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Abstract— Currently, while software engineers write code 
for various modules, quite often, various types of errors - 
coding, logic, semantic, and others (most of which are 
not caught by compilation and other tools) get 
introduced. Some of these bugs might be found in the 
later stage of testing, and many times it is reported by 
customers on production code. Companies have to 
spend many resources, both money and time in finding 
and fixing the bugs which would have been avoided if 
coding was done right. Also, concealed flaws in software 
can lead to security vulnerabilities that potentially allow 
attackers to compromise systems and applications. 
Interestingly, same or similar issues/bugs, which were 
fixed in the past (although in different modules), tend to 
get introduced in production code again.  
 
We developed a novel AI-based system which uses the 
deep representation of Abstract Syntax Tree (AST) 
created from the source code and also the active 
feedback loop to identify and alert the potential bugs that 
could be caused at the time of development itself i.e. as 
the developer is writing new code (logic and/or function). 
This tool integrated with IDE as a plugin would work in 
the background, point out existing similar 
functions/code-segments and any associated bugs in 
those functions. The tool would enable the developer to 
incorporate suggestions right at the time of 
development, rather than waiting for UT/QA/customer to 
raise a defect. 
 
We assessed our tool on both open-source code and also 
on Cisco codebase for C and C++ programing language. 
Our results confirm that deep representation of source 
code and the active feedback loop is an assuring 
approach for predicting security and other vulnerabilities 
present in the code. 
 

 
Index Terms—Artificial neural networks, security, 

vulnerabilities, data mining, Attention-based network, 
machine learning, Feedback Loop, Classification, Code 
Embeddings. 

I. INTRODUCTION 

Developers are at the core of every organization. They 
write tons of code and sadly, many bugs as well. And many 
of those bugs get shipped to production, and that's 
unavoidable. The code always has visible or hidden flaws, 
which if gets missed by coder, can only be caught by 
subsequent activities, such as code-reviews and testing. 
Using Machine learning and AI techniques, we can improve 
the developer experience while coding and avoid potential 
bugs that might occur in future even before the next stages. 
Billions of lines of source code that have been written 
contain implicit knowledge about how to write good code, 
code that is easy to comprehend and to debug. We can 
leverage the wealth of available data complemented with 
state-of-art machine learning models to develop the 
enterprise-level solutions to have a high standard of coding 
& potentially less bugs and thus helping enterprise to save 
resources.  

There are traditional methods like static and dynamic 
analyzers to help developers improve the code quality. Both 
static and dynamic analyzers are rule-based tools and thus 
are limited to hand-engineered rules. These tools further 
introduce too many false positives making a few critical 
findings buried in the sea of warnings and also, these don't 
take application-specific field/production errors into 
account for the future analysis. Even, on identifying a 
possible issue, no further insights on its impact nor the 
knowledge of potential fix are provided for the developer. 
We developed novel AI based system to overcome this. 

Feature extraction from source code is an active area of 
research being worked on by many organization and open 

———————————————— 
• Anshul Tanwar - PRINCIPAL ENGINEER E-mail: atanwar@cisco.com. 
• Krishna Sundaresan - VP ENGINEERING E-mail:  ksundar@cisco.com 
• Parmesh Ashwath - SOFTWARE ENGINEER E-mail: 

parmesh20120@gmail.com 
• Prasanna Ganesan - DIRECTOR ENGINEERING E-mail: 

prasgane@cisco.com 
• Sathish Kumar C - TECHINCAL LEADER E-mail: sathicha@cisco.com 
• Sriram Ravi – MANAGER ENGINEERING E-mail: srravi@cisco.com 

 



 
 
source community. There exist many different robust 
techniques to represent the source code as a feature set 
and fed into the machine learning models for achieving a 
different task. In our work, we propose a novel method of 
representing a function code using a distributed vector of 
fixed length similar to work done by Uri Alon et al. [1] with a 
subtle difference of considering ranked path context which 
will be discussed in detail later in the modelling section.  

The code vectors obtained also follows all the convention 
that the word embeddings [2] does. The vectors of two 
similar functions will be closer to each other in the N-
Dimensional space. And also, the combination and 
analogies property hold true on the vectors obtained. We 
will be leveraging this property later in our workflow to 
identify the similar function in the database given a code 
vector of a function of interest. This vector also forms the 
basis for our vulnerability prediction task. 

The code vectors obtained are used as a feature vector 
to train a model for identifying the vulnerabilities present in 
the source code. We employed a unique approach involving 
a feedback loop for active learning to incorporate the 
knowledge of identifying the potential application logic 
errors.  

For vulnerabilities detection task, the model was trained 
using both open-source and proprietary code base and bug 
repository. The details of which will be highlighted in the 
data section below. 

We also studied different approaches to deployment and 
integration strategies for our solution to make it work at an 
enterprise level. We developed an AI plugin which will be 
available to the existing Integrated Development 
Environment (IDE) and assist the developers while writing 
the code with similar functions and also the potential 
vulnerabilities present in the code if any. The details of the 
working prototype will be shared in later sections. 

The rest of the paper will be organized in the following 
sections. In the Related Work section, here we focus on the 
existing methods which are addressing a similar problem. In 
the Data Source section, here we talk about the different 
sources used for our analysis and model building activity. In 
the Data Preparation and Feature Extraction section, we will 
explain how the code vectors were obtained from the 
dataset and also, we will talk about the data labelling task 
and approach carried out for our proprietary codebase. The 
Model section will then cover the different classification 
models trained and tested for the above-prepared data. 
And finally, we will talk about the results we have achieved 
and also the deployed strategies we followed to move our 
model to production. 

 

 

 

 

 

II. RELATED WORK 

 
Distributed representations of words (word2vec) [2], 
sentences, paragraphs, and documents (doc2vec) [3] are 
considered a milestone in the field of neural network and 
natural language processing (NLP). These papers lead to 
many groundbreaking modeling techniques later. Similar 
approach was extended to get the distributed 
representation for the code block using an Attention-based 
network in [1]. For learning the code representation, the 
method names are taken as label and the method label 
predication is taken as primary task. Having a good method 
name not only helps in modeling activity but also it helps in 
general for project maintenance [4,5] 

There is also another line of work where there is significant 
research done to represent source code as a token stream. 
However, in general, deep code representation is found to 
be more effective than considering source code as just 
linear sequence of tokens [6]. 

For the Vulnerability detection task there are many tools 
available in market like Clang, FlawFinder, CppCheck, and 
Coverity [7,10]. As mentioned before these tools are rule 
driven. 

Beyond the traditional tools, several machine learning 
driven techniques are also employed for vulnerability 
detection task. Simple bag-of-words technique was used 
to extract feature and train an SVM for classification work 
was done in [11]. The work in [12] expanded on this work 
by including n-grams in the feature vectors used with the 
SVM classifier. In [13] the potential of deep learning was 
explored for program analysis by encoding the nodes of the 
abstract syntax tree representations of source code and 
training a tree-based convolutional neural network (CNN) 
for classification problems. Work in [14] considered a 
similar feature extraction technique but employed the 
recurrent neural network (RNN). 

In [15] work has been done on using deep learning to learn 
features directly from source code in a large natural 
codebase to detect a variety of vulnerabilities using CNN 
based network for feature extraction and then neural 
network for classification problem. 

In the work done in [16], they have considered the code 
embeddings which represents the semantic structure of the 
code block alone for bug prediction. Here they uses the 
code embeddings obtained by code2vec[1] and run a 
binary classification for off-by-one errors using synthetic 
data created by mutation of comparator operators.   

To our knowledge, there is no work carried out to perform 
the vulnerability detection using code embeddings learned 



 
 
from the source code by incorporating the functionality of a 
module as well and making it work taking enterprise bug 
repository into account. 

III. DATA SOURCE 

 
Given the complexity and heterogeneity of programs, a vast 
number of training examples are needed to train machine 
learning models that can adequately learn the distributed 
code representation or embeddings. We mined many 
open-source code repositories present in GitHub [17] to 
extract function level code and also Cisco codebase to 
learn the code embeddings. As learning the code 
embeddings task takes the function name as the label for 
primary prediction task, it requires no other data labelling 
allowing us to consider any well written open-source code. 
We tried to include different flavored code including OS 
codebases like Linux, Debian packages [18], application 
logic code, network driver code, API protocol code and 
many others. A total of around 8.9 million functions were 
used to train the model used to extract the code 
embeddings. 
 
For Vulnerability detection task, we need a labeled dataset 
to train a classifier model. We initially started with SATE IV 
Juliet Test Suite [19]. While the SATE IV dataset provides 
labeled examples of many types of vulnerabilities, it is 
made up of synthetic code snippets that do not sufficiently 
cover the space of natural code to provide an appropriate 
training set alone. Also, we found it to be so 
unnatural/repetitive to be almost dangerous for model 
training. It's easy to overfit on the data and not realize it 
since the train/test splits will have a lot of similar functions. 
So, we had to drop the usage of Juliet dataset. For initial 
model training we then mainly leveraged Draper VDISC 
Dataset - Vulnerability Detection in Source Code [20]. The 
dataset consists of the source code of 1.27 million 
functions mined from open source software, labelled by 
static analysis for potential vulnerabilities. The tools used 
for labelling includes Clang, Cppcheck, and Flawfinder. 
After labeling, significant effort was done from the authors 
of the dataset to clean up the duplicates and remove the 
false labelling. The labels considered for analysis are 
CWE119, CWE120, CWE469, CWE476 and other CWE’s are 
grouped into CWEOthers category. 
 
After preliminary modelling to enable the feedback loop, we 
considered our proprietary bugs and security vulnerability 
database. The functions which could have potentially 
caused the historical bugs are taken from the database and 
fed to the model for its prediction and insights.  Using this 
custom database is optional, however its usage and manual 
validation of model results enables the fine-tuned model to 
identify the potential application logic errors which are 
critical for an enterprise wide adoption. 
 
 

 
IV. DATA PREPARATION & FEATURE 

EXTRACTION 

 
We believe that have a novel approach of data cleaning, 

data preparation and feature extraction from the source 
code.  

 
The source code (from Cisco codebase) is converted to 

an Abstract Syntax Tree (AST) representation. Using AST, 
each method is represented with the set of encoded path 
context. We have a unique approach here to compute the 
number of path context representation for a given function. 
Initially, we take all path context representation from AST 
and then we run a ranking model to eliminate some of them 
which are occurring commonly across the functions and 
also the path contexts that are found in very few functions 
so that we avoid overfitting of the model by increasing the 
nodes in the first layer of the model to account the input 
dimensionality later. The minimum number of the 
occurrence of a path context is one of the hyperparameters 
of our model. This method is found to work very effectively 
when compared to considering all the path context. 

Let P represents the set of path contexts in an AST. Each 
path context (p) will be of format ni-pij-nj. Where ni and nj 
represents the encoded node values and pij represents the 
encoded path values. 

Node encodings are the numerical representation of each 
node in an AST. Similarly, path encodings represent the 
numerical representation of each path in an AST. These 
numerical encodings help us to convert the text to a 
number which can be then be used to feed the model 
training as input. 

Each path contexts obtained will then be filtered to 
remove the path contexts which occurs very frequently as 
they don't help in uniquely distinguish the AST or the 
function of interest and also those which occurs very rarely 
so that we will not have higher dimensionality in the 
encodings. 

 
 
 
 
Filtered path contexts (PF) = ∀	𝑝	 ∈ 𝑃	, 𝑖𝑓 𝑚𝑖𝑛 ≤ 𝑐𝑜𝑢𝑛𝑡(𝑝) 	≥ 𝑚𝑎𝑥 
 

 



 
 

 
The next task here is to get a single vector representation 
also referred to as code embeddings or code vector for a 
function from the set of path context. We train a path 
context - Attention-based model to learn the code vectors. 
The code vectors would be the weighted average of the 
path embedding concatenated with the weighted average 
of the node embedding. 
Node embeddings and path embeddings are learned from 
the encodings during the model training 
The Attention weights are learned from training the model 
with the task of method name prediction as a primary task 
with SoftMax as the output layer. The originality of this 
approach is in the fact of using both path embeddings and 
node embeddings to obtain path context and selecting 
them using an Attention model. 

 
For each p in PF, during the model training, we learn the 
path context embeddings ci, 
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Now to obtain the single embedding representation for a 
given function, we take the weighted average of all ci. The 
weights are learned from the attention layers 
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Where a denotes the global attention vector which is 
initialized randomly and learned simultaneously with the 
network 
 
With the above two steps, we get a vectorized 
representation or the code embeddings of each function 
present in Cisco codebase. The code embeddings are 
dumped to a file at function granularity. The file follows the 
standard format as word embeddings, each line follows a 
format of the function name followed by its corresponding 
code vector. The code vector is of length 384 in our use 
case, but this is a configurable parameter. As mentioned 
above, we consider both node and path encodings to arrive 
at the final vector representation. The node encodings and 
path encodings are each of length 128. 

 

 
 
The vectors obtained and shown above also follows all the 
convention that the word embeddings do. The vectors of 
two similar functions will be closer to each other in the N-
Dimensional space. And also, the combination and 
analogies property hold good on the vectors obtained. This 
vector forms the basis for our vulnerability prediction and 
similar function detection task. 
 
Using the trained model, we extract the vectors for each 
function present in the Draper VDISC Dataset and finally we 
will have the below labeled dataset: 
X à code vector of a function 
Y à 5 class of CWE’s (1- if present,0- if not) 
 
The code embeddings obtained are at the function 
granularity and it mainly deals with semantic structure of 
the code as it was formed using AST’s. In addition to this 
we will also consider another set of embeddings to 
represent the functionals aspect of the block of code which 
is referred to as composite code embeddings later in this 
paper. 

 
 
 
 



 
 

V. Modeling Workflow 

 
Once we have the code embeddings ready for each 
function in our training set, we follow below approach 
which involves an active feedback loop to incorporate the 
application logic error findings. Below are the three phases 

involved in this workflow. 
 

A. Training & Prediction Phase: 
 

• Using the above trained code embeddings 
model, we extract the code vectors for every 
function present inside Draper VDISC dataset. 
This acts as our initial labelled dataset consisting 
of code vectors as independent variables and 
the marked CWE's labels as dependent 
variables. 

• For training the vectors, we consider two sets of 
3-layer Neural network. One trained with just the 
vanilla code embeddings and another model 
trained with composite code embeddings. Here 
the composite embeddings include the complete 
functionality of the module and help to identify 
the errors spread across multiple functions. And 
the first one help us to identify the function 
semantic and other errors within the block of 
code. We then use a simple logistic regression 
model to combine the results of both of the 
model so that appropriate weightage is given to 
both vanilla and composite code embeddings. 
 

 
 
 

• To evaluate the performance of the model and 
for further fine-tuning, historical Cisco Bug Data 
is considered. 

• For every Bug, we analyze the Diff Enclosures 
and take the previous version of the functions 
present, which might have caused the bug. 

• For each function obtained, we run the model to 
predict its probability for having any of the CWE 
or bugs in general 

 

 
 
 

B. Manual Validation to Fine-Tuning the Model 
 
• The results obtained by the models are validated 

using 2 approaches: 
o Perform Manual Validation on each 

predicted result. During this analysis, 
developers will also mark an additional 
label indicating if the code contains 
issues like application logic error [other 
than CWE's] 

o We run a set of SA tools [Flawfinder, 
CPPCheck, Coverity, Clang] and see if 
the predicted CWE's is identified by 
anyone of them. 

• Using the above feedback data, we fine-tune the 
model parameters and finalize the model that 
will be used for each CWE prediction. 

• Finally, we will re-train the above model using 
the Cisco PSRIT validated data [from the above 
step]. This time we include application logic 
error as another dependent variable 

 
 

 
 
This feedback loop is what makes our approach eliminate 
many false positives and also include the application logic 
errors in its findings. 
 
 
 
 
 



 
 

C. Production Deployment of the Model 
 
We follow 2 strategies for model deployment in Production 
 

• Batch Mode: Run the model prediction for every 
function in Enterprise codebase, starting with 
fewer component and share the results and 
insights with the developer for Bug cleanup. 
 

• Real-Time: Integrate the model prediction as a 
plugin in IDE, so whenever a developer writes a 
new block of code We provide the details as the  
chance of the code being buggy, also suggest 
probable fixes wherever possible. The Fix is 
suggested by looking for the similarity of the 
given function to the historical Bugs causing 
function and then taking the fix that was done to 
close the bug. The similarity check happens in 
the N-Dimensional space using the code2vec 
representation 

 
 

VI. Deployment & Predictions 
After the model is trained using the approach detailed in 
the above section, the next task is to carry out the 
predictions for similar function identification and bug 
prediction. 
 

 
 
We have developed two models here to predict the 
following: 
 

1. The number of potential bugs in a newly developed 
function: The code embeddings learnt above is one 
of the main features for our model of bug prediction. 
The other features that were of interest are the static 
analysis score, function coverage, hotspot score and 
also the developer information. With all the above 
feature we train an ensemble of models which 
includes Fully connected Neural network, Regression 
models to predict the number of bugs. 

 

2. For the other task of finding similar functions, we 
again use an ensemble technique of KNN and 
clustering methods. The code embeddings in the 
main feature used for this. 

 
 

VII. Feedback Loop for Active Learning 

The developer has an option to provide direct feedback to 
the model about the potential bugs that are being 
prevented by the tool and ensures that our system results 
do not stagnate. This also has a significant advantage in 
that this data used to train new versions of the model is of 
the same real-world distribution that the customer cares 
about predicting over.  

To incorporate the feedback, we will modify the code 
embeddings that the model estimated for a given function 
based on the user feedback using the below strategy  

•	For positive feedback/vote from the user, we will take the 
code embeddings of a new function that was being 
developed and move it closer to the function tagged with 
the predicted bug by a certain distance in N-dimensional 
space. The distance moved is proportional to the logarithm 
of the number of positive votes.  

•	For negative feedback/vote from the user, we will take the 
code embeddings of a new function that was being 
developed and move it farther to the function tagged with 
the predicted bug by a certain distance in N-dimensional 
space. The distance moved is proportional to the logarithm 
of the number of negative votes.  

In addition to this, we will also retrain the model from 
scratch taking the current embeddings as the initial weights 
for every function in our database that includes the 
embedding for the recently added functions also so that we 
will maintain the model with the up-to-date codebase. 
Frequency of training can be decided by the domain 
experts and currently, model retraining happens every 
month. 

 
VIII. Results 

 
We also carried out the vulnerability task in two iterations, 
in first one we did not consider composite code 
embeddings nor the additional logistic regression and 
below are results we obtained 
 
For similarity function identification task, we have arrived at 
a threshold on the distance to be less than 0.4 for two 



 
 
functions to be similar and this thresholding technique is 
giving us the accuracy of 95%. 

 

Figure 1: Accuracy vs Threshold Variation 

 

For Bug Prediction task, we used historical raised bugs and 
see if our model predicts them beforehand on the functions 
associated with them. Here we had an accuracy of 
around 70%. Also, we got the precision value of 0.74 and a 
recall of 0.77. 

 
Figure 2: Precision vs Recall Curve for Bug Prediction 

  
In the second iteration by including composite code 
embeddings, we saw a significant boost in the performance 
of the same bug prediction task described above, we 
achieved an accuracy of around 78%. The new precision 
value was 0.81 and a recall of 0.82.  
 
 

IX. Conclusion 
We presented a new technique to train accurate and robust 
neural models of code. Our work addresses key challenges 
inherent to the domain of code. The Deep code 
representation technique presented here can be used as 
the base feature extraction technique on the code and the 
extracted code embeddings can form as the basis to many 
machine learning tasks. 
To address the second challenge of Vulnerability detection, 
we proposed a new workflow involving a novel feedback 
loop approach to determine the potential bugs and 

application logic errors present in the code. The new 
workflow also takes the composite code embeddings into 
account for bug prediction and our work highlighted the 
improvements achieved by doing so.  We also presented 
an enterprise level integration for the ML models done here. 
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