

Predicting Vulnerability in Large Codebases
With Deep Code Representation

Anshul Tanwar, Krishna Sundaresan, Parmesh Ashwath,

Prasanna Ganesan, Sathish Kumar Chandrasekaran, Sriram Ravi

Cisco Systems

Abstract— Currently, while software engineers write code
for various modules, quite often, various types of errors -
coding, logic, semantic, and others (most of which are
not caught by compilation and other tools) get
introduced. Some of these bugs might be found in the
later stage of testing, and many times it is reported by
customers on production code. Companies have to
spend many resources, both money and time in finding
and fixing the bugs which would have been avoided if
coding was done right. Also, concealed flaws in software
can lead to security vulnerabilities that potentially allow
attackers to compromise systems and applications.
Interestingly, same or similar issues/bugs, which were
fixed in the past (although in different modules), tend to
get introduced in production code again.

We developed a novel AI-based system which uses the
deep representation of Abstract Syntax Tree (AST)
created from the source code and also the active
feedback loop to identify and alert the potential bugs that
could be caused at the time of development itself i.e. as
the developer is writing new code (logic and/or function).
This tool integrated with IDE as a plugin would work in
the background, point out existing similar
functions/code-segments and any associated bugs in
those functions. The tool would enable the developer to
incorporate suggestions right at the time of
development, rather than waiting for UT/QA/customer to
raise a defect.

We assessed our tool on both open-source code and also
on Cisco codebase for C and C++ programing language.
Our results confirm that deep representation of source
code and the active feedback loop is an assuring
approach for predicting security and other vulnerabilities
present in the code.

Index Terms—Artificial neural networks, security,

vulnerabilities, data mining, Attention-based network,
machine learning, Feedback Loop, Classification, Code
Embeddings.

I. INTRODUCTION

Developers are at the core of every organization. They
write tons of code and sadly, many bugs as well. And many
of those bugs get shipped to production, and that's
unavoidable. The code always has visible or hidden flaws,
which if gets missed by coder, can only be caught by
subsequent activities, such as code-reviews and testing.
Using Machine learning and AI techniques, we can improve
the developer experience while coding and avoid potential
bugs that might occur in future even before the next stages.
Billions of lines of source code that have been written
contain implicit knowledge about how to write good code,
code that is easy to comprehend and to debug. We can
leverage the wealth of available data complemented with
state-of-art machine learning models to develop the
enterprise-level solutions to have a high standard of coding
& potentially less bugs and thus helping enterprise to save
resources.

There are traditional methods like static and dynamic
analyzers to help developers improve the code quality. Both
static and dynamic analyzers are rule-based tools and thus
are limited to hand-engineered rules. These tools further
introduce too many false positives making a few critical
findings buried in the sea of warnings and also, these don't
take application-specific field/production errors into
account for the future analysis. Even, on identifying a
possible issue, no further insights on its impact nor the
knowledge of potential fix are provided for the developer.
We developed novel AI based system to overcome this.

Feature extraction from source code is an active area of
research being worked on by many organization and open

————————————————
• Anshul Tanwar - PRINCIPAL ENGINEER E-mail: atanwar@cisco.com.
• Krishna Sundaresan - VP ENGINEERING E-mail: ksundar@cisco.com
• Parmesh Ashwath - SOFTWARE ENGINEER E-mail:

parmesh20120@gmail.com
• Prasanna Ganesan - DIRECTOR ENGINEERING E-mail:

prasgane@cisco.com
• Sathish Kumar C - TECHINCAL LEADER E-mail: sathicha@cisco.com
• Sriram Ravi – MANAGER ENGINEERING E-mail: srravi@cisco.com

source community. There exist many different robust
techniques to represent the source code as a feature set
and fed into the machine learning models for achieving a
different task. In our work, we propose a novel method of
representing a function code using a distributed vector of
fixed length similar to work done by Uri Alon et al. [1] with a
subtle difference of considering ranked path context which
will be discussed in detail later in the modelling section.

The code vectors obtained also follows all the convention
that the word embeddings [2] does. The vectors of two
similar functions will be closer to each other in the N-
Dimensional space. And also, the combination and
analogies property hold true on the vectors obtained. We
will be leveraging this property later in our workflow to
identify the similar function in the database given a code
vector of a function of interest. This vector also forms the
basis for our vulnerability prediction task.

The code vectors obtained are used as a feature vector
to train a model for identifying the vulnerabilities present in
the source code. We employed a unique approach involving
a feedback loop for active learning to incorporate the
knowledge of identifying the potential application logic
errors.

For vulnerabilities detection task, the model was trained
using both open-source and proprietary code base and bug
repository. The details of which will be highlighted in the
data section below.

We also studied different approaches to deployment and
integration strategies for our solution to make it work at an
enterprise level. We developed an AI plugin which will be
available to the existing Integrated Development
Environment (IDE) and assist the developers while writing
the code with similar functions and also the potential
vulnerabilities present in the code if any. The details of the
working prototype will be shared in later sections.

The rest of the paper will be organized in the following
sections. In the Related Work section, here we focus on the
existing methods which are addressing a similar problem. In
the Data Source section, here we talk about the different
sources used for our analysis and model building activity. In
the Data Preparation and Feature Extraction section, we will
explain how the code vectors were obtained from the
dataset and also, we will talk about the data labelling task
and approach carried out for our proprietary codebase. The
Model section will then cover the different classification
models trained and tested for the above-prepared data.
And finally, we will talk about the results we have achieved
and also the deployed strategies we followed to move our
model to production.

II. RELATED WORK

Distributed representations of words (word2vec) [2],
sentences, paragraphs, and documents (doc2vec) [3] are
considered a milestone in the field of neural network and
natural language processing (NLP). These papers lead to
many groundbreaking modeling techniques later. Similar
approach was extended to get the distributed
representation for the code block using an Attention-based
network in [1]. For learning the code representation, the
method names are taken as label and the method label
predication is taken as primary task. Having a good method
name not only helps in modeling activity but also it helps in
general for project maintenance [4,5]

There is also another line of work where there is significant
research done to represent source code as a token stream.
However, in general, deep code representation is found to
be more effective than considering source code as just
linear sequence of tokens [6].

For the Vulnerability detection task there are many tools
available in market like Clang, FlawFinder, CppCheck, and
Coverity [7,10]. As mentioned before these tools are rule
driven.

Beyond the traditional tools, several machine learning
driven techniques are also employed for vulnerability
detection task. Simple bag-of-words technique was used
to extract feature and train an SVM for classification work
was done in [11]. The work in [12] expanded on this work
by including n-grams in the feature vectors used with the
SVM classifier. In [13] the potential of deep learning was
explored for program analysis by encoding the nodes of the
abstract syntax tree representations of source code and
training a tree-based convolutional neural network (CNN)
for classification problems. Work in [14] considered a
similar feature extraction technique but employed the
recurrent neural network (RNN).

In [15] work has been done on using deep learning to learn
features directly from source code in a large natural
codebase to detect a variety of vulnerabilities using CNN
based network for feature extraction and then neural
network for classification problem.

In the work done in [16], they have considered the code
embeddings which represents the semantic structure of the
code block alone for bug prediction. Here they uses the
code embeddings obtained by code2vec[1] and run a
binary classification for off-by-one errors using synthetic
data created by mutation of comparator operators.

To our knowledge, there is no work carried out to perform
the vulnerability detection using code embeddings learned

from the source code by incorporating the functionality of a
module as well and making it work taking enterprise bug
repository into account.

III. DATA SOURCE

Given the complexity and heterogeneity of programs, a vast
number of training examples are needed to train machine
learning models that can adequately learn the distributed
code representation or embeddings. We mined many
open-source code repositories present in GitHub [17] to
extract function level code and also Cisco codebase to
learn the code embeddings. As learning the code
embeddings task takes the function name as the label for
primary prediction task, it requires no other data labelling
allowing us to consider any well written open-source code.
We tried to include different flavored code including OS
codebases like Linux, Debian packages [18], application
logic code, network driver code, API protocol code and
many others. A total of around 8.9 million functions were
used to train the model used to extract the code
embeddings.

For Vulnerability detection task, we need a labeled dataset
to train a classifier model. We initially started with SATE IV
Juliet Test Suite [19]. While the SATE IV dataset provides
labeled examples of many types of vulnerabilities, it is
made up of synthetic code snippets that do not sufficiently
cover the space of natural code to provide an appropriate
training set alone. Also, we found it to be so
unnatural/repetitive to be almost dangerous for model
training. It's easy to overfit on the data and not realize it
since the train/test splits will have a lot of similar functions.
So, we had to drop the usage of Juliet dataset. For initial
model training we then mainly leveraged Draper VDISC
Dataset - Vulnerability Detection in Source Code [20]. The
dataset consists of the source code of 1.27 million
functions mined from open source software, labelled by
static analysis for potential vulnerabilities. The tools used
for labelling includes Clang, Cppcheck, and Flawfinder.
After labeling, significant effort was done from the authors
of the dataset to clean up the duplicates and remove the
false labelling. The labels considered for analysis are
CWE119, CWE120, CWE469, CWE476 and other CWE’s are
grouped into CWEOthers category.

After preliminary modelling to enable the feedback loop, we
considered our proprietary bugs and security vulnerability
database. The functions which could have potentially
caused the historical bugs are taken from the database and
fed to the model for its prediction and insights. Using this
custom database is optional, however its usage and manual
validation of model results enables the fine-tuned model to
identify the potential application logic errors which are
critical for an enterprise wide adoption.

IV. DATA PREPARATION & FEATURE

EXTRACTION

We believe that have a novel approach of data cleaning,

data preparation and feature extraction from the source
code.

The source code (from Cisco codebase) is converted to

an Abstract Syntax Tree (AST) representation. Using AST,
each method is represented with the set of encoded path
context. We have a unique approach here to compute the
number of path context representation for a given function.
Initially, we take all path context representation from AST
and then we run a ranking model to eliminate some of them
which are occurring commonly across the functions and
also the path contexts that are found in very few functions
so that we avoid overfitting of the model by increasing the
nodes in the first layer of the model to account the input
dimensionality later. The minimum number of the
occurrence of a path context is one of the hyperparameters
of our model. This method is found to work very effectively
when compared to considering all the path context.

Let P represents the set of path contexts in an AST. Each
path context (p) will be of format ni-pij-nj. Where ni and nj
represents the encoded node values and pij represents the
encoded path values.

Node encodings are the numerical representation of each
node in an AST. Similarly, path encodings represent the
numerical representation of each path in an AST. These
numerical encodings help us to convert the text to a
number which can be then be used to feed the model
training as input.

Each path contexts obtained will then be filtered to
remove the path contexts which occurs very frequently as
they don't help in uniquely distinguish the AST or the
function of interest and also those which occurs very rarely
so that we will not have higher dimensionality in the
encodings.

Filtered path contexts (PF) = ∀	𝑝	 ∈ 𝑃	, 𝑖𝑓 𝑚𝑖𝑛 ≤ 𝑐𝑜𝑢𝑛𝑡(𝑝) 	≥ 𝑚𝑎𝑥

The next task here is to get a single vector representation
also referred to as code embeddings or code vector for a
function from the set of path context. We train a path
context - Attention-based model to learn the code vectors.
The code vectors would be the weighted average of the
path embedding concatenated with the weighted average
of the node embedding.
Node embeddings and path embeddings are learned from
the encodings during the model training
The Attention weights are learned from training the model
with the task of method name prediction as a primary task
with SoftMax as the output layer. The originality of this
approach is in the fact of using both path embeddings and
node embeddings to obtain path context and selecting
them using an Attention model.

For each p in PF, during the model training, we learn the
path context embeddings ci,

𝑐! = 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠;𝑛! , 𝑝!" , 𝑛"<	
𝑐𝑖 = [𝑛𝑜𝑑𝑒#$%#&&!'()('!)			𝑝𝑎𝑡ℎ#$%#&&!'(),-!".				𝑛𝑜𝑑𝑒#$%#&&!'(),'".]

Now to obtain the single embedding representation for a
given function, we take the weighted average of all ci. The
weights are learned from the attention layers

𝑐𝑜𝑑𝑒	𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 = 	@𝛼! ∗ 	𝑐!

'

!/0

		

	

𝑤ℎ𝑒𝑟𝑒	𝛼! = 	
𝑒𝑥𝑝	(𝑐!1 . 𝑎)
∑ 𝑐"1 . 𝑎'
"/0

	

Where a denotes the global attention vector which is
initialized randomly and learned simultaneously with the
network

With the above two steps, we get a vectorized
representation or the code embeddings of each function
present in Cisco codebase. The code embeddings are
dumped to a file at function granularity. The file follows the
standard format as word embeddings, each line follows a
format of the function name followed by its corresponding
code vector. The code vector is of length 384 in our use
case, but this is a configurable parameter. As mentioned
above, we consider both node and path encodings to arrive
at the final vector representation. The node encodings and
path encodings are each of length 128.

The vectors obtained and shown above also follows all the
convention that the word embeddings do. The vectors of
two similar functions will be closer to each other in the N-
Dimensional space. And also, the combination and
analogies property hold good on the vectors obtained. This
vector forms the basis for our vulnerability prediction and
similar function detection task.

Using the trained model, we extract the vectors for each
function present in the Draper VDISC Dataset and finally we
will have the below labeled dataset:
X à code vector of a function
Y à 5 class of CWE’s (1- if present,0- if not)

The code embeddings obtained are at the function
granularity and it mainly deals with semantic structure of
the code as it was formed using AST’s. In addition to this
we will also consider another set of embeddings to
represent the functionals aspect of the block of code which
is referred to as composite code embeddings later in this
paper.

V. Modeling Workflow

Once we have the code embeddings ready for each
function in our training set, we follow below approach
which involves an active feedback loop to incorporate the
application logic error findings. Below are the three phases

involved in this workflow.

A. Training & Prediction Phase:

• Using the above trained code embeddings
model, we extract the code vectors for every
function present inside Draper VDISC dataset.
This acts as our initial labelled dataset consisting
of code vectors as independent variables and
the marked CWE's labels as dependent
variables.

• For training the vectors, we consider two sets of
3-layer Neural network. One trained with just the
vanilla code embeddings and another model
trained with composite code embeddings. Here
the composite embeddings include the complete
functionality of the module and help to identify
the errors spread across multiple functions. And
the first one help us to identify the function
semantic and other errors within the block of
code. We then use a simple logistic regression
model to combine the results of both of the
model so that appropriate weightage is given to
both vanilla and composite code embeddings.

• To evaluate the performance of the model and
for further fine-tuning, historical Cisco Bug Data
is considered.

• For every Bug, we analyze the Diff Enclosures
and take the previous version of the functions
present, which might have caused the bug.

• For each function obtained, we run the model to
predict its probability for having any of the CWE
or bugs in general

B. Manual Validation to Fine-Tuning the Model

• The results obtained by the models are validated

using 2 approaches:
o Perform Manual Validation on each

predicted result. During this analysis,
developers will also mark an additional
label indicating if the code contains
issues like application logic error [other
than CWE's]

o We run a set of SA tools [Flawfinder,
CPPCheck, Coverity, Clang] and see if
the predicted CWE's is identified by
anyone of them.

• Using the above feedback data, we fine-tune the
model parameters and finalize the model that
will be used for each CWE prediction.

• Finally, we will re-train the above model using
the Cisco PSRIT validated data [from the above
step]. This time we include application logic
error as another dependent variable

This feedback loop is what makes our approach eliminate
many false positives and also include the application logic
errors in its findings.

C. Production Deployment of the Model

We follow 2 strategies for model deployment in Production

• Batch Mode: Run the model prediction for every
function in Enterprise codebase, starting with
fewer component and share the results and
insights with the developer for Bug cleanup.

• Real-Time: Integrate the model prediction as a
plugin in IDE, so whenever a developer writes a
new block of code We provide the details as the
chance of the code being buggy, also suggest
probable fixes wherever possible. The Fix is
suggested by looking for the similarity of the
given function to the historical Bugs causing
function and then taking the fix that was done to
close the bug. The similarity check happens in
the N-Dimensional space using the code2vec
representation

VI. Deployment & Predictions
After the model is trained using the approach detailed in
the above section, the next task is to carry out the
predictions for similar function identification and bug
prediction.

We have developed two models here to predict the
following:

1. The number of potential bugs in a newly developed
function: The code embeddings learnt above is one
of the main features for our model of bug prediction.
The other features that were of interest are the static
analysis score, function coverage, hotspot score and
also the developer information. With all the above
feature we train an ensemble of models which
includes Fully connected Neural network, Regression
models to predict the number of bugs.

2. For the other task of finding similar functions, we
again use an ensemble technique of KNN and
clustering methods. The code embeddings in the
main feature used for this.

VII. Feedback Loop for Active Learning

The developer has an option to provide direct feedback to
the model about the potential bugs that are being
prevented by the tool and ensures that our system results
do not stagnate. This also has a significant advantage in
that this data used to train new versions of the model is of
the same real-world distribution that the customer cares
about predicting over.

To incorporate the feedback, we will modify the code
embeddings that the model estimated for a given function
based on the user feedback using the below strategy

•	For positive feedback/vote from the user, we will take the
code embeddings of a new function that was being
developed and move it closer to the function tagged with
the predicted bug by a certain distance in N-dimensional
space. The distance moved is proportional to the logarithm
of the number of positive votes.

•	For negative feedback/vote from the user, we will take the
code embeddings of a new function that was being
developed and move it farther to the function tagged with
the predicted bug by a certain distance in N-dimensional
space. The distance moved is proportional to the logarithm
of the number of negative votes.

In addition to this, we will also retrain the model from
scratch taking the current embeddings as the initial weights
for every function in our database that includes the
embedding for the recently added functions also so that we
will maintain the model with the up-to-date codebase.
Frequency of training can be decided by the domain
experts and currently, model retraining happens every
month.

VIII. Results

We also carried out the vulnerability task in two iterations,
in first one we did not consider composite code
embeddings nor the additional logistic regression and
below are results we obtained

For similarity function identification task, we have arrived at
a threshold on the distance to be less than 0.4 for two

functions to be similar and this thresholding technique is
giving us the accuracy of 95%.

Figure 1: Accuracy vs Threshold Variation

For Bug Prediction task, we used historical raised bugs and
see if our model predicts them beforehand on the functions
associated with them. Here we had an accuracy of
around 70%. Also, we got the precision value of 0.74 and a
recall of 0.77.

Figure 2: Precision vs Recall Curve for Bug Prediction

In the second iteration by including composite code
embeddings, we saw a significant boost in the performance
of the same bug prediction task described above, we
achieved an accuracy of around 78%. The new precision
value was 0.81 and a recall of 0.82.

IX. Conclusion
We presented a new technique to train accurate and robust
neural models of code. Our work addresses key challenges
inherent to the domain of code. The Deep code
representation technique presented here can be used as
the base feature extraction technique on the code and the
extracted code embeddings can form as the basis to many
machine learning tasks.
To address the second challenge of Vulnerability detection,
we proposed a new workflow involving a novel feedback
loop approach to determine the potential bugs and

application logic errors present in the code. The new
workflow also takes the composite code embeddings into
account for bug prediction and our work highlighted the
improvements achieved by doing so. We also presented
an enterprise level integration for the ML models done here.

Acknowledgments

The authors thank Cisco Systems for allowing us to carry
out this research work and also, we would like to thank the
domain experts and developers who helped us to manually
validate the model initial results that helped us to improve
our modeling techniques and fine-tuning of model.

Reference

[1]	URI	ALON,	MEITAL	ZILBERSTEIN,	OMER	LEVY,	and	ERAN	YAHAV,,	
“code2vec:	Learning	Distributed	Representations	of	Code”	Accepted	in	
POPL	2019,	arXiv:1803.09473	[cs.LG]	
	

[2]	Bin	Wang,	Angela	Wang,	Fenxiao	Chen,	Yuncheng	Wang	and	Jay	Kuo,	
“Evaluating	Word	Embedding	Models:	Methods	and	Experimental	
Resultsin	,	2019,	arXiv:1901.09785v2	[cs.CL]		

[3]	Quoc	V.	Le,	Tomas	Mikolov	“	Distributed	Representations	of	Sentences	
and	Documents”,	2014	,	arXiv:1405.4053	[cs.CL]	
	
[4]	Martin	Fowler,	Kent	Beck	(Contributor),	John	Brant	(Contributor),	
William	
Opdyke,	don	Roberts,	1999,	“Refactoring:	Improving	the	Design	of	
Existing	Code”	
	
[5]	Einar	W.	Hùst	and	Bjarte	M.	Østvold.	2009.	Debugging	Method	Names.	
In	Proceedings	of	the	23rd	European	Conference	on	
ECOOP	2009	Ð	Object-Oriented	Programming	(Genoa).	Springer-Verlag,	
Berlin,	Heidelberg,	294ś317.	https://doi.org/101007/978-3-642-03013-
0_14	

[6]	Miltiadis	Allamanis,	Daniel	Tarlow,	Andrew	D.	Gordon,	and	Yi	Wei.	
2015b.	Bimodal	Modelling	of	Source	Code	and	Natural	Language.	In	
Proceedings	of	the	32nd	International	Conference	on	International	
Conference	on	Machine	Learning	–	Volume	37	(ICML’15).	JMLR.org,	
2123ś2132.	http://dl.acm.org/citation.cfm?id=3045118.3045344	

[7]	Clang,	Clang.	https://clang.llvm.org/	

[8]	Cppcheck,	Cppcheck.	http://cppcheck.sourceforge.net/.		

[9]	D.	A.	Wheeler,	Flawfinder.	https://www.dwheeler.com/flawfinder/.		

[10]	Coverity,	Coverity,	https://scan.coverity.com/.	
http://cppcheck.sourceforge.net/.		

[11]	A.	Hovsepyan,	R.	Scandariato,	W.	Joosen,	and	J.	Walden,	“Software	
vulnerability	prediction	using	text	analysis	techniques,”	in	Proc.	4th	Int.	
Workshop	Security	Measurements	and	Metrics,	MetriSec	’12,	pp.	7–10,	
2012.	

[12]	Y.	Pang,	X.	Xue,	and	A.	S.	Namin,	“Predicting	vulnerable	software	
components	through	n-gram	analysis	and	statistical	feature	selection,”	in	

2015	IEEE	14th	Int.	Conf.	Machine	Learning	and	Applications	(ICMLA),	
2015.	

[13]	L.	Mou,	G.	Li,	Z.	Jin,	L.	Zhang,	and	T.	Wang,	“TBCNN:	A	tree-based	
convolutional	neural	network	for	programming	language	processing,”	
CoRR,	2014.	

[14]	Z.	Li	et	al.,	“VulDeePecker:	A	deep	learning-based	system	for	vulner-	
ability	detection,”	CoRR,	vol.	abs/1801.01681,	2018.		

[15]	Louis	Kim	Rebecca	Russell	et	al.		“Automated	Vulnerability	Detection	
in	Source	Code	Using	Deep	Representation	Learning,”	
arXiv:1807.04320v2	[cs.LG]	28	Nov	2018.		

[16]	Russell	Jón	Arnar	Briem,	Jordi	Smit,	Hendrig	Sellik,	Pavel	Rapoport		
“Using	Distributed	Representation	of	Code	for	Bug	Detection,”	
arxiv.org/pdf/1911.12863v128	Nov	2019.	

[17]	GitHub,	Github.	https://github.com/.	

[18]	Debian,	Debian	-	the	universal	operating	system.	
https://www.debian.	org/.		

[19]	NIST,	Juliet	test	suite	v1.3,	2017.	
https://samate.nist.gov/SRD/testsuite.	php.		

[20]	Louis	Kim	Rebecca	Russell,	Draper	VDISC	Dataset	-	Vulnerability	
Detection	in	Source	Code,	https://osf.io/d45bw/	

