the management of cache hits and
misses and describes the main stages, structures, and signals
involved in a cache hit or miss. Provided simulations also
illustrate the described concepts. Finally, proposed exercises
explore the cache system by, for example, evaluating the
miss penalty involved in a cache miss. Lab 23 describes the
cache management policies supported by the microAptiv UP
processor. The exercises prompt students to evaluate several
typical allocation and write policies and also to implement
new replacement policies. Finally, Lab 24 explains the oper-
ation of the Store Buffer, which temporarily holds the data
to write in the data cache by a store, and the Fill Buffer,
which temporarily holds the block to fill into the data cache
after a miss.

Finally, Lab 25 shows how to add an Instruction Scratch-
pad RAM to MIPSfpga. The basic MIPSfpga configuration
includes the Scratchpad interface but no actual Scratchpad
RAM. This lab shows how to add this Scratchpad RAM
block and how to communicate with it through the I/D cache
controller.

Once the students complete this package, they are ready
to develop more advanced projects, such as adding inter-
faces to drive additional peripherals (for example I2C or
UART), adding new features to the core (such as a hardware
prefetcher or a branch predictor) or to the memory system
(such as a second cache level or a way predictor), or any
other project that the instructor may choose.

C. MIPSfpga-SoC

The final package in the MIPSfpga 2.0 materials is
the MIPSfpga-SoC package, which shows how to extend
MIPSfpga to build an SoC system that loads the open source
Linux operating system. This package gives a detailed view
of how the SoC in embedded systems is designed and built
up in layers to run complex software.

The Linux SoC is built with the MIPS core as the master
controlling peripherals, acting as slaves, across the AHB-Lite
bus (Figure 2). The slaves are implemented mostly using
Xilinx IP blocks, which greatly reduces design time. All
peripherals connect to the MIPS core using the AHB-Lite
interface and memory-mapped I/O. However, because the
supplied Xilinx blocks use an Advanced eXtensible Interface
(AXI), an AHB-Lite to AXI bridge is used to connect the



Fig. 2. Simplified block diagram for the Linux SoC

MIPS core with the Xilinx-supplied IP. All of the blocks are
Xilinx IP blocks except the MIPS core and the custom GPIO
module, which are supplied by Imagination. This simple
GPIO module allows students to understand what it takes
to build a slave peripheral, interface it to the interconnect,
and use it to communicate with the MIPS CPU and interact
with the physical world via simple switches and LEDs.

A Linux OS can be divided into two parts: the Linux
Userspace and the Linux Kernel. The Userspace interacts
with the hardware via standardized system calls provided by
the Linux Kernel. MIPSfpga-SoC uses Buildroot, one of the
most scalable Linux Userspace flavors. The Kernel interacts
directly with hardware and provides a layer of abstraction. A
Linux kernel can be implemented with minimum hardware
support: the system must have a processor with an MMU,
interrupt controller, timer interrupts, UART, memory, and an
e-JTAG interface. Note that all these features are included in
the MIPSfpga Linux SoC described above (Figure 2).

Additional source code in the form of patches to the Linux
Kernel is provided as part of the MIPSfpga-SoC package.
This adds support for the MIPSfpga soft-SoC platform in
the Linux Kernel. As microAptiv UP and the IP blocks we
used are already supported in the kernel, we reuse existing
code while only needing to add the MIPSfpga-SoC platform
description. Buildroot compiled for the mips32r2 ISA can
then be loaded by the kernel running on MIPSfpga-SoC. The
resulting system can run applications relying on the GNU
standard C libraries.

D. IEEE/ACM Curriculum Guidelines for Undergraduate
Degree Programs in Computer Engineering

The IEEE/ACM Curriculum Guidelines for Undergraduate
Degree Programs in Computer Engineering [1] establish nine
relevant units for the Computer Architecture and Organiza-
tion knowledge area, as summarized in Table II.

The labs in MIPSfpga offer extensive coverage for the
units detailed in the IEEE guidelines. The MIPS ISA has
been around since the early 80’s and it did set the base
ideas for many other later architectures, therefore playing
a key role in the history of computer architectures covered
by CE-CAO-1. Labs 2 and 3 instruct students on creating
projects in Vivado and compiling, running and debugging
programs, therefore lining up with CE-CAO-2. Also in lab
2, along with labs 3 and 4, many aspects of the MIPS ISA are
studied and detailed, which can be used as part of the studies
covered by unit CE-CAO-3. Performance measurements, for

TABLE II
IEEE CURRICULUM GUIDELINES

Unit Name
CE-CAO-1 History and overview
CE-CAO-2 Tools, standards and/or constraints
CE-CAO-3 Instruction set architecture
CE-CAO-4 Measuring performance
CE-CAO-5 Computer arithmetic
CE-CAO-6 Processor organization
CE-CAO-7 Memory system organization and architectures
CE-CAO-8 Input/Output interfacing and communication
CE-CAO-9 Peripheral subsystems
CE-CAO-10 Multi/Many-core architectures
CE-CAO-11 Distributed system architectures

CE-CAO-4, are introduced in lab 13 through the Performance
Counters. This resource is used to analyse the impact of
different events and combinations of instructions in various
elements related to performance across the core. Moreover,
Performance Counters are relied upon through labs 14-25.
In particular, lab 14 delves into the ADD operation and
other arithmetic instructions, providing hands-on materials
for unit CE-CAO-5. Processor organization (CE-CAO-6) is
studied in labs 14-18 which, as stated earlier, study the
pipelined structure of the MIPS core. Labs 20-25 present an
exhaustive look at the memory hierarchy, including caches
and scratchpad RAMs, offering more than enough coverage
for unit CE-CAO-7. Units CE-CAO-8 and CE-CAO-9 are ad-
dressed in labs 5-12, where various I/O devices are connected
with the MIPSfpga system, interrupt-based communication is
analysed, and DMA transfer and encryption are examined.

The two final units, CE-CAO-10 and CE-CAO-11, are
not directly addressed in the MIPSfpga materials, as they
study multi-core and distributed architectures, and MIPSfpga
is a single-core system. Nevertheless, the availability of
MIPSfpga as an open system for academia make it possible
for professors to use it as a base for their advanced materials.
As an example, the authors in [6] have engaged in some
heavy modifications of the source code of the microAptiv
core contained in the MIPSfpga system to develop a 120-core
system that then can be downloaded onto a Terasic DE5-NET
FPGA.

III. PRACTICAL EXPERIENCES

MIPSfpga 2.0 has already been used in several academic
courses, workshops, and hackathons. In this section we
describe three of these uses to exemplify how to integrate
MIPSfpga into courses and to illustrate some additional
uses. These courses focus on computer architecture and SoC
design using MIPSfpga as the development platform.

A. Course at University Complutense of Madrid

During the second semester of 2016/2017 (February to
June 2017), we used MIPSfpga 2.0 as part of an under-
graduate course on Computer Architecture & Integrated
Systems, a compulsory subject in the fourth year of the
Telecommunications Engineering degree offered at Univer-
sity Complutense of Madrid. The students of this course



have a strong background in digital design, VHDL, computer
organization (MIPS ISA, single/multi-cycle processors, and
Input/Output systems), and programming (C++). This section
gives an overview of the course and describes the labs,
assessment, and student feedback.

1) Course Overview: The 12-week course consists of 24
1.5-hour lectures (2 per week) with four modules. Module
1 reviews material taught in prior courses: namely, the
MIPS ISA, the single- and multi-cycle processor and the
Input/Output system. Module 2 describes the MIPS pipelined
processor and explores its implementation using examples
and exercises. Module 3 explores the cache hierarchy, and
Module 4 introduces System on Chip and Embedded System
design. The MIPSfpga 2.0 resources are perfectly suited to
this course.

We use [5] as the main textbook, focusing on Chapters 4
(Hardware Description Languages), 6 (Architecture), 7 (Mi-
croarchitecture) and 8 (Memory and I/O Systems). Moreover,
we use the lecture slides provided with that book. In order
to link the theoretical contents with MIPSfpga during the
lectures, we have extended the original slides with some extra
material that explain MIPSfpga and compare the pipelined
processor and memory and I/O systems explained in [5] with
those of MIPSfpga (see Figure 1).

2) Labs: Interleaved with the 24 1.5-hour lectures, the
course includes 12 weekly 2-hour lab sessions. Given that
MIPSfpga includes 25 extensive labs, we cannot complete
all of them but have to select a smaller subset. We selected
the following labs from the MIPSfpga Labs package (see
Table I for an explanation of the lab contents) and from
the MIPSfpga SoC package: 1, 2, 3, 4, 5, 13, 14-18, 22
(MIPSfpga Labs) and Advanced Starter Tutorial (MIPSfpga
SoC). Table III specifies the association between the labs and
the course modules described in the previous subsection.

TABLE III
ASSOCIATION BETWEEN MODULES AND LABS

Module Module contents Labs

1
Review MIPS ISA Labs 2, 3 and 4

Single/multi-cycle procs

Input/Output system Lab 5

2 The pipelined processor Labs 13-18

3 The cache hierarchy Labs 22-A and 22-B

4 SoC and Embedded SoC - Starter Tutorial

Table IV shows the lab schedule. Obviously, it is essential
to explain the theoretical concepts associated with each lab
before the corresponding lab session. Thus, according to the
schedule (Table IV), we review the MIPS ISA before the 2nd

lab session, the input/output system before the fourth session,
and we explain the pipelined processor and the memory
system before the 6th and 9th sessions, respectively.

In the first lecture, held several days before the first lab
session, we distribute the Nexys4 DDR FPGA boards and

TABLE IV
LAB SCHEDULE

Session Description

- Homework: Before the first session, the students
must install MIPSfpga as explained in the GSG

1 Finish MIPSfpga installation + Lab 1

2
Labs 2 and 3 (C and Assembly Programming) +
Lab 4 (Image Transformation)

- Homework: Complete Lab 4
3 Extra exercise Lab 4 + Test
4 Lab 5 (7-Segment Displays)
- Homework: Complete Lab 5
5 Extra exercise Lab 5 + Test
6 Lab 13 (Performance Counters)
- Homework: Complete Lab 13
7 Extra exercise Lab 13 + Test
8 Teamwork preparation (Labs 14-18)
- Homework: Complete Labs 14-18 in teams
9 Lab 22-A (Hit management)
- Homework: Complete Lab 22-A
10 Lab 22-B (Miss management)
- Homework: Complete Lab 22-B
11 Extra exercise Lab 22 + Test
12 MIPSfpga SoC - Advanced Starter Tutorial

the Bus Blaster probes and ask the students to download
the MIPSfpga GSG package from [2], install the software
tools on their laptops as explained in the GSG document
(specifically, Windows users complete Appendices B and D,
and Linux users complete Sections 2 and 3 of Appendix
G), and test the installation by completing the corresponding
sections of the GSG document (specifically, Windows users
complete Sections 4.1, 4.2.1, and 7.4, and Linux users
complete Section 4 in Appendix G). In this first lecture, we
also ask the students to begin studying the Verilog hardware
description language (HDL) on their own, using Chapter 4
of [5], as their prior HDL knowledge is in VHDL.

Each lab is completed during 1-2 lab sessions. For exam-
ple, Lab 13 is completed in sessions 6 and 7: in session 6,
the students start working on Lab 13. They complete the lab
at home using the homework slot between the 6th and the
7th) sessions. Then, in the second of these sessions (the 7th

session), the students complete an additional exercise and a
test that poses questions about the lab.

Labs 14-18 are completed in teams with 3-4 members per
team. Each of the five teams completes one of the five labs
at home and then explains that lab to the other students in 1
hour. After the presentations, the students ask questions and
discuss their opinions for 30 minutes.

All students that attended the lab sessions were able to
complete most of the labs. Actually, even for the most
complex exercises (such as the ones proposed at the end
of labs 14-17, in which the students must include new
instructions in the core), more than 60% of the students were
able to complete them with minimal or no guidance at all.



3) Final grade: The final grade of the course was com-
puted as follows: 0.5*FE + 0.3*LM + 0.2*TM; where FE is
their final exam grade, LM their lab sessions grade, mainly
based on the tests specified in Table IV, and TM is their
grade obtained for teamwork.

4) Opinions about the course: We would like to thank
the students that took part in this course (P. Fernandez, M.
Sanchez, G. Diaz-Tejeiro, C. Oliver, J. Alvaro, A. Villarin,
M. Cereceda, M. Perez, A. Dorda, P.M. Teba, F.J. Oliva,
E.I. Quezada, D. Fernandez, J.A. Canadas, A. Menendez,
J. Martin, I. Diaz) for their revision of this report and
their valuable feedback. Specific student feedback includes
the following comments: ”The course, especially the lab,
gives a comprehensive understanding of the architecture
of a computer” (G. Diaz-Tejeiro); ”The lab sessions have
allowed us to learn how a commercial processor works” (M.
Sanchez); ”The texts of the labs facilitate the learning due
to their good and complete writing” (J. Martin); ”At the
beginning, it was really hard to get used to the new way
of learning. However, once we got the main skills, we began
to enjoy the subject, obtaining a perfect knowledge about
how the core, cache, I/O, and other elements work. In my
opinion this is the best way to learn a subject like this” (A.
Menendez); ”The labs allowed us to implement the concepts
explained during the lessons” (P. Fernandez); ”The labs have
shown the application of computer architecture concepts to
the real world” (A. Villarin).

B. Course at the Technical University of Darmstadt

During the second semester of 2015/2016, we taught
a course entitled Fundamentals of Processor Architecture
and Memory-mapped I/O at the Technical University of
Darmstadt (TUD) in Germany. The 14-week course consists
of weekly lectures and weekly or bi-weekly lab assignments.
Table V lists an overview of the eight labs and associated
lectures. The first three labs are provided with the textbook
Digital Design and Computer Architecture [5] and the re-
maining labs (4-8) are from the MIPSfpga Labs distribution
(Table I).

TABLE V
PROCESSOR ARCHITECTURE & MEMORY-MAPPED I/O LABS

Lab Description Duration

1 MIPS Assembly Program 1 Week

2 MIPS Single-Cycle Processor 1 Week

3 MIPS Pipelined Processor 2 Weeks

4 MIPSfpga Tutorial 1 Week

5 MIPSfpga Memory-Mapped I/O - Buzzer 1 Week

6 MIPSfpga Memory-Mapped I/O - LCD 2 Weeks

7 MIPSfpga DMA Engine 2 Weeks

8 MIPSfpga DES Encryption 2 Weeks

The first three lectures and labs use material from chapters
6 and 7 of [5]; they introduce the MIPS instruction set

architecture (ISA) and processor architecture. The remaining
lectures and labs are based on slides and labs provided with
the MIPSfpga Labs package from Imagination Technologies.
This course’s lab 4 (MIPSfpga Tutorial) combine Labs 1-3
of MIPSfpga Labs. The four remaining labs are used directly
from MIPSfpga Labs (corresponding to MIPSfpga Labs 7,
9, 11, and 12) .

Lectures 1-3 cover MIPS ISA, processor datapath and
control, and pipelined processor architecture. The next two
lectures introduce the MIPSfpga processor, system, and
development environment. The last four lectures conclude
with (1) introducing memory-mapped I/O and showing how
to interface peripherals with memory-mapped I/O in MIPSf-
pga, (2) giving an overview of serial interfaces and liquid
crystal displays (LCDs), (3) discussing direct-memory access
(DMA) and how to use the AHB-Lite bus to implement
it, and (4) discussing the data encryption standard (DES).
The last four weeks of the semester contain no lectures; the
students focused on completing the last two labs. However,
an instructor could lecture on additional topics during that
time, as desired.

The students receive the required hardware (Nexys4 DDR
FPGA board, Bus Blaster probe, buzzer, LCD, wires, and
capacitors) during the first week of class, and they install
the tools (based on the MIPSfpga GSG) during Lab 1. A
lab TA is available for 2-4 hours per week to assist students,
although many students complete the labs at home on their
own and attend the lab sessions only as needed for help with
debugging. Student feedback for the course was positive,
and it earned notably high enrollment and completion among
hardware labs at the TUD. All 42 students who enrolled in
the course also completed it.

C. Seminars in Russia, Ukraine, and Kazakhstan

During 2015/2016 we held a series of short MIPSf-
pga seminars in nine top universities in Russia, Ukraine,
and Kazakhstan (National Research University of Elec-
tronic Technology, Lomonosov Moscow State University,
National Research Nuclear University MEPhI, ITMO Uni-
versity, Samara State Aerospace University, Moscow Institute
of Physics and Technology State University, Almaty Man-
agement University, Nautech Corporation, and the National
Technical University of Ukraine). In addition, MIPSfpga
was presented during four events in Russia and Kazakhstan
(Microchip Masters Russia, a conference at Kazakh Na-
tional Research Technical University, SECR conference, and
Nanometer ASIC lectures at the National University of
Science and Technology MISiS). These locations and events
had a broad range of participants, ranging from students
with some experience in embedded programming but no
experience in hardware design, to sophisticated researchers
who design ASICs and look for inexpensive FPGA-based
platform to experiment with hardware-software codesign
using a commercial core with a mature software toolchain.

During 2015 seminars, we confirmed that the introduction
of MIPSfpga works best after students learn the basics of
digital design, computer architecture, and microarchitecture.



Thus, before MIPSfpga, students should learn these prin-
ciples using a simplified MIPS core implemented in a few
lines of Verilog (such as the implementation provided in [5]).
The concepts of processor structure, pipelining, stalls and
forwarding are learned first using this minimal core. Once
the basics are established, students can turn to MIPSfpga to
experiment with the industrial core, observing the pipeline
in action, the work of caches, adding custom coprocessors,
integrating peripherals with SoC fabric and building multi-
core systems. This approach was well-received in universities
that already taught students how to design simple cores in
an HDL (such as MIET, ITMO and KPI). The feedback
from the seminars included a suggestion from the researchers
in Moscow State University that MIPSfpga code can be
used as a comprehensive test for new EDA tools. Some of
the ideas discussed were incorporated into MIPSfpga 2.0,
such as the ability to slow the system clock down to a
very low (1 Hz) frequency, the ability to upload programs
onto the synthesized system via a USB-to-UART converter,
thus eliminating the need to use the Bus Blaster probe, and
the incorporation of new labs that emphasize the processor
internals and the CorExtend feature.

During 2016 seminars we combined MIPSfpga with other
courses. In Almaty Management University (Kazakhstan),
we put exercises with MIPSfpga at the end of an introduction
into HDL-based design [7], exposing beginning HDL users
to industry-grade designs. In Nanometer ASIC Seminars, we
used MIPSfpga to prototype an SoC and then we described a
path to create an ASIC based on MIPS M5150 (a close rela-
tive of the MIPS microAptiv UP offered by Europractice for
ASIC design). Finally, in the National Technical University
of Ukraine, we organized a hackathon [8] where teams of
students integrated MIPSfpga with the sensors that use SPI,
I2C, and other protocols. The event proved a success and
the challenge of the task was just right: half of participants
completed working solutions and learned about RTL coding
and system integration while doing it.

As a result of these MIPSfpga seminars, a large group of
MIPSfpga users in Russia and Ukraine exist who are con-
tributing to the emerging MIPSfpga community. For exam-
ple, two groups created custom CorExtend coprocessors ([9]
and a group in MIET Zelenograd). Also, Stanislav Zhelnio,
crated multiple MIPSfpga extensions, including an interface
to an SDRAM controller, an interrupt controller, a debug in-
terface with Visual Studio Code integration and UART16550
support, with the aim to port Linux to MIPSfpga-based
system running on Terasic’s DE10-Lite board. Some of these
projects will be presented at the NGC-17 conference at
Tomsk, including a project integrating MIPSfpga with the
popular Wishbone system bus (MIET) and a project that adds
a VGA peripheral (Boris Ivashinnikov from Komsomolsk-
na-Amure State Technical University). In addition, several
educators, including Ilya Kudryavtsev from Samara National
Research University, will discuss the integration of such
projects into the mainstream university curriculum.

IV. RELATED WORK

In this section, we analyze other soft-core processors
available today and describe other materials available for
computer architecture education; each of these alternatives
is briefly compared with the MIPSfpga 2.0 infrastructure.

A. Other soft-core processors

Xilinx and Altera offer their own soft-cores, Nios/Nios
II [10] and MicroBlaze [11], respectively, specifically con-
figured for their FPGAs. These alternatives however have dis-
advantages: they are not open-source, which limits their use
substantially; they are neither based on industrial/commercial
cores nor support a commercial ISA; and they lack teaching-
oriented documentation. ARM also provides a non-open-
source alternative, the Cortex M0 Design Start [12], which
is a basic (8K gates), low performance soft-core. It is com-
pletely obfuscated and has primitive debug support because it
does not include e-JTAG. Also, it does not provide a route to
silicon for academia and it provides few teaching materials.

Several open-source soft-cores also exist. Two well-known
alternatives, both supporting a SPARC RISC ISA, are the
OpenSPARC family [13] (developed by Oracle and Sun
Microsystems) and the LEON family [14] (developed by
Aeroflex Gaisler and the European Space Agency). Although
they are interesting, they lack good teaching materials and
they implement an ISA not as widely used in academia as
MIPS. Two other open-source alternatives worth mentioning
are RISC-V [15], started at the University of California,
Berkeley, and openRISC, developed by opencores.org [16].
These cores do not implement commercial ISAs and, as in
the previous cases, provide few teaching materials.

MIPSfpga, on the other hand, addresses all constraints
mentioned above. It is an industrial-level open-source soft-
core that is completely unobfuscated and that is used
in important commercial devices including Microchip’s
PIC32MZ. It implements an ISA (MIPS32r3) widely used in
academia and with a wide range of existing documentation
and support. MIPSfpga also provides extensive documen-
tation, including a large amount of teaching materials and
labs that, as analyzed in this paper, align perfectly with typ-
ical computer architecture courses. MIPSfpga also provides
support across FPGA platforms, including both Xilinx and
Altera FPGAs, and it is easily extendible to other FPGAs.

B. Other materials for computer architecture education

The work in [17] presents the HIP environment to show
students how a pipelined processor works. It uses a simple
5-stages soft-core similar to some early MIPS processors,
and connects the FPGA on which the design is loaded to
a user GUI on the PC that shows the state of the core in
each step. The ISA of the core used in this work consists of
52 instructions, far from the support for the full MIPS32r3
ISA of MIPSfpga. Also, the environment does not include a
prepared set of labs to be used along with it, and the book
where the core is described is only available in Slovene.
On the other hand, MIPSfpga does not provide a GUI as
the one in this environment, but lecturers and students have



unrestricted access to the RTL of the core, which allow them
to explore the value and contents of every signal and register
in the processor by inspecting the waves in an RTL simulator.

The authors in [18] introduce a computer architecture sim-
ulator called BZK.SAU. The ISA of this simulator consists
of 59 instructions. Simple cores such as these allow students
to experiment with some of the concepts they learn, but they
do not bridge the gap between what they see in the textbooks
and actual industrial-level processors. Additionally, the latter
work is exclusively based on simulation, meaning that stu-
dents cannot download the completed design onto an FPGA
and experiment with it working on actual hardware.

The CNP laboratory presented in [19] puts together a
simple environment to teach the basics of computer archi-
tecture, compilers, and networking. MinIPS, the pipelined
processor at the core of this laboratory, is a minimized MIPS
ISA, and the compiler that goes along with it, Tiny C,
is designed to comply to this reduced set of instructions.
Although the labs in MIPSfpga are not targeted at courses
in compilers or networking, nothing stops lecturers in these
topics from using the contents of the MIPSfpga Getting
Started package as hands-on materials for their courses.
The MIPS32r3 ISA is well known, extensively documented,
and lecturers may implement their own compiler or choose
among the different existing compilers that support the MIPS
ISA, such as Codescape MIPS SDK, gcc, or LLVM. Also,
as the MIPSfpga-SoC package shows, it is perfectly possible
to connect the MIPSfpga core to an Ethernet adaptor.

Finally, the authors in [20] introduce a course on advanced
multi-core architectures. This type of course is beyond the
initial scope of MIPSfpga but, as stated previously, lecturers
can adapt the GSG package to their own needs, as in [6].

V. CONCLUSIONS

In this paper we have analyzed the latest version of
MIPSfpga, released in June 2017, and its application to
several courses and seminars. As analyzed throughout this
paper, this teaching infraestructure aligns perfectly with the
concepts studied in typical computer architecture courses.
Moreover, by using MIPSfpga in computer architecture ed-
ucation, students must deal with problems similar to those
that a computer hardware engineer must resolve, such as
integrating peripherals into an SoC system, including new in-
structions by using a standard interface (such as CorExtend)
or by modifying a commercial core (such as microAptiv),
evaluating various cache configurations and policies using
performance counters, or building a complete SoC system,
based on a commercial core and Xilinx IPs, that runs Linux.
Although simpler approaches (such as the one presented
in [5], based on a highly simplified core) are possible and
perhaps more suitable for the initial undergraduate courses,
an industrial-level approach (such as the one described in
this paper) has the benefit of tackling projects much closer
to the ones that the students will face in the professional
world, thus making MIPSfpga well-suited for upper-division
undergraduate and masters-level courses.

ACKNOWLEDGMENT

The authors would like to acknowledge the contributions
from the Imagination University Program, the University
of Nevada, Las Vegas, Imperial College London (UK), the
ArTeCS group at University Complutense of Madrid (UCM),
the Spanish government research contracts TIN2015-65277-
R and TIN2015-65316-P, Munir Hasan (IMG UK), Prashant
Deokar (IMG India), Mahesh Firke (IMG India) Parimal
Patel (Xilinx), Kent Brinkley (IMG USA), Rick Leatherman
(IMG USA), Chuck Swartley (IMG USA), Sean Raby (IMG
UK), Michio Abe (IMG Japan), Bingli Wang (IMG China),
Sachin Sundar (IMG USA), Alex Wong (Digilent Inc.),
Matthew Fortune (IMG UK), Jeffrey Deans (IMG UK),
Laurence Keung (IMG UK), Roy Kravitz (Portland State
University), Dennis Pinto (UCM), Tejaswini Angel (Portland
State University), Christian White, Gibson Fahnestock, Jason
Wong, Cathal McCabe (Xilinx), and Larissa Swanland (Dig-
ilent).

REFERENCES

[1] ‘CE2016 - Curriculum Guidelines for Undergraduate Degree Programs
in Computer Engineering’ IEEE and ACM, 2016.

[2] ‘Imagination University Program - Resources’, https:
//community.imgtec.com/university/resources

[3] Harris, S., Harris, D., Chaver, D., et al.: ‘MIPSfpga: Using a Commer-
cial MIPS Soft-Core in Computer Architecture Education.’. IET Circuits,
Devices and Systems, 2017.

[4] Imagination Technologies Ltd., ‘MIPS32 microAptivTM UP Processor
Core Family Datasheet’, July 31, 2013

[5] Harris, D., and Harris, S., ‘Digital Design and Computer Architecture’
(Elsevier Science and Technology, 2007, 2nd edn. 2012)

[6] Kumar H B, C., Ravi, P., Modi, G., Kapre, N..: ‘120-core microAptiv
MIPS Overlay for the Terasic DE5-NET FPGA board’, Int. Symp. on
Field-Programmable Gate Arrays, Monterey, USA, February 2017

[7] ‘Intro HDL design’, http://www.almau.edu.kz/en/9891
[8] ‘NTUU Hackathon’, https://www.imgtec.com/blog/

ukraine-mips-fpga-hackathon-success
[9] ‘CorExtend Interface’, http://zatslogic.blogspot.com/

2016/01/using-mips-microaptiv-up-processor.html
[10] ‘Altera - NIOS-II Processor’, https://www.altera.com/

products/processors/overview.html, February 2017
[11] ‘Xilinx - MicroBlaze Soft Processor Core’, http://www.xilinx.

com/products/design-tools/microblaze.html, accessed
February 2017

[12] ‘ARM - Cortex M0 Design Start’, http://www.arm.com/
products/designstart/index.php, accessed February 2017

[13] ‘Oracle - OpenSPARC’, http://www.oracle.com/
technetwork/systems/opensparc/index.html, Feb-2017

[14] ‘Aeroflex Gaisler - LEON series Softcores’, http://www.
gaisler.com/, accessed February 2017

[15] Waterman, A., Lee, Y., Patterson, D.A., et al., ‘The RISC-V Instruction
Set Manual, Volume I: User-Level ISA’, version 2.0, 2014

[16] ‘OpenCores OpenRISC’, http://opencores.org/or1k/
Main_Page, accessed February 2017

[17] Bulić, P., Guštin, V., Šonc, D., and Štrancar, A,.: ‘An FPGA-based in-
tegrated environment for computer architecture’, Computer Applications
in Engineering Education, 2013, 21, (1), pp. 26-35

[18] Oztekin, H., Temurtas, F., Gulbag, A.: ‘BZK.SAU: Implementing a
hardware and software-based computer architecture simulator for educa-
tional purpose’. Proc. 2nd Int. Conf. Computer Design and Applications,
Qinhuangdao, China, June 2010, pp. 490-497

[19] Abe, K., Tateoka, T., Suzuki, M., Maeda, Y., Kono, K., Watanabe,
T.: ‘An integrated laboratory for processor organization, compiler design
and computer networking’, IEEE Trans. Education, 2004, 47, (3)

[20] Petit, S., Sahuquillo, et. al: ‘A research-oriented course on Advanced
Multicore Architecture: Contents and active learning methodologies’,
Journal of Parallel and Distributed Computing, Elsevier, 2017


