
Hardware and 
Software Support
for Virtualization

Edouard Bugnion
Jason Nieh
Dan Tsafrir

Series Editor: Margaret Martonosi, Princeton University

Hardware and Software Support for Virtualization
Edouard Bugnion, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
Jason Nieh, Columbia University
Dan Tsafrir, Technion -- Israel Institute of Technology

This book focuses on the core question of the necessary architectural support provided by 
hardware to efficiently run virtual machines, and of the corresponding design of the hypervisors 
that run them. Virtualization is still possible when the instruction set architecture lacks such 
support, but the hypervisor remains more complex and must rely on additional techniques.
 Despite the focus on architectural support in current architectures, some historical 
perspective is necessary to appropriately frame the problem. The first half of the book provides 
the historical perspective of the theoretical framework developed four decades ago by Popek 
and Goldberg. It also describes earlier systems that enabled virtualization despite the lack of 
architectural support in hardware.
 As is often the case, theory defines a necessary—but not sufficient—set of features, 
and modern architectures are the result of the combination of the theoretical framework with 
insights derived from practical systems. The second half of the book describes state-of-the-art 
support for virtualization in both x86-64 and ARM processors. This book includes an in-depth 
description of the CPU, memory, and I/O virtualization of these two processor architectures, 
as well as case studies on the Linux/KVM, VMware, and Xen hypervisors. It concludes with a 
performance comparison of virtualization on current-generation x86- and ARM-based systems 
across multiple hypervisors.

store.morganclaypool.com

About SYNTHESIS

This volume is a printed version of a work that appears in the Synthesis 
Digital Library of Engineering and Computer Science.  Synthesis 
books provide concise, original presentations of important research and 
development topics, published quickly, in digital and print formats.

B
U

G
N

IO
N

 • E
T

 A
L 

     H
A

R
D

W
A

R
E

 A
N

D
 SO

F
T

W
A

R
E

 SU
PPO

R
T

 FO
R

 V
IR

T
U

A
LIZ

AT
IO

N
                   M

O
R

G
A

N
 &

 C
LA

Y
P

O
O

L

Synthesis Lectures on
Computer Architecture

Synthesis Lectures on
Computer Architecture





Hardware and Software Support
for Virtualization



Synthesis Lectures on
Computer Architecture

Editor
MargaretMartonosi, Princeton University

Synthesis Lectures on Computer Architecture publishes 50- to 100-page publications on topics
pertaining to the science and art of designing, analyzing, selecting and interconnecting hardware
components to create computers that meet functional, performance and cost goals. e scope will
largely follow the purview of premier computer architecture conferences, such as ISCA, HPCA,
MICRO, and ASPLOS.

Hardware and Software Support for Virtualization
Edouard Bugnion, Jason Nieh, and Dan Tsafrir
2017

Datacenter Design and Management: A Computer Architect’s Perspective
Benjamin C. Lee
2016

A Primer on Compression in the Memory Hierarchy
Somayeh Sardashti, Angelos Arelakis, Per Stenström, and David A. Wood
2015

Research Infrastructures for Hardware Accelerators
Yakun Sophia Shao and David Brooks
2015

Analyzing Analytics
Rajesh Bordawekar, Bob Blainey, and Ruchir Puri
2015

Customizable Computing
Yu-Ting Chen, Jason Cong, Michael Gill, Glenn Reinman, and Bingjun Xiao
2015

Die-stacking Architecture
Yuan Xie and Jishen Zhao
2015



iii

Single-Instruction Multiple-Data Execution
Christopher J. Hughes
2015

Power-Efficient Computer Architectures: Recent Advances
Magnus Själander, Margaret Martonosi, and Stefanos Kaxiras
2014

FPGA-Accelerated Simulation of Computer Systems
Hari Angepat, Derek Chiou, Eric S. Chung, and James C. Hoe
2014

A Primer on Hardware Prefetching
Babak Falsafi and omas F. Wenisch
2014

On-Chip Photonic Interconnects: A Computer Architect’s Perspective
Christopher J. Nitta, Matthew K. Farrens, and Venkatesh Akella
2013

Optimization and Mathematical Modeling in Computer Architecture
Tony Nowatzki, Michael Ferris, Karthikeyan Sankaralingam, Cristian Estan, Nilay Vaish, and David
Wood
2013

Security Basics for Computer Architects
Ruby B. Lee
2013

e Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale
Machines, Second edition
Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle
2013

Shared-Memory Synchronization
Michael L. Scott
2013

Resilient Architecture Design for Voltage Variation
Vijay Janapa Reddi and Meeta Sharma Gupta
2013

Multithreading Architecture
Mario Nemirovsky and Dean M. Tullsen
2013



iv

Performance Analysis and Tuning for General Purpose Graphics Processing Units
(GPGPU)
Hyesoon Kim, Richard Vuduc, Sara Baghsorkhi, Jee Choi, and Wen-mei Hwu
2012

Automatic Parallelization: An Overview of Fundamental Compiler Techniques
Samuel P. Midkiff
2012

Phase Change Memory: From Devices to Systems
Moinuddin K. Qureshi, Sudhanva Gurumurthi, and Bipin Rajendran
2011

Multi-Core Cache Hierarchies
Rajeev Balasubramonian, Norman P. Jouppi, and Naveen Muralimanohar
2011

A Primer on Memory Consistency and Cache Coherence
Daniel J. Sorin, Mark D. Hill, and David A. Wood
2011

Dynamic Binary Modification: Tools, Techniques, and Applications
Kim Hazelwood
2011

Quantum Computing for Computer Architects, Second Edition
Tzvetan S. Metodi, Arvin I. Faruque, and Frederic T. Chong
2011

High Performance Datacenter Networks: Architectures, Algorithms, and Opportunities
Dennis Abts and John Kim
2011

Processor Microarchitecture: An Implementation Perspective
Antonio González, Fernando Latorre, and Grigorios Magklis
2010

Transactional Memory, 2nd edition
Tim Harris, James Larus, and Ravi Rajwar
2010

Computer Architecture Performance Evaluation Methods
Lieven Eeckhout
2010

Introduction to Reconfigurable Supercomputing
Marco Lanzagorta, Stephen Bique, and Robert Rosenberg
2009



v

On-Chip Networks
Natalie Enright Jerger and Li-Shiuan Peh
2009

e Memory System: You Can’t Avoid It, You Can’t Ignore It, You Can’t Fake It
Bruce Jacob
2009

Fault Tolerant Computer Architecture
Daniel J. Sorin
2009

e Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale
Machines
Luiz André Barroso and Urs Hölzle
2009

Computer Architecture Techniques for Power-Efficiency
Stefanos Kaxiras and Margaret Martonosi
2008

Chip Multiprocessor Architecture: Techniques to Improve roughput and Latency
Kunle Olukotun, Lance Hammond, and James Laudon
2007

Transactional Memory
James R. Larus and Ravi Rajwar
2006

Quantum Computing for Computer Architects
Tzvetan S. Metodi and Frederic T. Chong
2006



Copyright © 2017 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations
in printed reviews, without the prior permission of the publisher.

Hardware and Software Support for Virtualization

Edouard Bugnion, Jason Nieh, and Dan Tsafrir

www.morganclaypool.com

ISBN: 9781627056939 paperback
ISBN: 9781627056885 ebook

DOI 10.2200/S00754ED1V01Y201701CAC038

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE

Lecture #38
Series Editor: Margaret Martonosi, Princeton University
Series ISSN
Print 1935-3235 Electronic 1935-3243

www.morganclaypool.com


Hardware and Software Support
for Virtualization

Edouard Bugnion
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Jason Nieh
Columbia University

Dan Tsafrir
Technion – Israel Institute of Technology

SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE #38

C
M
&

cLaypoolMorgan publishers&



ABSTRACT
is book focuses on the core question of the necessary architectural support provided by hardware
to efficiently run virtual machines, and of the corresponding design of the hypervisors that run
them. Virtualization is still possible when the instruction set architecture lacks such support, but
the hypervisor remains more complex and must rely on additional techniques.

Despite the focus on architectural support in current architectures, some historical perspec-
tive is necessary to appropriately frame the problem. e first half of the book provides the histor-
ical perspective of the theoretical framework developed four decades ago by Popek and Goldberg.
It also describes earlier systems that enabled virtualization despite the lack of architectural support
in hardware.

As is often the case, theory defines a necessary—but not sufficient—set of features, and
modern architectures are the result of the combination of the theoretical framework with insights
derived from practical systems. e second half of the book describes state-of-the-art support for
virtualization in both x86-64 and ARM processors. is book includes an in-depth description
of the CPU, memory, and I/O virtualization of these two processor architectures, as well as case
studies on the Linux/KVM, VMware, and Xen hypervisors. It concludes with a performance
comparison of virtualization on current-generation x86- and ARM-based systems across multiple
hypervisors.

KEYWORDS
computer architecture, virtualization, virtual machine, hypervisor, dynamic binary
translation



ix

Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Virtual Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Hypervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Type-1 and Type-2 Hypervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 A Sketch Hypervisor: Multiplexing and Emulation . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Names for Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7 Approaches to Virtualization and Paravirtualization . . . . . . . . . . . . . . . . . . . . . . 12
1.8 Benefits of Using Virtual Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.9 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 ePopek/Goldbergeorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 e Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 e eorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Recursive Virtualization and Hybrid Virtual Machines . . . . . . . . . . . . . . . . . . . 21
2.4 Discussion: Replacing Segmentation with Paging . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Well-known Violations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.1 MIPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.2 x86-32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.3 ARM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Virtualization without Architectural Support . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1 Disco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Hypercalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.2 e L2TLB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.3 Virtualizing Physical Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



x

3.2 VMware Workstation—Full Virtualization on x86-32 . . . . . . . . . . . . . . . . . . . . 34
3.2.1 x86-32 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Virtualizing the x86-32 CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.3 e VMware VMM and its Binary Translator . . . . . . . . . . . . . . . . . . . . . 38
3.2.4 e Role of the Host Operating System . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.5 Virtualizing Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Xen—e Paravirtualization Alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Designs Options for Type-1 Hypervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Lightweight Paravirtualization on ARM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 x86-64: CPUVirtualization with VT-x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1 Design Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 e VT-x Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 VT-x and the Popek/Goldberg eorem . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.2 Transitions between Root and Non-root Modes . . . . . . . . . . . . . . . . . . . 58
4.2.3 A Cautionary Tale—Virtualizing the CPU and Ignoring the MMU . . . 61

4.3 KVM—A Hypervisor for VT-x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.1 Challenges in Leveraging VT-x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.2 e KVM Kernel Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.3 e Role of the Host Operating System . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Performance Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 x86-64:MMUVirtualization with Extended Page Tables . . . . . . . . . . . . . . . . . . 71
5.1 Extended Paging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Virtualizing Memory in KVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 Performance Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 x86-64: I/O Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.1 Benefits of I/O Interposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Physical I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2.1 Discovering and Interacting with I/O Devices . . . . . . . . . . . . . . . . . . . . . 82
6.2.2 Driving Devices through Ring Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2.3 PCIe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3 Virtual I/O without Hardware Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



xi

6.3.1 I/O Emulation (Full Virtualization) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3.2 I/O Paravirtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3.3 Front-Ends and Back-Ends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4 Virtual I/O with Hardware Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.4.1 IOMMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.4.2 SRIOV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.4.3 Exitless Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.4.4 Posted Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.5 Advanced Topics and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7 Virtualization Support in ARMProcessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.1 Design Principles of Virtualization Support on ARM . . . . . . . . . . . . . . . . . . . 123
7.2 CPU Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2.1 Virtualization Extensions and the Popek/Goldberg eorem . . . . . . . . 128
7.3 Memory Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.4 Interrupt Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.5 Timer Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.6 KVM/ARM—A VMM based on ARM Virtualization Extensions . . . . . . . . 132

7.6.1 Split-mode Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.6.2 CPU Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.6.3 Memory Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.6.4 I/O Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.6.5 Interrupt Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.6.6 Timer Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.7 Performance Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.8 Implementation Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.9 Architecture Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.10 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8 Comparing ARM and x86 Virtualization Performance . . . . . . . . . . . . . . . . . . . 147
8.1 KVM and Xen Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.2 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.3 Microbenchmark Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.4 Application Benchmark Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.5 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163



xii

Authors’ Biographies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183



xiii

Preface

..

“Virtual machines have finally arrived. Dismissed for a number of years as
merely academic curiosities, they are now seen as cost-effective techniques
for organizing computer systems resources to provide extraordinary system
flexibility and support for certain unique applications”.

Robert. P. Goldberg, IEEE Computer, 1974 [78]

e academic discipline of computer systems research, including computer architecture, is in
many aspects more tidal than linear: specific ingrained, well-understood techniques lose their
relevance as tradeoffs evolve. Hence, the understanding of these techniques then ebbs from the
collective knowledge of the community. Should the architectural tide later flow in the reverse
direction, we have the opportunity to reinvent—or at least appreciate once more—old concepts
all over again.

e history of virtualization is an excellent example of this cycle of innovation. e ap-
proach was popular in the early era of computing, as demonstrated from the opening quote. At
high tide in the 1970s, hundreds of papers were written on virtualization with conferences and
workshops dedicated to the topic. e era established the basic principles of virtualization and en-
tire compute stacks—hardware, virtual machine monitors, and operating systems—were designed
to efficiently support virtual machines. However, the tide receded quickly in the early 1980s as
operating systems matured; virtual machines were soon strategically discarded in favor of a more
operating system-centric approach to building systems.

roughout the 1980s and 1990s, with the appearance of the personal computer and client/
server era, virtual machines were largely relegated to a mainframe-specific curiosity. For example,
the processors developed in that era (MIPS, Sparc, x86), were not explicitly designed to provide
architectural support for virtualization, since there was no obvious business requirement to main-
tain support for virtual machines. In addition, and in good part because of the ebb of knowledge
of the formal requirements for virtualization, many of these architectures made arbitrary design
decisions that violated the basic principles established a decade earlier.

For most computer systems researchers of the open systems era, raised on UNIX, RISC,
and x86, virtual machines were perceived to be just another bad idea from the 1970s. In 1997,
the Disco [44] paper revisited virtual machines with a fresh outlook, specifically as the founda-



xiv PREFACE

tion to run commodity operating systems on scalable multiprocessors. In 1999, VMware released
VMware Workstation 1.0 [45], the first commercial virtualization solution for x86 processors.

At the time, researchers and commercial entities started building virtual machines solu-
tions for desktops and servers. A few years later, the approach was introduced to mobile plat-
forms. Disco, VMware Workstation, VMware ESX Server [177], VirtualPC [130], Xen [27],
Denali [182], and Cells [16], were all originally designed for architectures that did not provide
support for virtualization. ese different software systems each took a different approach to work
around the limitations of the hardware of the time. Although processor architectures have evolved
to provide hardware support for virtualization, many of the key innovations of that era such as
hosted architectures [162], paravirtualization [27, 182], live migration [51, 135], and memory
ballooning [177], remain relevant today, and have a profound impact on computer architecture
trends.

Clearly, the virtualization tide has turned, to the point that it is once more a central driver of
innovation throughout the industry, including system software, systems management, processor
design, and I/O architectures. As a matter of fact, the exact quote from Goldberg’s 1974 paper
would have been equally timely 30 years later: Intel introduced its first-generation hardware sup-
port for virtual machines in 2004. Every maintained virtualization solution, including VMware
Workstation, ESX Server, and Xen, quickly evolved to leverage the benefits of hardware support
for virtualization. New systems were introduced that assumed the existence of such hardware sup-
port as a core design principle, notably KVM [113]. With the combined innovation in hardware
and software and the full support of the entire industry, virtual machines quickly became central
to IT organizations, where they were used among other things to improve IT efficiency, sim-
plify provisioning, and increase availability of applications. Virtual machines were also proposed
to uniquely solve hard open research questions, in domains such as live migration [51, 135] and
security [73]. Within a few years, they would play a central role in enterprise datacenters. For
example, according to the market research firm IDC, since 2009 there are more virtual machines
deployed than physical hosts [95].

Today, virtual machines are ubiquitous in enterprise environments, where they are used to
virtualize servers as well as desktops. ey form the foundation of all Infrastructure-as-a-Service
(IAAS) clouds, including Amazon EC2, Google CGE, Microsoft Azure, and OpenStack. Once
again, the academic community dedicates conference tracks, sessions, and workshops to the topic
(e.g., the annual conference on Virtual Execution Environments (VEE)).

ORGANIZATIONOFTHIS BOOK
is book focuses on the core question of the necessary architectural support provided by hardware
to efficiently run virtual machines. Despite the focus on architectural support in current architec-
tures, some historical perspective is necessary to appropriately frame the problem. Specifically,
this includes both a theoretical framework, and a description of the systems enabling virtualiza-
tion despite the lack of architectural support in hardware. As is often the case, theory defines



PREFACE xv

a necessary—but not sufficient—set of features, and modern architectures are the result of the
combination of the theoretical framework with insights derived from practical systems.

e book is organized as follows.

• Chapter 1 introduces the fundamental definitions of the abstraction (“virtual machines”),
the run-time (“virtual machine monitors”), and the principles used to implement them.

• Chapter 2 provides the necessary theoretical framework that defines whether an instruction
set architecture (ISA) is virtualizable or not, as formalized by Popek and Goldberg [143].

• Chapter 3 then describes the first set of systems designed for platforms that failed the
Popek/Goldberg test. ese systems each use a particular combination of workarounds to
run virtual machines on platforms not designed for them. Although a historical curiosity
by now, some of the techniques developed during that era remain relevant today.

• Chapter 4 focuses on the architectural support for virtualization of modern x86-64 proces-
sors, and in particular Intel’s VT-x extensions. It uses KVM as a detailed case study of a
hypervisor specifically designed to assume the presence of virtualization features in proces-
sors.

• Chapter 5 continues the description of x86-64 on the related question of the architectural
support for MMU virtualization provided by extended page tables (also known as nested
page tables).

• Chapter 6 closes the description of x86-64 virtualization with the various forms of I/O
virtualization available. e chapter covers key concepts such as I/O emulation provided by
hypervisors, paravirtual I/O devices, pass-through I/O with SR-IOV, IOMMUs, and the
support for interrupt virtualization.

• Chapter 7 describes the architectural support for virtualization of the ARM processor fam-
ily, and covers the CPU, MMU, and I/O considerations. e chapter emphasizes some of
the key differences in design decisions between x86 and ARM.

• Chapter 8 compares the performance and overheads of virtualization extensions on x86 and
on ARM.

In preparing this book, the authors made some deliberate decisions. First, for brevity, we focused
on the examples of architectural support for virtualization, primarily around two architectures:
x86-64 and ARM. Interested readers are hereby encouraged to study additional instruction set ar-
chitectures. Among them, IBMPOWER architecture, with its support for both hypervisor-based
virtualization and logical partitioning (LPAR), is an obvious choice [76]. e SPARC architec-
ture also provides built-in support for logical partitioning, called logical domains [163]. We also
omit any detailed technical description of mainframe and mainframe-era architectures. Readers



xvi PREFACE

interested in that topic should start with Goldberg’s survey paper [78] and Creasy’s overview of
the IBM VM/370 system [54].

Second, we focused on mainstream (i.e., traditional) forms of virtual machines and the
construction of hypervisors in both the presence or the absence of architectural support for virtu-
alization in hardware. is focus is done at the expense of a description of some more advanced
research concepts. For example, the text does not discuss recursive virtual machines [33, 158],
the use of virtualization hardware for purposes other than running traditional virtual ma-
chines [24, 29, 31, 43, 88], or the emerging question of architectural support for containers such
as Docker [129].

AUTHORS’ PERSPECTIVES
is book does not attempt to cover all aspects of virtualization. Rather, it mostly focuses on
the key question of the interaction between the underlying computer architecture and the sys-
tems software built on top of it. It also comes with a point of view, based on the authors’ direct
experiences and perspectives on the topic.

Edouard Bugnion was fortunate to be part of the Disco team as a graduate student. Because
of the stigma associated with virtual machines of an earlier generation, we named our prototype
in reference to the questionable musical contribution of that same decade [55], which was then
coincidentally making a temporary comeback. Edouard later co-founded VMware, where he was
one of themain architects and implementers of VMwareWorkstation, and then served as its Chief
Technology Officer. In 2005, he co-founded Nuova Systems, a hardware company premised on
providing architectural support for virtualization in the network and the I/O subsystem, which
became the core of Cisco’s Data Center strategy. More recently, having returned to academia as a
professor at École polytechnique fédérale de Lausanne (EPFL), Edouard is now involved in the
IX project [30, 31, 147] which leverages virtualization hardware and the Dune framework [29]
to build specialized operating systems.

Jason Nieh is a Professor of Computer Science at Columbia University, where he has led
a wide range of virtualization research projects that have helped shape commercial and educa-
tional practice. Zap [138], an early lightweight virtual machine architecture that supported mi-
gration, led to the development of Linux namespaces and Linux containers, as well as his later
work on Cells [16, 56], one of the first mobile virtualization solutions. Virtual Layered File Sys-
tems [144, 145] introduced the core ideas of layers and repositories behind Docker and CoreOS.
KVM/ARM [60] is widely deployed and used as the mainline Linux ARM hypervisor, and
has led to improvements in ARM architectural support for virtualization [58]. MobiDesk [26],
THINC [25], and other detailed measurement studies helped make the case for virtual desktop
infrastructure, which has become widely used in industry. A dedicated teacher, Jason was the first
to introduce virtualization as a pedagogical tool for teaching hands-on computer science courses,
such as operating systems [136, 137], which has become common practice in universities around
the world.



PREFACE xvii

Dan Tsafrir is an Associate Professor at the Technion—Israel Institute of Technology,
where he regularly appreciates how fortunate he is to be working with brilliant students on cool
projects for a living. Some of these projects drive state-of-the-art virtualization forward. For
example, vIOMMU showed for the first time how to fully virtualize I/O devices on separate
(side)cores without the knowledge or involvement of virtual machines, thus eliminating seem-
ingly inherent trap-and-emulate virtualization overheads [12]. vRIO showed that such sidecores
can in fact be consolidated on separate remote servers, enabling a new kind of datacenter-scale I/O
virtualization model that is cheaper and more performant than existing alternatives [116]. ELI
introduced software-based exitless interrupts—a concept recently adopted by hardware—which,
after years of efforts, finally provided bare-metal performance for high-throughput virtualization
workloads [13, 80]. VSwapper showed that uncooperative swapping of memory of virtual ma-
chines can be made efficient, despite the common belief that this is impossible [14]. Virtual CPU
validation showed how to uncover amassive amount of (confirmed and now fixed) hypervisor bugs
by applying Intel’s physical CPU testing infrastructure to the KVM hypervisor [15]. EIOVAR
and its successor projects allowed for substantially faster and safer IOMMU protection and found
their way into the Linux kernel [126, 127, 142]. NPFs provide page-fault support for network
controllers and are now implemented in production Mellanox NICs [120].

TARGETAUDIENCE
is book is written for researchers and graduate students who have already taken a basic course
in both computer architecture and operating systems, and who are interested in becoming fluent
with virtualization concepts. Given the recurrence of virtualization in the literature, it should be
particularly useful to new graduate students before they start reading the many papers treating a
particular sub-aspect of virtualization. We include numerous references of widely read papers on
the topic, together with a high-level, modern commentary on their impact and relevance today.

Edouard Bugnion, Jason Nieh, and Dan Tsafrir
January 2017





xix

Acknowledgments
is book would not have happened without the support of many colleagues. e process would
have not even started without the original suggestion from Rich Uhlig to Margaret Martonosi,
the series editor. e process, in all likelihood, would have never ended without the constant,
gentle probing of Mike Morgan; we thank him for his patience. Ole Agesen, Christoffer Dall,
Arthur Kiyanovski, Shih-Wei Li, Jintack Lim, George Prekas, Jeff Sheldon, and Igor Smolyar
provided performance figures specifically for this book; students will find the additional quanti-
tative data enlightening. Margaret Church made multiple copy-editing passes to the manuscript;
we thank her for the diligent and detailed feedback at each round. Nadav Amit, Christoffer
Dall, Nathan Dauthenhahn, Canturk Isci, Arthur Kiyanovski, Christos Kozyrakis, Igor Smolyar,
Ravi Soundararajan, Michael Swift, and Idan Yaniv all provided great technical feedback on the
manuscript.

e authors would like to thank EPFL, Columbia University, and the Technion—Israel
Institute of Technology, for their institutional support. Bugnion’s research group is supported in
part by grants from Nano-Tera, the Microsoft EPFL Joint Research Center, a Google Grad-
uate Research Fellowship and a VMware research grant. Nieh’s research group is supported in
part by ARM Ltd., Huawei Technologies, a Google Research Award, and NSF grants CNS-
1162447, CNS-1422909, and CCF-1162021. Tsafrir’s research group is supported in part by re-
search awards from Google Inc., Intel Corporation, Mellanox Technologies, and VMware Inc.,
as well as by funding from the Israel Science Foundation (ISF) grant No. 605/12, the Israeli Min-
istry of Economics via the HIPER consortium, the joint BSF-NSF United States-Israel Bion-
ational Science Foundation and National Science Foundation grant No. 2014621, and the Eu-
ropean Union’s Horizon 2020 research and innovation programme grant agreement No. 688386
(OPERA).

Edouard Bugnion, Jason Nieh, and Dan Tsafrir
Lausanne, New York, and Haifa
January 2017





1

C H A P T E R 1

Definitions
is chapter introduces the basic concepts of virtualization, virtual machines, and virtual machine
monitors. is is necessary for clarity as various articles, textbooks, and commercial product de-
scriptions sometimes use conflicting definitions. We use the following definitions in this book.

• Virtualization is the application of the layering principle through enforced modularity,
whereby the exposed virtual resource is identical to the underlying physical resource being
virtualized.

• A virtual machine is an abstraction of a complete compute environment through the com-
bined virtualization of the processor, memory, and I/O components of a computer.

• e hypervisor is a specialized piece of system software that manages and runs virtual ma-
chines.

• e virtual machine monitor (VMM) refers to the portion of the hypervisor that focuses
on the CPU and memory virtualization.¹

e rest of this chapter is organized as follows. We formalize the definitions of virtualization,
virtual machines, and hypervisors in §1.1, §1.2, and §1.3, respectively. §1.4 classifies existing hy-
pervisors into type-1 (bare-metal) and type-2 (hosted) architectures. We then provide a sketch
illustration of a hypervisor in §1.5 while deferring the formal definition until Chapter 2. In ad-
dition to the three basic concepts, we also define useful, adjacent concepts such as the different
terms for memory (§1.6) and various approaches to virtualization and paravirtualization (§1.7).
We conclude in §1.8 with a short description of some of the key reasons why virtual machines
play a fundamental role in information technology today.

1.1 VIRTUALIZATION

..

Virtualization is the application of the layering principle through enforced
modularity, whereby the exposed virtual resource is identical to the underlying
physical resource being virtualized.

¹N.B.: the terms hypervisor and virtual machine monitor have been used interchangeably in the literature. Here, we prefer
the term hypervisor when describing an entire system and the term VMM when describing the subsystem that virtualizes the
CPU and memory, or in its historical formal context in Chapter 2.



2 1. DEFINITIONS

is definition is grounded in two fundamental principles of computer systems. First, layering
is the presentation of a single abstraction, realized by adding a level of indirection, when (i) the
indirection relies on a single lower layer and (ii) uses a well-defined namespace to expose the
abstraction. Second, enforced modularity additionally guarantees that the clients of the layer
cannot bypass the abstraction layer, for example to access the physical resource directly or have
visibility into the usage of the underlying physical namespace. Virtualization is therefore nothing
more than an instance of layering for which the exposed abstraction is equivalent to the underlying
physical resource.

is combination of indirection, enforced modularity, and compatibility is a particularly
powerful way to both reduce the complexity of computer systems and simplify operations. Let’s
take the classic example of RAID [48], in which a redundant array of inexpensive disk is aggre-
gated to form a single, virtual disk. Because the interface is compatible (it is a block device for both
the virtual and physical disks), a filesystem can be deployed identically, whether the RAID layer
is present or not. As the RAID layer manages its own resources internally, hiding the physical
addresses from the abstraction, physical disks can be swapped into the virtual disk transparently
from the filesystem using it; this simplifies operations, in particular when disks fail and must be
replaced. Even though RAID hides many details of the organization of the storage subsystem
from the filesystem, the operational benefits clearly outweigh any potential drawbacks resulting
from the added level of indirection.

As broadly defined, virtualization is therefore not synonymous to virtual machines. It is
also not limited to any particular field of computer science or location in the compute stack. In
fact, virtualization is prevalent across domains. We provide a few examples found in hardware,
software, and firmware.

Virtualization in Computer Architecture: Virtualization is obviously a fundamental part of
computer architecture. Virtual memory, as exposed through memory management units (MMU),
serves as the canonical example: the MMU adds a level of indirection which hides the physical
addresses from applications, in general through a combination of segmentation and paging mech-
anisms. is enforces modularity as MMU control operations are restricted to kernel mode. As
both physical memory and virtual memory expose the same abstraction of byte-addressable mem-
ory, the same instruction set architecture can operate identically with virtual memory when the
MMU is enabled, and with physical memory when it is disabled.

Virtualization within Operating Systems: Operating systems have largely adopted the same
concept. In fact, at its core, an operating system does little more than safely expose the resources
of a computer—CPU, memory, and I/O—to multiple, concurrent applications. For example, an
operating system controls the MMU to expose the abstraction of isolated address spaces to pro-
cesses; it schedules threads on the physical cores transparently, thereby multiplexing in software
the limited physical CPU resource; it mounts multiple distinct filesystems into a single virtualized
namespace.



1.1. VIRTUALIZATION 3

Virtualization in I/O subsystems: Virtualization is ubiquitous in disks and disk controllers,
where the resource being virtualized is a block-addressed array of sectors. e approach is used
by RAID controllers and storage arrays, which present the abstraction of multiple (virtual) disks
to the operating systems, which addresses them as (real) disks. Similarly, the Flash Translation
Layer found in current SSD provides wear-leveling within the I/O subsystem and exposes the
SSD to the operating systems as though it were a mechanical disk.

Whether done in hardware, in software, or embedded in subsystems, virtualization is al-
ways achieved by using and combining three simple techniques, illustrated in Figure 1.1. First,
multiplexing exposes a resource among multiple virtual entities. ere are two types of multiplex-
ing, in space and in time. With space multiplexing, the physical resource is partitioned (in space)
into virtual entities. For example, the operating system multiplexes different pages of physical
memory across different address spaces. To achieve this goal, the operating system manages the
virtual-to-physical mappings and relies on the architectural support provided by the MMU.

X

X X X X X

X X X Y

Virtualization Virtualization Virtualization

(a) Multiplexing (b) Aggregation (c) Emulation

P
h
y
si

ca
l 

R
es

o
u
rc

e
A

b
st

ra
ct

io
n

Figure 1.1: ree basic implementations techniques of virtualization. X represents both the physical
resource and the virtualized abstraction.

With timemultiplexing, the same physical resource is scheduled temporally between virtual
entities. For example, the OS scheduler multiplexes the CPU core and hardware threads among
the set of runnable processes. e context switching operation saves the processor’s register file in
the memory associated with the outgoing process, and then restores the state of the register file
from the memory location associated with the incoming process.

Second, aggregation does the opposite, it takesmultiple physical resources andmakes them
appear as a single abstraction. For example, a RAID controller aggregates multiple disks into
a single volume. Once configured, the controller ensures that all read and write operations to
the volume are appropriately reflected onto the various disks of the RAID group. e operating
system then formats the filesystem onto the volume without having to worry about the details of



4 1. DEFINITIONS

the layout and the encoding. In a different domain, a processor’s memory controller aggregates
the capacity of multiple DIMMs into a single physical address space, which is then managed by
the operating system.

ird, emulation relies on a level of indirection in software to expose a virtual resource or
device that corresponds to a physical device, even if it is not present in the current computer sys-
tem. Cross-architectural emulators run one processor architecture on another, e.g., Apple Rosetta
emulates a PowerPC processor on an x86 computer for backward compatibility. In this example,
X=PowerPC and Y=x86 in Figure 1.1c. e virtual abstraction corresponds to a particular proces-
sor with a well-defined ISA, even though the physical processor is different. Memory and disks
can emulate each other: a RAM disk emulates the function of a disk using DRAM as backing
store. e paging process of virtual memory does the opposite: the operating system uses disk
sectors to emulate virtual memory.

Multiplexing, aggregation, and emulation can naturally be combined together to form a
complete execution stack. In particular, as we will see shortly in §1.5, nearly all hypervisors in-
corporate a combination of multiplexing and emulation.

1.2 VIRTUALMACHINES
e term “virtual machine” has been used to describe different abstractions depending on epoch
and context. Fortunately, all uses are consistent with the following, broad definition.

..

A virtual machine is a complete compute environment with its own isolated
processing capabilities, memory, and communication channels.

is definition applies to a range of distinct, incompatible abstractions, illustrated in Figure 1.2:

• language-based virtual machines, such as the Java Virtual Machine, Microsoft Common
Language Runtime, Javascript engines embedded in browsers, and in general the run-time
environment of anymanaged language.ese runtime environments are focused on running
single applications and are not within the scope of this book;

• lightweight virtual machines, which rely on a combination of hardware and software iso-
lation mechanisms to ensure that applications running directly on the processor (e.g., as
native x86 code) are securely isolated from other sandboxes and the underlying operating
system. is includes server-centric systems such as Denali [182] as well as desktop-centric
systems such as the Google Native Client [190] and Vx32 [71]. Solutions based on Linux
containers such as Docker [129] or the equivalent FreeBSD Jail [110] fall into the same
category. We will refer to some of these systems as applicable, in particular in the context
of the use of particular processor features; and



1.2. VIRTUALMACHINES 5

P
la

tf
o
rm

s
A

b
st

ra
ct

io
n
s

(system-level)

Virtual Machine

Virtual Machine

Machine Simulator

Language-based

Virtual Machine

Lightweight

Virtual Machine

Hypervisor

Bare-metal Hypervisor (type-1) Hosted Hypervisor (type-2)

Popek /

Goldberg Th.

Figure 1.2: Basic classification of virtual machines and the platforms that run them.

• system-level virtual machines, in which the isolated compute environment resembles the
hardware of a computer so that the virtual machine can run a standard, commodity oper-
ating system and its applications, in full isolation from the other virtual machines and the
rest of the environment. Such virtual machines apply the virtualization principle to an entire
computer system. Each virtual machine has its own copy of the underlying hardware, or at
least, its own copy of some underlying hardware. Each virtual machine runs its own inde-
pendent operating system instance, called the guest operating system. is is the essential
focus of this book.

Figure 1.2 also categories the various platforms that run system-level virtual machines. We
call these platforms either a hypervisor or a machine simulator, depending on the techniques used
to run the virtual machine:

• a hypervisor relies on direct execution on the CPU for maximum efficiency, ideally to
eliminate performance overheads altogether. In direct execution, the hypervisor sets up the
hardware environment, but then lets the virtual machine instructions execute directly on
the processor. As these instruction sequences must operate within the abstraction of the
virtual machine, their execution causes traps, which must be emulated by the hypervisor.
is trap-and-emulate paradigm is central to the design of hypervisors; and

• a machine simulator is typically implemented as a normal user-level application, with the
goal of providing an accurate simulation of the virtualized architecture, and often runs at
a small fraction of the native speed, ranging from a 5� slowdown to a 1000� slowdown,
depending on the level of simulation detail. Machine simulators play a fundamental role
in computer architecture by allowing the detailed architectural study of complex work-
loads [36, 124, 153, 181].



6 1. DEFINITIONS

1.3 HYPERVISORS

A hypervisor is a special form of system software that runs virtual machines with the goal of
minimizing execution overheads. When multiple virtual machines co-exist simultaneously on
the same computer system, the hypervisor multiplexes (i.e., allocates and schedules) the physical
resources appropriately among the virtual machines.

Popek and Goldberg formalized the relationship between a virtual machine and hypervisor
(which they call VMM) in 1974 as follows [143].

..

A virtual machine is taken to be an efficient, isolatedduplicate of the real ma-
chine. We explain these notions through the idea of a virtual machine monitor
(VMM). As a piece of software, a VMM has three essential characteristics.
First, the VMM provides an environment for programs which is essentially
identical with the original machine; second, programs running in this envi-
ronment show at worst only minor decreases in speed; and last, the VMM is
in complete control of system resources.

Popek and Goldberg’s definition is consistent with the broader definition of virtualization:
the hypervisor applies the layering principle to the computer with three specific criteria of equiv-
alence, safety and performance.

Equivalence: Duplication ensures that the exposed resource (i.e., the virtual machine) is equiv-
alent with the underlying computer. is is a strong requirement, which has been historically
relaxed in some measure when the architecture demands it (see §1.7).

Safety: Isolation requires that the virtual machines are isolated from each other as well as from
the hypervisor, which enforces the modularity of the system. Critically, the safety of the design is
enforced by the hypervisor without it making any assumptions about the software running inside
the virtual machine (including the guest operating system).

Performance: Finally, and critically, Popek and Goldberg’s definition adds an additional re-
quirement: the virtual system must show at worst a minor decrease in speed. is final requirement
separates hypervisors from machine simulators. Although machine simulators also meet the du-
plication and the isolation criteria, they fail the efficiency criteria as even fast machine simulators
using dynamic binary translation [32, 124, 153, 184] slow down the execution of the target system
by at least 5�, in large part because of the high cost of emulating the TLB of the virtual machine
in software.



1.4. TYPE-1 ANDTYPE-2HYPERVISORS 7

1.4 TYPE-1 ANDTYPE-2HYPERVISORS
Finally, Figure 1.2 shows that hypervisor architectures can be classified into so-called type-1 and
type-2. Robert Goldberg introduced these terms in his thesis [77], and the terms have been used
ever since. Informally, a type-1 hypervisor is in direct controls of all resources of the physical
computer. In contrast, a type-2 hypervisor operates either “as part of ” or “on top of ” an existing
host operating system. Regrettably, the literature has applied the definitions loosely, leading to
some confusion. Goldberg’s definition (using an updated terminology) is as follows.

..

e implementation requirement specifies that instructions execute directly
on the host. It does not indicate how the hypervisor gains control for that
subset of instructions that must be interpreted. is may be done either by a
program running on the bare host machine or by a program running under
some operating system on the host machine. In the case of running under an
operating system, the host operating system primitives may be used to simplify
writing the virtual machine monitor. us, two additional VMM categories
arise:

• type-1: the VMM runs on a bare machine;

• type-2: the VMM runs on an extended host, under the host operating
system.

[...] In both type-1 and type-2 VMM, the VMM creates the virtual machine.
However, in a type-1 environment, the VMM on a bare machine must per-
form the system’s scheduling and (real) resource allocation. us, the type-1
VMM may include such code not specifically needed for virtualization. In a
type-2 system, the resource allocation and environment creation functions for
virtual machine are more clearly split. e operating system does the normal
system resource allocation and provides a standard extended machine.

We note that the emphasis is on resource allocation, and not whether the hypervisor runs in
privileged or non-privileged mode. In particular, a hypervisor can be a type-2 even when it runs
in kernel-mode, e.g., Linux/KVM and VMware Workstation operate this way. In fact, Goldberg
assumed that the hypervisor would always be executing with supervisor privileges.

Both types are commonly found in current systems. First, VMware ESX Server [177],
Xen [27, 146], and Microsoft Hyper-V are all type-1 hypervisors. Even though Xen and Hyper-
V depend on a host environment called dom0, the hypervisor itself makes the resource allocation
and scheduling decisions.

Conversely, VMware Workstation [45], VMware Fusion, KVM [113], Microsoft Virtu-
alPC, Parallels, and Oracle VirtualBox [179] are all type-2 hypervisors. ey cooperate with a



8 1. DEFINITIONS

host operating system so that the host operating system schedules all system resources. e host
operating system schedules the hypervisor as if it were a process, even though these systems all
depend on a heavy kernel-mode component to execute the virtual machine. Some hypervisors
such as VMware Workstation and Oracle VirtualBox are portable across different host operating
systems, while Fusion and Parallels runs with the Mac OS X host operating system, Microsoft
Virtual PC runs with the Windows host operating system and KVM runs as part of the Linux
host operating system. Among these type-2 systems, KVM provides the best integration with
the host operating system, as the kernel mode component of the hypervisors is integrated directly
within the Linux host as a kernel module.

1.5 A SKETCHHYPERVISOR:MULTIPLEXINGAND
EMULATION

With the basic definitions established, we now move to a first sketch description of the key ele-
ments of a virtualized computer system, i.e., the specification of a virtual machine and the basic
building blocks of the hypervisor.

Figure 1.3 illustrates the key architectural components of a virtualized computer system.
e figure shows three virtual machines, each with their own virtual hardware, their own guest
operating system, and their own applications.e hypervisor controls the actual physical resources
and runs directly on the hardware. In this simplified architecture, the hardware (virtual or physical)
consists of processing elements, which comprises one or more CPUs, their MMU, and cache-
coherent memory. e processing elements are connected to an I/O bus, with two attached I/O
devices: a disk and a network interface card in Fig 1.3. is is representative of a server deploy-
ment. A desktop platform would include additional devices such as a keyboard, video, mouse,
serial ports, USB ports, etc. A mobile platform might further require a GPS, an accelerometer,
and radios.

In its most basic form, a hypervisor uses two of the three key virtualization techniques of
§1.1: it multiplexes (in space, and possibly in time) the physical PE across the virtual machines,
and it emulates everything else, in particular the I/O bus and the I/O devices.

is combination of techniques is both necessary and sufficient in practice to achieve the
efficiency criteria. It is necessary because without an effective mechanism to multiplex the CPU
and the MMU, the hypervisor would have to emulate the execution of the virtual machine. In fact,
the principal difference between a machine simulator and a hypervisor is that the former emulates
the virtual machine’s instruction set architecture, while the later multiplexes it.Multiplexing of the
CPU is a scheduling task, very similar to the one performed by the operating system to schedule
processes.e scheduling entity (here, the hypervisor) sets up the hardware environments (register
file, etc.) and then lets the scheduled entity (the virtual machine) run directly on the hardware
with reduced privileges.

is scheduling technique is known as direct execution since the hypervisor lets the vir-
tual CPU directly execute instructions on the real processor. Of course, the hypervisor is also



1.5. A SKETCHHYPERVISOR:MULTIPLEXINGANDEMULATION 9

App App App App App App App App App

Guest OS Guest OS Guest OS

PE

PE PE PE PE

PE

Disk

Disk NIC

PE PE

Disk NIC

PE PE

Disk NIC

NIC

Hypervisor

Figure 1.3: Basic architecture of a virtual machine monitor. Each processing element (PE) consists
of CPU and physical memory.

responsible to ensure the safety property of the virtual machine. It therefore ensures that the
virtual CPU always executes with reduced privileges, e.g., so that it cannot execute privileged in-
structions. As a consequence, the direct execution of the virtual machine leads to frequent traps
whenever the guest operating system attempts to execute a privileged instruction, which must
be emulated by the hypervisor. Hypervisors designed around direct execution therefore follow a
trap-and-emulate programming paradigm, where the bulk of the execution overhead is due to
the hypervisor emulating traps on behalf of the virtual machine.

Physical memory is also multiplexed among the virtual machines, so that each has the
illusion of a contiguous, fixed-size, amount of physical memory. is is similar to the allocation
among processes done by an operating system. e unique challenges in building a hypervisor lie
in the virtualization of theMMU, and in the ability to expose user-level and kernel-level execution
environment to the virtual machine.

e combination of multiplexing and emulation is also sufficient, as I/O operations of to-
day’s computer systems are implemented via reasonably high-level operations, e.g., a device driver
can issue simple commands to send a list of network packets specified in a descriptor ring, or is-
sue a 32 KB disk request. A hypervisor emulates the hardware/software interface of at least one
representative device per category, i.e., one disk device, one network device, one screen device,



10 1. DEFINITIONS

etc. As part of this emulation, the hypervisor uses the available physical devices to issue the actual
I/O.

I/O emulation has long been the preferred approach to the virtualization of I/O device
because of its portability advantages: a virtual machine “sees” the same virtual hardware, even
when running on platform with different hardware devices. Today, modern hardware includes
advanced architectural support for I/O virtualization which enables the multiplexing of certain
classes of I/O devices, with notable performance benefits in terms of throughput and latency, but
still at the expense of reducing the mobility and portability of the virtual machines.

Table 1.1 provides a concrete example of the combined use of multiplexing and emulation
in VMware Workstation 2.0, an early, desktop-oriented hypervisor, released in 2000. Clearly,
the hardware is dated: USB is notably missing, and most readers have never seen actual floppy
disks. e concepts however remain the same. For each component, Table 1.1 describes the front-
end device abstraction, visible as hardware to the virtual machine, and the back-end emulation
mechanisms used to implement it. When a resource is multiplexed, such as the x86 CPU or the
memory, the front-end and back-end are identical, and defined by the hardware. e hypervisor
is involved only to establish the mapping between the virtual and the physical resource, which the
hardware can then directly use without further interception.

Table 1.1: Virtual Hardware of early VMware Workstation [45]

Virtual Hardware (front-end) Back-end

Multiplexed 1 virtual x 86-32 CPU Scheduled by the host operating system 

with one or more x86 CPUs

Up to 512 MB of contiguous 

DRAM

Allocated and managed by the host OS 

(page-by-page)

Emulated PCI Bus Fully emulated compliant PCI bus with 

B/D/F addressing for all virtual mother-

board and slot devices

4 x 4IDE disks

7 x Buslogic SCSI Disks

Either virtual disks (stored as ! les) or direct 

access to a given raw device

1 x IDE CD-ROM ISO image or real CD-ROM

2 x 1.44 MB " oppy drives Physical " oppy or " oppy image

1 x VGA/SVGA graphics card Appears as a Window or in full-screen mode

2 x serial ports COM1 and COM2 Connect to Host serial port or a ! le

1 x printer (LPT) Can connect to host LPT port

1 x keyboard (104-key) and mouse Fully emulated

AMD PCnet NIC (AM79C970A) Via virtual switch of the host



1.6. NAMES FORMEMORY 11

When the resource is emulated, however, the front-end device corresponds to one canon-
ically chosen representative of the device, independent of the back-end. e hypervisor imple-
ments both the front-end and the back-end, typically in software without any particular hardware
support. e front-end is effectively a software model of the chosen, representative device. e
back-end emulation chooses among the underlying resources to implement the functionality.
ese underlying resources may be physical devices or some higher-level abstractions of the host
operating system. For example, the disk front-ends in VMware Workstation were either IDE
or Buslogic SCSI devices, two popular choices at the time, with ubiquitous device drivers. e
backend resource could be either a physical device, i.e., an actual raw disk, or a virtual disk stored
as a large file within an existing filesystem.

Although no longer an exact duplicate of the underlying hardware, the virtual machine
remains compatible. Assuming that a different set of device drivers can be loaded inside the guest
operating system, the virtual machine will have the same functionality.

So far, this hypervisor sketch assumes that the various components of the processing el-
ements can be virtualized. Yet, we’ve also alluded to the historical fact that some hardware ar-
chitectures fail to provide hardware support for virtualization. is discussion will be the core of
Chapter 2 and Chapter 3.

1.6 NAMES FORMEMORY
e cliché claims (apparently incorrectly according to linguists) that Eskimos have many names
for snow. Similarly, computer architecture and system designers have used at times overlapping,
somewhat confusing definitions for themany facets of memory.e reason is simple. Like snow to
Eskimos, virtual memory is fundamental to operating systems and arguably the most significant
enhancements over the original von Neuman model of computing in this context. In reality, there
are fundamentally only two types of memory: virtual memory converts into physical memory
via the combination of segmentation and paging.

Virtual memory: Virtual memory refers to the byte-addressable namespace used by instruction
sequences executed by the processor. With rare exceptions, all registers and the instruction pointer
that refer to a memory location contain a virtual address. In a segmented architecture, the virtual
address space is determined by a base address and a limit. e former is added to the virtual
address and the latter is checked for protection purposes. In a paging architecture, the virtual
address space is determined by the memory management unit on a page-by-page basis, with the
mapping defined either by page tables or by a software TLB miss handler. Some architectures
such as x86-32 combine segmentation with paging. e virtual address is first converted (via
segmentation) into a linear address, and then (via paging) into a physical address.

Physical memory: Physical memory refers to the byte-addressable resource accessed via the
memory hierarchy of the processor, and typically backed by DRAM. In a non-virtualized com-
puter system, the physical address space is generally determined by the resources of the hardware,



12 1. DEFINITIONS

and defined by the memory controller of the processor. In a virtualized computer system, the
hypervisor defines the amount of physical memory that is available to the virtual machine. Tech-
nically, the abstraction visible to the virtual machine should be called “virtual physical memory.”
However, to avoid confusion with virtual memory, it is most commonly called guest-physical
memory. To further avoid ambiguity, the underlying resource is called host-physical memory.
Note that some early virtualization papers used different terminologies, in particular using the
terms physical memory and machine memory to refer to guest-physical and host-physical mem-
ory, respectively.

1.7 APPROACHESTOVIRTUALIZATIONAND
PARAVIRTUALIZATION

e lack of clear architectural support for virtualization in earlier processors has led to a range
of approaches that solve the identical problem of running a virtual machine that is either similar
or compatible with the underlying hardware. is text covers the three pragmatic approaches to
virtualization.

Full (software) virtualization: is refers to hypervisors designed to maximize hardware com-
patibility, and in particular run unmodified operating systems, on architectures lacking the full
support for it. It includes in particular early versions of VMware’s hypervisors. is is also refer-
enced as software virtualization in some papers. We will describe the approach in §3.2.

Hardware Virtualization (HVM): is refers to hypervisors built for architectures that provide
architectural support for virtualization, which includes all recent processors. Such hypervisors also
support unmodified guest operating systems. Unlike software virtualization approach in which the
hypervisor must (at least some of the time) translate guest instruction sequences before execution,
HVM hypervisors rely exclusively on direct execution to execute virtual machine instructions. In
the literature, HVM is at times referred to as HV. e requirements for an HVM are formally
defined in Chapter 2. Architectures and hypervisors that follow the approach are the focus of
Chapter 4 for x86 with VT-x and Chapter 7 for ARM with Virtualization Extensions.

Paravirtualization: is approach makes a different trade-off, and values simplicity and overall
efficiency over the full compatibility with the underlying hardware. e term was introduced by
Denali [182] and popularized by the early Xen hypervisor. In its original usage on platforms with
no architectural support for virtualization, paravirtualization required a change of the guest oper-
ating system binary, which was incompatible with the underlying hardware. In its contemporary
use on architectures with full virtualization support, paravirtualization is still used to augment the
HVM through platform-specific extensions often implemented in device drivers, e.g., to manage
cooperatively memory or to implement a high-performance front-end device. We will describe
this in §3.3.



1.8. BENEFITSOFUSINGVIRTUALMACHINES 13

1.8 BENEFITSOFUSINGVIRTUALMACHINES
So far, we have discussed the “how” of virtualization as any good engineering textbook should,
but not the “why?”, which is equally relevant. Virtual machines were first invented on mainframes
when hardware was scarce and very expensive, and operating systems were primitive. Today, they
are used very broadly because of fundamentally different considerations. We enumerate some of
the most popular ones.

Operating system diversity: Virtualization enables a diversity of operating systems to run con-
currently on a single machine. is benefit is the key reason behind many desktop-oriented type-2
hypervisors, e.g., Fusion and Parallels are essentially used to run Windows (and sometimes Linux)
on Mac OS X.

Server consolidation: Enterprise IT best practices today still mandate that each server runs a
single application per machine. With the rise in power and efficiency of hardware, that machine
is today more often than not a virtual machine [95].

Rapid provisioning: Deploying a physical server is complex, time-intensive task. In contrast, a
virtual machine can be created entirely in software through a portal or an API, and software stack
can be deployed as virtual appliances [157].

Security: Virtualization introduces a new level of management in the datacenter stack, dis-
tinct and invisible from the guest operating systems, and yet capable of introspecting the behav-
ior of such operating systems [49], performing intrusion analysis [68], or attesting of its prove-
nance [73]. e hypervisor can also control all I/O operations from the virtual machine, making
it easy to insert e.g., a VM-specific firewall or connect into a virtual network [114].

High-availability: A virtual machine is an encapsulated abstraction that can run on any server
(running a compatible hypervisor). Specifically, a virtual machine can reboot following a hardware
crash on a new server without operational impact, therefore providing a high-availability solution
without requiring guest operating system-level configuration or awareness.

Distributed resource scheduling: e use of live migration technologies turns a cluster of hyper-
visors into a single resource pools, allowing the automatic and transparent rebalancing of virtual
machines within the cluster [96].

Cloud computing: In a virtualized environment, different customers (tenants) can operate their
own virtual machines in isolation from each other. When coupled with network virtualization (a
technology outside of the scope of this text), this provides the foundation for the cloud comput-
ing technologies, including the ones of Amazon Web Services, Google Compute Engine, and
Microsoft Azure.



14 1. DEFINITIONS

1.9 FURTHERREADING
We rely largely on Salzer and Kaashoek’s book, Principles of Computer Systems [155], for defini-
tions of layering and enforced modularity. e book provides excellent further reading to readers
interested in additional background material, or who wish to look at other examples of virtual-
ization. Tanenbaum and Bos’ Modern Operating Systems, 4th ed. [165] also dedicates a chapter to
virtualization.



15

C H A P T E R 2

ePopek/Goldbergeorem
In 1974, Gerald Popek and Robert Goldberg published in Communications of the ACM the sem-
inal paper “Formal Requirements for Virtualizable ird-Generation Architectures” that defines
the necessary and sufficient formal requirements to ensure that a VMM can be constructed [143].
Precisely, their theorem determines whether a given instruction set architecture (ISA) can be
virtualized by a VMM using multiplexing. For any architecture that meets the hypothesis of the
theorem, any operating system directly running on the hardware can also run inside a virtual
machine, without modifications.

At the time, the motivation for the work was to address the evidence that new architectures
accidentally prevented the construction of a VMM. e authors cited the DEC PDP-10 in their
article, where seemingly arbitrary architectural decisions “broke” virtualization. Despite the sim-
plicity of the result, the relevance of the theorem was lost on computer architects for decades, and
generations of new processor architectures were designed without any technical considerations
for the theorem.

Much later, as virtual machines once again became relevant, Intel andAMDexplicitlymade
sure that their virtualization extensions met the Popek and Goldberg criteria, so that unmodified
guest operating systems could run directly in virtualmachines, without having to resort to software
translation or paravirtualization [171].

Today, the theorem remains the obvious starting point to understand the fundamental rela-
tionship between a computer architecture and its ability to support virtual machines. Specifically,
the theorem determines whether a VMM, relying exclusively on direct execution, can support
guest arbitrary operating systems.

2.1 THEMODEL
e paper assumes a standard computer architecture, which the authors call a conventional third-
generation architecture. e processor has two execution modes (user-level and supervisor), and
support for virtual memory. Such an architecture is both necessary and sufficient to run a con-
ventional operating system. In particular, the operating system can configure the hardware to run
multiple, arbitrary, potentially malicious applications in isolation from each other. For the pur-
pose of the proof, the paper defines a simple model that remains representative of the broader
class of these architectures. Specifically, the model has the following features.

• e computer has one processor with two execution levels: supervisor mode and user mode.



16 2. THEPOPEK/GOLDBERGTHEOREM

• Virtual memory is implemented via segmentation (rather than paging) using a single seg-
ment with base B and limit L (called the relocation-bound register pair in the paper). e
segment defines the range ŒB; B C LŒ of the linear address space for valid virtual addresses
Œ0; LŒ. ere is no paging, so linear addresses map 1:1 directly to physical addresses. Virtual
memory is used in both supervisor and user mode for all memory accesses.

• Physical memory is contiguous, starting at address 0, and the amount of physical memory
is known at processor reset time (SZ).

• e processor’s system state, called the processor status word (PSW) consists of the tuple
.M; B; L; P C /:

– the execution level M D fs; ug;
– the segment register (B,L); and
– the current program counter (PC), a virtual address.

• e trap architecture has provisions to first save the content of the PSW to a well-known
location in memory (MEM[0]), and then load into the PSW the values from another well-
known location in memory (MEM[1]). e trap architecture mechanism is used to enter into
the operating system following a system call or an exception in executing an instruction.

• e ISA includes at least one instruction or instruction sequence that can load into the
hardware PSW the tuple .M; B; L; P C / from a location in virtual memory. is is required
to resume execution in user mode after a system call or a trap.

• I/O and interrupts are ignored to simplify the discussion.

Let’s first consider what an operating system for such an architecture would look like (in the
absence of a VMM).

1. e kernel would run in supervisor mode (M D s), and applications would always run in
user mode (M D u).

2. During initialization, the kernel first sets the trap entry point: MEM[0] 
(M:s,B:0,L:SZ,PC:trap_en).

3. e kernel would allocate a contiguous range of physical memory for each application.

4. To launch or resume an application stored in physical memory at [B,B+L[ and currently ex-
ecuting instruction P C , the operating system would simply load PSW  (M:u,L,C,PC).

5. At the trap entry point (P C Dtrap_en), the kernel would first decode the instruction
stored at MEM[1].PC to determine the cause of the trap, and then take appropriate action.



2.2. THETHEOREM 17

Although idealized, notably because of the lack of registers, this architectural model is not fun-
damentally different from the ones that we are all familiar with today. For such an architecture,
Popek and Goldberg posed the following formal research question.

..

Given a computer that meets this basic architectural model, under which pre-
cise conditions can a VMM be constructed, so that the VMM:

• can execute one or more virtual machines;

• is in complete control of the machine at all times;

• supports arbitrary, unmodified, and potentially malicious operating sys-
tems designed for that same architecture; and

• be efficient to show at worst a small decrease in speed?

e answer to this question determines whether a VMM can be constructed for a particular
architecture, so that the resulting “virtual machine can be an efficient, isolated duplicate of the real
machine.” When the conditions are met, the theorem must therefore ensure compliance with the
following three criteria.

Equivalence: e virtual machine is essentially identical to the underlying processor, i.e., a du-
plicate of the computer architecture. Any program running within the virtual machine, i.e., any
guest operating system and application combination, should exhibit identical behavior as if that
program had run directly on the underlying hardware, save for the possible exception of dif-
ferences caused by timing dependencies, or the availability of resources such as the amount of
physical memory.

Safety: e VMM must be in complete control of the hardware at all times, without making
any assumptions about the software running inside the virtual machine. A virtual machine is
isolated from the underlying hardware and operates as if it were running on a distinct computer.
In addition, different virtual machines must be isolated from each other. e theorem and its
proof focus on the first safety property. e second property can be achieved by simply ensuring
that there is no shared state within the VMM between two virtual machines.

Performance: e efficiency requirement implies that the execution speed of the program in a
virtualized environment is at worst a minor decrease over the execution time when run directly
on the underlying hardware.

2.2 THETHEOREM
e first theorem itself is simple.



18 2. THEPOPEK/GOLDBERGTHEOREM

..

eorem 1 [143]: For any conventional third-generation computer, a virtual
machine monitor may be constructed if the set of sensitive instructions for
that computer is a subset of the set of privileged instructions.

e key observation is that the answer to Popek and Goldberg’s research question depends
on the classification of the instructions of the ISA. An instruction is control-sensitive if it can
update the system state, behavior-sensitive if its semantics depend on the actual values set in
the system state, or an innocuous instruction otherwise. An instruction is also privileged if it
can only be executed in supervisor mode and causes a trap when attempted from user mode. e
theorem holds when all control-sensitive and behavior-sensitive instructions are also privileged,
i.e.,

fcontrol-sensitiveg [ fbehavior-sensitiveg � fprivilegedg:

Proof by construction: A VMM can be constructed if the architecture meets the constraints of
the theorem. With some caveats, the converse normally holds, i.e., a VMM cannot be constructed
if the architecture does not meet the constraints of the theorem.

Figure 2.1 illustrates the construction. First, Figure 2.2 delineates the relationships between
the three key forms of memory: the host-physical memory, the guest-physical memory, and the
virtual memory. en, Figure 2.2 illustrates how the processor’s PSW, and in particular the ex-
ecution level M and the relocation-bound pair, is configured to run in three distinct situations:
when running the VMM, the guest operating system, and the application.

If the conditions of the theorem are met, the VMM operates as follows.

1. e VMM is the only software actually running in supervisor mode. e VMM reserves
a portion of physical memory for its own code and data structures, which is never mapped
into any virtual address space of any virtual machine.

2. e VMM allocates the guest physical memory for each virtual machine contiguously in
the host physical address space. Each virtual machine has a fixed, given amount of memory.
ose parameters are illustrated as addr0 and memsize in Figure 2.2.

3. e VMM keeps in memory a copy of the system state of each virtual machine: the vPSW.
Like its hardware counterpart, the vPSW consists of the virtual machine’s execution level,
segment register (B,L) and program counter.

4. e virtual machine resumes execution by loading from memory PSW .M 0; B 0; L0; P C 0/,
with:

• M 0  u: the virtual machine always executes in user mode;



2.2. THETHEOREM 19

vPSW.B
vPSW.L

virtual memory

addr0

reloc bound

VMM VM1

application

VM2

VMM

memsize

(a) Host physical, guest physical, and virtual memory.

(b) Hardware configuration when executing applications, the guest operating system, and the VMM.

guest physical memory

guest operating system

M
 =

 u
M

 =
 u

M
 =

 s

Figure 2.1: Construction of the the Popek/Goldberg VMM.

• B 0  addr0+vPSW.B: the guest-physical offset is added to the virtual machine’s seg-
ment base;

• L0  min(vPSW.L,vPSW.memsize-vPSW.B): in normal circumstances, the virtual
machine’s segment limit is used directly. However, a malicious guest operating sys-
tem may attempt to allow its application to read beyond the end of guest-physical
memory. e second clause of formula prevents this to ensure the safety property; and

• P C 0  vPSW.PC: to resume execution of the virtual machine.

5. e VMM updates the PC (vPSW.PC  PSW.PC) on every trap. e other fields in the
vPSW do no need updating even after an arbitrarily long direct execution period. Indeed,
any instruction that can update the base, limit, or execution privilege level of the PSW is
control-sensitive. e VMM assumes here that all control-sensitive instructions are also



20 2. THEPOPEK/GOLDBERGTHEOREM

privileged (the hypothesis of the theorem) and relies on the fact that the virtual machine
always executes with PSW.M� u).

6. e VMM then emulates the instruction that caused the trap. If the guest operating system
was running (vPSW.M� s), the VMM decodes the instruction and then emulates the se-
mantic of the privileged instruction according to the ISA. For example, the VMM emulates
the instruction that changes the segment register pair by updating vPSW.B and vPSW.L ac-
cording to the new values set by the guest operating system. After a successful emulation, the
VMM increments the program counter (vPSW.PC++) and resumes execution of the virtual
machine according to step #4.

7. e VMM may however conclude that the emulation of the instruction is actually a trap
according to the ISA. For example, consider the case where the virtual machine was in user
mode, (i.e., when vPSW.M� u) and a malicious application attempted to issue a privileged
instruction. Or perhaps if an application accesses memory beyond the limit set forth by
the guest operating system in the segment descriptor. e VMM then emulates the trap
according to the architecture, i.e.:

• MEM[addr0] vPSW: store the virtual machine’s vPSW into the first word in guest-
physical memory, according to the architecture;

• vPSW  MEM[addr0+1]: copy the second word in guest-physical memory into the
vPSW, according to the architecture. is updates the state of the virtual machine in
line with the configuration set forth by the guest operating system; and

• resume execution according to step #4.

8. If the hypothesis of the theorem is met, then all instructions that update the system state
(other than the program counter) are control-sensitive, and therefore privileged. ese will
cause a trap.is would include any instruction that changes the base-bound registers defin-
ing the virtual address space (see above), or transitioning between supervisor and user mode.
e VMM emulates such instructions according to the architecture specification.

9. If the hypothesis is met, any behavior-sensitive instruction would also be privileged, and
therefore cause a trap from user mode. e VMM emulates these instructions as well. Con-
sider for example an instruction that reads the execution level (PSW.M) or the base of the
segment (PSW.B). e behavior of such an instruction is directly dependent on the actual
values of the processor state, which are subject to alteration through the virtualization pro-
cess. Such instructions must be privileged to ensure that the correct values are returned to
the program.

e actual proof, which establishes the correspondence between the architecture and the existence
of a VMM, requires some formalism. Rather than focusing on the formalism, let’s first look at
some counter-examples from the early era.



2.3. RECURSIVEVIRTUALIZATIONANDHYBRIDVIRTUALMACHINES 21

• Clearly, a single unprivileged, control-sensitive instruction would be a considerable concern.
It would prevent the VMM from guaranteeing correct execution semantics, and possibly
create security holes. In the formal model, this would include unprivileged updates to the
segment register, even when M is unmodified. is was the key issue with the PDP-10 that
motivated the paper, caused by the semantics of the JRST 1 “return to user” instruction
issued in user mode.

• Instructions that read the system state are behavior-sensitive and their use violates the equiv-
alence criteria. If they are not privileged, the operating system may perform incorrectly as
the hardware does not behave as defined in the architecture. Consider the simple case where
an instruction would copy the value of PSW.M into a general-purpose register: the guest op-
erating system could conclude, to much confusion, that it is running in user mode(!). e
Intel x86-32 architecture has such instructions.

• Instructions that bypass virtual memory are behavior-sensitive, since their behavior depends
on the actual value of the relocation registers. For example, some IBM VM/360 mainframes
had such instructions. As long as the instruction is also privileged, it can be emulated. And
provided the frequency of occurrence of that instruction is rare, this does not pose a perfor-
mance problem.

e proof-by-construction highlights the fact that a VMM is really nothing more than
an operating system. Both VMM and conventional operating systems share the fundamental
construct of letting the untrusted component run directly on the hardware. Both must ensure
that they remain in control and must correctly configure the hardware to achieve their goals. e
difference is that one runs applications whereas the other runs entire virtual machines, with guest
operating systems and applications. e key consequence of this difference is in the expected level
of architectural support: it’s a given for operating systems on nearly any computer architecture
today, but much less obvious for VMMs.

2.3 RECURSIVEVIRTUALIZATIONANDHYBRIDVIRTUAL
MACHINES

e paper includes two additional theorems, which cover requirements for recursive virtualization
and hybrid virtual machines, respectively.

e formalism also extends to reason about recursive virtualization. Indeed, the idealized
architecture that meets the criteria of the theorem can also support recursive virtual machines. In
this scenario, a virtual machine can run aVMMin guest-supervisormode rather than an operating
system. at VMM of course can run multiple virtual machines, their guest operating systems
and their respective applications. e second theorem of the paper formalizes the minimal set of
additional assumptions posed on the VMM (but not the architecture) to support recursive virtual
machines. In recursive virtualization, the VMM itself must run (unmodified) within a virtual



22 2. THEPOPEK/GOLDBERGTHEOREM

machine. is topic of recursive virtualization has received renewed research interest in the last
few years [33, 191].

e paper also introduces the notion of hybrid virtual machines, which discusses the case
when the criteria fails but only according to specific circumstances. Consider again the PDP-
10 JRST 1 instruction, which can be used both to return to user mode from supervisor mode,
but equally to return from a subroutine when already in user mode. Clearly, this is catastrophic
since the virtual machine would transition between the guest operating system and the applica-
tion without a necessary trap into the VMM. Should that happen, the virtual machine would be
executing application code when the VMM thinks that it is still in guest-supervisor mode.

Even though this is evidently unacceptable, the key observation for this particular instruc-
tion is that it is control-sensitive only when the virtual machine is in supervisor mode. When the
virtual machine is in user mode, the specific instruction is not sensitive to virtualization.

Formally, let’s define an instruction to be user-sensitive if it is behavior-sensitive or control-
sensitive in supervisor mode, but not in user mode. e theorem states the following.

..

eorem 3 [143]: A hybrid virtual machine monitor may be constructed for
any conventional third-generation machine in which the set of user-sensitive
instructions are a subset of the set of privileged instructions.

eorem 3 is much weaker than eorem 1, and the resulting hybrid VMM is quite different
than the traditional VMM. Specifically, a hybrid virtual machine monitor works around such
limitations.

• e hybrid VMM acts like a normal VMM when the virtual machine is running applica-
tions, i.e., is in guest-user mode.

• Instead of direct execution, the hybrid VMM interprets in software 100% of the instruc-
tions in guest-supervisor mode. In other words, it interprets the execution of all paths
through the guest-operating system. Despite the high overheads of interpretation, this ap-
proach may be practical as long as the portion of time spent in the operating system is small
for the relevant workloads.

is third theorem precociously identified a key nuance that would play a crucial role much later
with the emergence of paravirtualization and of hybrid solutions that combine direct execution
with binary translation. ose will be discussed in Chapter 3.

2.4 DISCUSSION: REPLACINGSEGMENTATIONWITH
PAGING

e original 1974 paper recognizes that virtual memory is a fundamental pre-requisite for any
kind of virtualization support.



2.5. WELL-KNOWNVIOLATIONS 23

For the sake of simplicity, the authors assumed that virtual memory is implemented via a
single relocation-bound register pair. As an exercise, consider a more realistic model where virtual
memory is implemented via paging rather than segmentation.

Does the theorem still apply if virtual memory is implemented using paging? e short
answer is yes, but a deeper analysis identifies subtleties not present in the third-generation model
and these will play a practical role when building actual systems. In particular, instructions that
access memory may be location-sensitive as the VMM must also be present somewhere in mem-
ory. Also, the guest operating system must remain protected from the application despite the
fact that it is running in a de-privileged manner. ese two issues will be revisited for the x86
architecture in §4.1 as the address space compression and ring compression challenges, respectively.

Finally, the VMM must compose the virtual address space by combining the page table
mappings specified by the guest operating system with the mappings between guest-physical
memory and host-physical memory. Whereas this is a simple matter of composition in an ide-
alized segmented architecture, it is much more complex in page-based system. Indeed, there are
two commonly used approaches to this problem, which are referred to as shadow page tables (see
§3.2.5) and extended page tables (see §5.1).

2.5 WELL-KNOWNVIOLATIONS
In their article, Popek and Goldberg use the DEC PDP-10 as the example of an architecture that
fails to meet the virtualization requirement. May the PDP-10 rest in peace. Instead, we list here
some of the known violations of the reasonably modern era. e list of violations is not exhaustive.
For the architectures discussed, we focus on the violations that had a practical impact in limiting
the deployment of processor architectures with no claims of completeness. We do identify a few
patterns of violations:

• direct access to physical memory: some architectural decisions expose directly physical
memory into hardcoded portions of virtual memory.is occurs in particular with theMIPS
architecture (see §2.5.1);

• location-sensitive instructions: other decisions expose the location in memory of certain
sensitive data structures via unprivileged instructions (e.g., the global descriptor tables in
x86, see §2.5.2); and

• control-sensitive violations: this occurs when the ISA clearly defines different semantics
for the same instruction, depending on the privilege level (e.g., iret, popf on x86, see
§2.5.2).

2.5.1 MIPS
e MIPS architecture is a classic RISC ISA. It has three execution modes: kernel mode (most
privileged), supervisor mode, and user mode (least privileged). Only kernel mode can execute



24 2. THEPOPEK/GOLDBERGTHEOREM

privileged instructions. e supervisor mode is really an alternate form of user mode, with the
explicit benefit that it can access portions of virtual memory not available to the regular user
mode.

First, the good news: is is a very promising start for an efficient hypervisor design. In-
deed, the hypervisor would run in kernel mode, and could simply run the guest operating system
in supervisor mode, emulating all privileged instructions according to their original semantic. e
availability of supervisor mode leads to an important optimization: since supervisor virtual mem-
ory is protected from applications, the hypervisor can simply emulate transitions between guest
operating system and applications as transitions between supervisor mode and user mode. Such
transitions do not require changes to the configuration of virtual memory, or flushes of the TLB.

In the MIPS architecture, virtual memory is divided into multiple, fixed-sized regions,
each with hardcoded attributes that determine which execution mode is required to access the
region, how to relocate the address by either using the TLB (mapped) or via a hardcoded mask
(unmapped), and whether the access should go through the cache hierarchy or not. Table 2.1
shows the regions for the 32-bit architecture. e 64-bit extensions create additional fixed-sized
regions with the same general philosophy.

Table 2.1: Regions in the MIPS 32-bit architecture

Region Base Length Access K,S,U MMU  Cache

USEG 0x0000 0000 2 GB P,P P mapped cached

KSEG0 0x8000 0000 512 MB P,x,x unmapped cached

KSEG1 0xA000 0000 512 MB P,x,x unmapped uncached

KSSEG 0xC000 0000 512 MB P,P,x mapped cached

KSEG3 0xE000 0000 512 MB P,x,x mapped cached

And now the bad news: e MIPS architecture is not virtualizable, first and foremost be-
cause of its use of regions. Indeed, the use of the regions is location-sensitive (a form of behavior-
sensitivity), since it is a function of the privileged level of the processor. is has severe conse-
quences, as any operating system expected to run in kernel mode will be compiled to use the
KSEG0 and KSEG1 segments. Should a hypervisor attempt to run that OS in supervisor mode
or user mode, every memory load/store instruction would cause a trap, thereby violating the effi-
ciency criteria of virtualization. Since operating systems are generally not compiled or linked to
run as position-independent code, the virtualization of the MIPS architecture requires at least
the full recompilation of the guest operating system kernel. We discuss in §3.1 the architecture
and compromise required in the implementation of Disco, a MIPS-based hypervisor.



2.5. WELL-KNOWNVIOLATIONS 25

2.5.2 X86-32
e Intel x86-32 architecture is a notoriously complex CISC architecture, in part as it includes
legacy support for multiple decades of backward compatibility. Over the years, the architecture
introduced four main modes of operations (realmode, protectedmode, v8086mode, and system
managementmode), each of which enabled in different ways the hardware’s segmentation model,
paging mechanisms, four protection rings, and security features (such as call gates).

e x86-32 architecture was not virtualizable. It contained virtualization-sensitive, unpriv-
ileged instructions which violated the Popek and Goldberg criteria for strict virtualization [143].
is ruled out the traditional trap-and-emulate approach to virtualization.

Specifically, Robin and Irvine identified 17 problematic instructions that are sensitive and
yet unprivileged [151]. Table 2.2 groups these instructions into 5 categories: instructions that
manipulate the interrupt flag, manipulate segments registers and segment descriptors, can peek
into the location of system data structures, and finally call gate-related instructions. e impli-
cations are severe and were well known. Indeed, before the introduction of VMware, engineers
from Intel Corporation were convinced their processors could not be virtualized in any practical
sense [74].

Table 2.2: List of sensitive, unprivileged x86 instructions

Group Instructions

Access to interrupt � ag pushf, popf, iret

Visibility into segment descriptors lar, verr, verw, lsl

Segment manipulation instructions pop <seg>, push <seg>, mov <seg>

Read-only access to privileged state sgdt, sldt, sidt, smsw

Interrupt and gate instructions fcall, longjump, retfar, str, int <n>

e x86-32 architecture did provide one execution mode that was strictly virtualizable ac-
cording to the Popek/Goldberg theorem: v8086 mode was specifically designed to run a 16-bit
virtual machine running the 16-bit Intel 8086 ISA. is mode was central to Windows 95/98 as
it allowed these 32-bit operating systems to run legacy MS-DOS programs. Unfortunately, that
mode was only capable of executing 16-bit virtual machines.

2.5.3 ARM
eARM architecture is a RISC ISA. At a high-level from a virtualization perspective, ARMcan
be viewed as having two main execution modes, one or more privileged modes and user mode.
Only privileged modes can execute privileged instructions. For example, ARMv6 has 7 processor
modes, user mode and 6 privileged modes,¹ while ARMv8 has effectively user mode and a single

¹See pages A2-3 to A2-5 in the ARM Architecture Reference Manual [20] for more information.



26 2. THEPOPEK/GOLDBERGTHEOREM

privileged mode, although ARMv8 terminology refers to them as exception levels.² Each mode
has a number of banked registers, which means, for instance, register 13 points to a different
physical register in each mode. e differences between the privileged modes only concern the
banked registers and can be ignored for the purposes of this discussion.

e ARM architecture was not virtualizable. It contained virtualization-sensitive, unprivi-
leged instructions, which violated the Popek and Goldberg criteria for strict virtualization [143].
is ruled out the traditional trap-and-emulate approach to virtualization. Dall and Nieh iden-
tified 24 problematic instructions that are sensitive and yet unprivileged [59]. e specific in-
structions were identified for ARMv6, but are also present in other versions of the architecture.
For example, ARMv7 is quite similar to ARMv6 in this respect. ere are similar problematic
instructions even in the most recent version of the ARM architecture, ARMv8. e instructions
deal with user mode registers, status registers, and memory accesses that depend on CPU mode,
as listed in Table 2.3.

Table 2.3: ARM sensitive instructions

Description Instructions

User mode LDM (2), STM (2)

Status registers CPS, MRS, MSR, RFE, SRS, LDM (3)

Data processing ADCS, ADDS, ANDS, BICS, EORS, MOVS, MVNS, ORRS, RSBS, 

RSCS, SBCS, SUBS

Memory access LDRBT,  LDRT, STRBT,  STRT

ere are various load/store multiple instructions that access user mode registers when in
privileged mode. However, these instructions are defined by the ARM architecture as unpre-
dictable when executed in user mode, which means the result of the instruction cannot be relied
upon. For example, one common implementation of an unpredictable instruction is that it is
ignored by the processor and does not trap.

Status register instructions relate to special ARM status registers, the Current Program
Status Register (CPSR) and Saved Program Status Register (SPSR). CPSR specifies the cur-
rent mode of the CPU and other state information, some of which is privileged. SPSR is a banked
register available in a number of the privileged modes. e basic ARM protection mechanism
works by copying the CPSR to the SPSR when the processor enters the respective privileged
mode via an exception so that CPU state information at the time of the exception can be de-
termined. Similarly, the SPSR is copied to the CPSR at various times to update the mode of
the CPU as the preferred exception return mechanism. ere are three types of problems arising
with these instructions. First, MRS can be used in any mode to read the CPSR and determine
²Although in ARMv8 terminology, what we refer to here as a mode is more precisely called an exception level, we will continue
to use the term mode even when referring to ARMv8 to avoid architecture version-specific terminology and provide a more
consistent comparison with other architectures.



2.6. FURTHERREADING 27

the CPU mode, although this is no longer the case for ARMv8. Second, CPS is used to write
the CPSR and change the CPU mode, but is ignored when executed in user mode. ird, other
status register instructions are unpredictable when executed in user mode. For example, LDM (3)
copies the SPSR into the CPSR as part of the instruction when executed in privileged mode, but
is unpredictable when executed in user mode.

Almost all data processing instructions have a special version, which replaces the CPSR
with the SPSR in addition to their ALU operation. ese instructions are denoted by appending
an S to the normal instruction. ey are designed for exception return so that, for example, it is
possible to jump to userspace from a kernel and changemodes at the same time.ese instructions
are unpredictable when executed in user mode.

Memory access instructions access memory using a different CPU mode from the one be-
ing used for execution. e virtual memory system on ARM processors uses access permissions
to limit access to memory depending on the CPU mode. e architecture defines four instruc-
tions called load/store with translation that access memory using user mode access permissions
even though the CPU is in a privileged mode, which will therefore trap due to memory access
violations. However, when executed in user mode, these instructions behave as regular memory
access instructions. For example, when running the OS kernel in user mode as part of a VM, the
semantics of the instructions are different than when running the OS in kernel mode, so the OS
may not see the memory access faults it expects.

2.6 FURTHERREADING

e proof in the Popek and Goldberg’s paper was done for an idealized uniprocessor, third-
generation architecture with a single virtual memory segment. Of course, current-generation ISAs
are much more complex: they support multiprocessor architectures with cache-coherency and
well-defined, subtle, memory consistency models. ey support virtual memory via paging, ei-
ther as an alternative to segmentation or in addition to segmentation. To make matters worse, the
devil is in the details, in particular on CISC architectures with their numerous legacy execution
modes and instructions.

With those caveats, the proof-by-construction provides a framework to reason about vir-
tualization. e classification of control-sensitive and behavior-sensitive instructions is a helpful
guide to evaluate any modern computer architecture. Motivated readers are encouraged to read
the seminal paper fromPopek andGoldberg in enough detail so that they can reason about known
architectures [143].

e limitations of x86-32 were documented by Robin and Irvine [151]; the paper, however,
incorrectly concludes that no practical and secure virtualization solution can be built as a result.
Chapter 4 describes how Intel later relied on Popek and Goldberg’s theorem as a framework to
add virtualization support in x86-64 processors [171].



28 2. THEPOPEK/GOLDBERGTHEOREM

e limitations of ARMv6 and earlier ARM architectures were documented by Dall and
Nieh [59]. Chapter 7 describes how ARM later added virtualization support in ARMv7 proces-
sors [39] and how the architecture relates to Popek and Goldberg’s theorem.



29

C H A P T E R 3

Virtualization without
Architectural Support

is chapter is about the past. Practitioners who are only interested in understanding how virtual-
ization operates on contemporary hardware and hypervisors may be tempted to skip to Chapter 4.

However, the past does remain relevant to any computer scientist who needs to understand
how we got to today’s situation, and to those interested in the specific techniques developed in
an earlier era. Indeed, many of the software techniques precedently developed have applications
outside of virtualization. In addition, computer architects reading this chapter will get an appre-
ciation of the unanticipated consequences of architectural decisions made both before and after
the introduction of hardware support for virtualization. Case in point, both VMware and Xen
relied on segmentation for protection on 32-bit architectures, as we will explain in this chapter.
Segmentation was removed with the introduction of VT-x on x86-64 as it was no longer needed
to build hypervisors. However, segmentation had other applications, e.g., to provide protection
to lightweight virtualmachines such as VX32 [71] and the original Google Native Client [190].

e violations of the Popek and Goldberg theorem for MIPS, x86-32, and ARM were
previously described in §2.5. As a direct consequence of these violations, no hypervisor—at
least no hypervisor built using the techniques anticipated by Popek and Golberg of trap-and-
emulate combined with direct execution—can be built to simultaneously address the equiva-
lence, safety, and performance requirements. is chapter describes how three systems—Disco,
VMware Workstation, and Xen—each use different techniques or made different tradeoffs be-
tween equivalence, safety, and performance to work around the limitations of the theorem.

Table 3.1 provides a map to the rest of this chapter. Each section presents, as a case study,
the salient features of a particular hypervisor, and the sections are ordered chronologically with
respect to the introduction of each system.

3.1 DISCO
Disco [44, 81] was a research hypervisor designed for the StanfordFLASHmultiprocessor [117]
built using MIPS [85] processors. Disco is credited for its historical role in the resurgence of
virtual machines [2].

e primary motivation for Disco was the inability for operating systems to readily take
advantage of new hardware trends. In the case of FLASH, the innovation was scalable shared-
memory multiprocessors. Although research groups had demonstrated that prototype operating



30 3. VIRTUALIZATIONWITHOUTARCHITECTURAL SUPPORT
Table 3.1: Case studies of hypervisors designed for architectures with no virtualization support

Disco VMware 

Workstation

Xen KVM for ARM

Architecture MIPS x86-32 x86-32 ARMv5

Hyp type Type-1 Type-2 (§4.2.4) Type-1 with 

dom0 (§4.4)

Type-2 (§4.5)

Equivalence Requires modi-

! ed kernel

Binary-compatible 

with selected kernels

Required mod-

i! ed (paravirtu-

alized) kernels 

(§4.3)

Required modi-

! ed (lightweight 

paravirtualized 

kernels (§4.5)

Safety Via de-privileged 

execution using 

strictly virtual-

ized resources

Via dynamic binary 

translation; isolation 

achieved via segment 

truncation

Via de-privileged 

execution with 

safe access to 

physical names

Via de-privileged 

execution using 

strictly virtual-

ized resources

Performance Via localized 

kernel changes 

and L2TLB 

(§4.1.2)

By combining direct 

execution (or appli-

castions) with adap-

tive dynamic binary 

translation (§4.2.3)

Via paravirtual-

ization of CPU 

and IO interac-

tions

Via paravirtual-

ization of CPU 

and IO interac-

tions

systems could scale and address fault-containment challenges [47, 172], these designs required
significant OS changes. In particular, scalability was achieved by the partitioning of the system
into scalable units that communicated with each other like a distributed system. In addition,
machines such as FLASH had a non-uniform memory architecture, which required additional
complex changes within the virtual memory subsystem of the operating system [175]. So, even
though prototypes could be built, the complexity of the approach made their relevance question-
able.

Disco addressed this same problem very differently, by developing a new twist on the rel-
atively old idea of hypervisors and virtual machines. Rather than attempting to modify existing
operating systems to run on scalable shared-memorymultiprocessors, Disco inserted an additional
layer of software between the hardware and the operating system. In this design, the hypervisor
handled the changes required to support scalable shared-memory computing, in particular re-
source management and transparent resource sharing (described in the original paper) and fault
containment, described in Cellular Disco [81].

Disco was architected around the traditional trap-and-emulate approach formalized by
Popek and Goldberg. Disco itself runs in kernel mode; guest operating systems (which were de-



3.1. DISCO 31

signed to run in kernel model) run in supervisor mode, and applications run in user mode. Disco
handled the equivalence, safety, and performance requirements as follows:

Equivalence: Disco did not attempt to run binary-compatible kernels as guest operating sys-
tems. MIPS instructions are location-sensitive as a consequence of the hardcoded virtual mem-
ory segment ranges. Unfortunately, many MIPS operating systems, including IRIX 5.3, place
the kernel code and data in the KSEG0 segment, which is not accessible in supervisor mode (see
§2.5.1). As a result, Disco requires that the operating system be relocated from the unmapped
segment of the virtual machines (KSEG0) and into a portion of the mapped supervisor segment of
the MIPS processor (KSSEG). Making these changes to IRIX required modifying two header files
that describe the virtual address space layout, changing the linking options, as well as 15 assembly
statements. Unfortunately, this meant that IRIX had to be entirely re-compiled to run on Disco.

Safety: Disco isolated the VM without making assumptions about the guest. It relied on virtual
memory and the MIPS’ three privilege levels (kernel, supervisor, user) to protect the hypervisor
from the VM, and the VM’s guest operating system from its applications. Specifically, supervisor
mode code (i.e., the guest operating system) cannot issue privileged instructions, which trigger
traps. Disco virtualized all resources and hid the physical names from the VM, e.g., the VM only
operated with guest-physical memory without any visibility into host-physical mappings. Disco’s
approach to memory management is discussed in §3.1.3.

Performance: In their idealized model, Popek and Goldberg assumed that traps were rare, and
therefore that the performance requirement can be met as long as the guest instructions run
directly on the processor and the hypervisor handles the traps efficiently. is assumption does
not hold on RISC architectures such as MIPS. To address this, Disco introduced special memory
pages as an alternative to read-only privileged registers, hypercalls (see §3.1.1) and a larger TLB
(see §3.1.2).

3.1.1 HYPERCALLS
In a strict approach to virtualization, the guest operating system runs identically in a virtual ma-
chine as it would on actual hardware. Disco, because of the limitations of MIPS, requires that its
guest kernels be recompiled anyway. Disco relied on special memory pages to eliminate having to
take a trap on every privileged register access, as this can cause significant overheads when running
kernel code such as synchronization routines and trap handlers that frequently access privileged
registers. To reduce this overhead, Disco augments the instruction set architecture through special
pages in the address space containing frequently accessed privileged registers. e guest operat-
ing system is then patched in a handful of locations to convert certain privileged instructions that
access these registers into regular load instructions.

Disco further deviates from the strict approach through its use of hypercalls. A hypercall
is a higher-level command issued by the guest operating system to the hypervisor. It is analogous



32 3. VIRTUALIZATIONWITHOUTARCHITECTURAL SUPPORT

to a system call, which is issued by the application to the operating system. Hypercalls are used to
provide higher-level information, in particular around the use of memory resources. For example,
Disco has a hypercall to free a guest-physical page. is is called by the guest whenever a page
is put on the operating system’s free list. To the virtual machine, the only side effect is that the
content of that page will be zeroed out upon next use. To the global system, however, this provides
the ability to substantially reduce the global host-physical memory footprint of the consolidated
workload.

3.1.2 THEL2TLB
Popek and Golberg assumed that traps resulting from the de-privileged execution of the guest op-
erating systems would be sufficiently rare that the hypervisor’s trap-and-emulate approach would
not cause significant performance problems. is was a reasonable assumption in mainframe-era
computers characterized by complex privileged instructions issued relatively rarely during oper-
ating system execution.

e Popek/Goldberg further model assumed that virtual memory was implemented
through segmentation.MIPS implements virtual memory through paging, with TLBmisses han-
dled in software by a TLBmiss handler. Processors of that era had small TLBs (e.g., with � 64

entries), leading to frequent misses. As a result, the TLB itself was virtualized with low overheads
to meet the performance requirement of virtualization.

Software-reloaded TLBs introduce a few complications. First, the page table format is
defined by the operating system, and not the architecture. An OS-agnostic hypervisor would
therefore be incapable of handling a TLB miss directly. Instead, the hypervisor has to transfer ex-
ecution to the guest’s TLB miss handler. Unfortunately, that sequence typically contains multiple
privileged instructions, causing high virtualization overheads. Second, a workload executing on
top of Disco will suffer an increased number of TLB misses since the TLB is additionally used
for all operating system references (now using KSSEG rather than KSEG0). ird, virtualization
introduces an additional level of indirection between guest-physical and host-physical memory,
with each virtual machine having its own guest-physical address space.

To lessen the performance impact, Disco cached recent virtual-to-host physical translations
in a second-level software TLB (or L2TLB). On each TLB miss, Disco’s TLB miss handler first
consults the second-level TLB. If it finds a matching virtual address it can simply place the cached
mapping in the hardware TLB, otherwise it forwards the TLB miss exception to the operating
system running on the virtual machine. e effect of this optimization is that virtual machines
appear to have much larger TLBs than the MIPS processors.

Each virtual CPU has its own L2TLB, which replaces the original TLB in the architecture
of the virtual machine. e only visible change to the architecture is the number of entries in
the TLB itself. Fortunately, the impact on operating systems is very contained. In fact, the only
complication from such a large TLB was the need for the operating system to recycle address
space identifiers associated with processes, the details of which can be found in [44].



3.1. DISCO 33

3.1.3 VIRTUALIZINGPHYSICALMEMORY
e primary research motivation of Disco was to provide efficient resource management on top
of a scalable shared-memory multiprocessor. One goal was to ensure that a distributed workload
running on a cluster of virtual machines would have comparable memory usage patterns as the
same workload running as a collection of processes on a non-virtualized deployment. Fortunately,
the additional level of indirection between guest-physical and host-physical memory provides the
enabling mechanism to solve this problem as long as host-physical names are not visible to the
VM. en, the mapping between guest-physical and host-physical can take many forms and
change over time without impacting the execution of the VM. In the case of Disco, mappings
could change as the result of either (1) transparent page migration and replication, which improve
CC-NUMA locality or (2) transparent memory sharing, which reduced overall memory pressure
and disk I/O bandwidth. In later commercial systems, mappings would change as the result of
memory ballooning and content-based page sharing [177].

In its most basic form, each host-physical page (of the machine) is used by at most one
guest-physical page of a single virtual machine. However, Disco’s memory management mecha-
nisms enabled three additional use cases:

Many-to-one mappings: Disco implemented a copy-on-write mechanism that operates within
and across virtual machines. As in the well-known copy-on-write mechanism of operating sys-
tems, corresponding entries are inserted read-only into the TLB. Upon a page fault, due to a
legitimate write by the virtual machine (application or operating system), the hypervisor simply
copies the content to a newly allocated host-physical page. e mechanism was exposed transpar-
ently to the virtual machines through I/O operations: disk reads from the same sector and network
traffic between two virtual machines on the same server could be shared transparently. In addi-
tion, the mechanism was also exposed explicitly through a remap function with the semantics of
bcopy routine that used a hypercall to remap the page whenever possible.

One-to-many mappings: Disco provided transparent page replication for read-only pages that
suffer frequent cachemisses. On a cc-NUMAmachine such as FLASH, this optimization ensures
that such pages always suffer cache misses served by the local NUMA node rather than a remote
node. In Disco’s implementation, two virtual CPU of the same VM can therefore map the same
guest-physical page to two distinct host-physical pages.

NUMA migration: Unfortunately, page replication is only effective for read-only pages. When
a page is accessed (read and written) by a single NUMA node, Disco transparently migrates the
page to that node. To do so, it must allocate a new host-physical page and then atomically copy its
content, change the guest-physical to host-physical mapping and invalidate the hardware TLB
and L2TLB.

ese three mechanisms each require subtle interactions between the physical memory manage-
ment aspect, which manages the mappings between guest-physical and host-physical memory,



34 3. VIRTUALIZATIONWITHOUTARCHITECTURAL SUPPORT

and virtual memory and TLB miss handling logic. Disco’s core data structures were specifically
designed with these in mind. For example, Disco maintains an inclusion property within the TLB
hierarchy to efficiently determine when hardware invalidations are required. Here also, the details
are in [44].

3.2 VMWAREWORKSTATION—FULLVIRTUALIZATION
ONX86-32

VMware Workstation 1.0 was released in 1999 and was the first VMM for the 32-bit x86 ar-
chitecture [45, 46, 65, 162]. As a commercial product, the company’s vision was a virtualization
layer useful on commodity platforms built from x86-32 CPUs and primarily running the Mi-
crosoft Windows operating systems (a.k.a. the WinTel platform). e benefits of virtualization
could help address some of the known limitations of the WinTel platform, such as application
interoperability, operating system migration, reliability, and security. In addition, virtualization
could easily enable the co-existence of operating system alternatives, in particular Linux.

With its focus on commercial, closed-source operating systems, the x86 computing envi-
ronment was sufficiently different to require new approaches to virtualization; recompiling the
kernel, as was previously done in Disco or later in Xen, was not an option. Furthermore, the x86
industry had a disaggregated structure. Different companies independently developed x86 proces-
sors, computers, operating systems, and applications. System integrators then combine these com-
ponents into a supported “out-of-the-box” solution. For the x86 platform, virtualization would
need to be inserted without changing either the existing hardware or the existing software of the
platform. As a result, VMware Workstation was architected as:

• a pure virtualization solution, compatible with existing, unmodified guest operating sys-
tems; and

• a type-2 hypervisor for existing Linux and Windows host operating systems.
VMware Workstation adapted Popek and Goldberg’s three core attributes of a virtual ma-

chine to x86-based target platform as follows:

Equivalence: As discussed in §2.5.2, the x86-32 architecture has 17 virtualization-sensitive,
non-privileged instructions, which violated the Popek and Golberg criteria for strict virtualiza-
tion [151]. is ruled out the traditional trap-and-emulate approach to virtualization. Indeed,
engineers from Intel Corporation were convinced their processors could not be virtualized in any
practical sense [74]. VMware’s solution combines direct execution (used whenever possible and
in particular to run applications) with dynamic binary translation (whenever required, and in par-
ticular when running guest operating systems). Dynamic binary translation is an efficient form
of emulation; see §3.2.2.

Safety: A hypervisor must guarantee the isolation of the virtual machine without making any
assumptions about the software running inside. VMware Workstation configured the hardware,



3.2. VMWAREWORKSTATION—FULLVIRTUALIZATIONONX86-32 35

and in particular made extensive use of segment truncation to isolate the virtual machines (see
§3.2.3). To simplify testing and reduce the likelihood of introducing security vulnerabilities in
untested code paths, VMware Workstation only supported the subset of the x86-32 architecture
necessary to run some specified, supported guest operating systems. Any unsupported requests,
e.g., attempting to execute code at %cpl¹=1 or %cpl=2, which never happens with any supported
guest operating system, would simply abort execution.

Performance: As a design goal, VMware aimed to run relevant workloads at near native speeds,
and in the worst case to run them on then-current processors with the same performance as if
they were running on the immediately prior generation of processors without virtualization. Such
performance levels would allow users to use virtual machines as effectively as real machines. is
was based on the observation that most x86 software wasn’t designed to only run on the latest
generation of CPUs.

To achieve such performance goals, VMwareWorkstation required total control over the hardware
during execution, despite its type-2 architecture and the presence of a host operating system.
§3.2.3 describes how the segment table and the CPU are configured to reduce the overheads of
the dynamic binary translator. §3.2.4 describes the modular design of the type-2 hypervisor into
three distinct components: a user-level process of the host operating system, a kernel module
within the host operating system and the VMware VMM, which runs in total control of the
hardware. is is enabled by the world switch, which gives the VMware VMM total control
in co-location with the host operating system. Finally, §3.2.5 describes shadow paging, which
allows the virtual machine (including the guest operating system) to directly use the MMU of
the underlying hardware.

3.2.1 X86-32 FUNDAMENTALS
A short introduction to the x86-32 architecture is required before explaining how VMware vir-
tualized it. Readers already familiar with it can skip to the solution in §3.2.2. For the CPU, the
architecture specifies legacy and native execution mode, four privilege levels, and an additional
I/O privilege levels.

• e processor has a native execution mode, called protected mode. It contains three ad-
ditional non-native mode which are the legacy real, system management, and v8086
modes.

• In protected mode, the current privilege level (or cpl) separates kernel execution (%cpl=0)
from user-level execution (%cpl>0). ere are four modes although in practice user-level
code runs at %cpl=3 and the intermediate modes are unused.

• e I/O privilege level (iopl) further allows user-level code to enable or disable interrupts

¹cpl=current privilege level in x86 protected mode, a.k.a. the ring



36 3. VIRTUALIZATIONWITHOUTARCHITECTURAL SUPPORT

As far as memory, the architecture includes both segmentation and paging. Segmentation
is handled by six segment registers which correspond to code (%cs), stack (%ss), data (%ds), and
extra segments (%es, %fs, %gs). Each segment defines through a base and a limit a portion
of the 32-bit linear address. Paging then converts the linear address into a physical address. e
x86-32 architecture specifies a three-level page table structure rooted at privilege register %cr3.
On a TLB miss, the processor directly walks the page table structure and inserts the mapping in
the TLB without relying on a software handler.

3.2.2 VIRTUALIZINGTHEX86-32 CPU
A hypervisor built for a virtualizable architecture uses the trap-and-emulate approach described
by Popek and Goldberg. is technique is also known as direct execution (DE) as the VM in-
structions directly execute on the processor. With a design goal to run unmodified guest operating
systems on a non-virtualizable architecture, direct execution alone is not a strategy.

An alternative would have been to employ an all emulation approach. e experience with
the SimOS [153] machine simulator showed that the use of techniques such as dynamic binary
translation (DBT) running in a user-level program could limit overheads of complete emulation
to a 5� slowdown. While that was fast for a machine simulation environment, it was clearly
inadequate for our performance requirements.

VMware’s solution to this problem combined two key insights. First, although direct exe-
cution could not be used to virtualize the entire x86 architecture, it could actually be employed
most of the time, in particular to run applications. e second key insight was that by properly
configuring the hardware, particularly by using the x86 segment protection mechanisms carefully,
system code under dynamic binary translation could also run at near-native speeds; this will be
discussed below in §3.2.3.

Figure 3.1 shows the actual algorithm dynamically determining whether direct execution
can be used or whether dynamic binary translation must be used [65]. e algorithm depends on
the state of a few specific registers of the virtual machine and leads to the following decisions:

• (line #1–#3): %cr0.pe is set only in protected mode and v8086 mode. DBT is required
when the VM is in either real mode or system management mode. For example, the
BIOS runs in real mode;

• (line #4–#6): e x86 v8086 mode can always be used directly to virtualize guests in v8086
mode using DE, e.g., to run MS-DOS emulation in Windows 95 [111];

• (line #7–#9): DBT is required whenever the VM can control the interrupt flag. e disjunc-
tion includes the common case when the guest executes in kernel mode execution (cpl=0),
but also the rare case where a user-level process can establish critical regions by disabling
interrupts (e.g., on Linux using the iopl(2) system call);



3.2. VMWAREWORKSTATION—FULLVIRTUALIZATIONONX86-32 37

Input: Current state of the virtual CPU
Output: True if the direct execution subsystem may be used;

False if binary translation must be used instead
1: if Šcr0:pe then
2: return false;
3: end if
4: if ef lags:v8086 then
5: return true
6: end if
7: if .ef lags:iopl � cpl/jj.Šef lags:if / then
8: return false;
9: end if

10: for all seg  .cs; ds; ss; es; f s; gs/ do
11: if “seg is not shadowed” then
12: return false;
13: end if
14: end for
15: return true

Figure 3.1: x86 virtualization engine selection algorithm.

• (line #10–14): DBT is required whenever the hidden content any of the six segment de-
scriptor registers is not recoverable from memory. is is a somewhat obscure corner-case
that must be handled to correctly run Windows 95; and

• DE can be used in the remaining cases, and in particular at user level when interrupts cannot
be disabled.

If we exclude the corner cases, the algorithm has the VMware VMM use DBT to execute
the guest operating system and DE to run the applications. is is good news since the amount
of kernel code is bounded, and most applications spend the majority of the execution time at user
level.

is algorithm has two interesting properties: (i) it does not make any assumption on the
guest instructions that may execute in the future but instead executes in O.1/; and (ii) it can be
implemented in a handful of assembly instructions through a careful encoding of the state of the
virtual processor.

Formal considerations: Popek and Goldberg discuss a similar situation with their hybrid vir-
tual machines (see §2.3 and the 3rd theorem [143]), which applies to architectures in which all
user-sensitive instructions are privileged. e x86-32 architecture nearly falls into that category:



38 3. VIRTUALIZATIONWITHOUTARCHITECTURAL SUPPORT

sgdt, sidt, sldt, and smsw are the only non-privileged, user-sensitive instructions. Fortunately,
even Intel’s manual describes them as available but not useful to applications [102]. In addition,
segment truncation, which is used to isolate the VMware VMM, is visible to application via the
lsl instruction. VMware Workstation’s use of direct execution violates the equivalence require-
ment only, with few practical consequences other than to provide an easy way to determine if an
application is running in a virtualized environment.

3.2.3 THEVMWAREVMMAND ITS BINARYTRANSLATOR
e main function of the VMM was to virtualize the CPU and the main memory. At its core,
the VMware VMM combined a direct execution subsystem with a dynamic binary translator. In
simple terms, direct execution was used to run the guest applications and the dynamic binary
translator was used to run the guest operating systems.

Dynamic binary translation (DBT) [84] is an efficient form of emulation. Rather than
interpreting the instructions one by one, DBT compiles a group of instructions, often a basic
block, into a fragment of executable code. e code is stored in a large buffer called the translation
cache so that it can be reused multiple times. DBT comes with some well-known optimizations
such as chaining, which allows for direct jumps between compiled fragments [53]. VMware relies
on DBT so that, instead of executing or interpreting the original virtual machine instructions, the
processor executed natively the corresponding translated sequence within the translation cache.

e performance of DBT, and in particular of system-level DBT, is very sensitive to the
configuration of the hardware. For example, Embra [184] suffers from a 5� slowdown largely
due to the cost of MMU emulation. In general, DBT systems also runs in the same address
space as the software they emulate. With VMware, the challenge was to ensure that the VMware
VMM could share an address space safely with the virtual machine without being visible to the
virtual machine, and to execute this with minimal performance overheads. Given that the x86
architecture supported both segmentation-based and paging-based protection mechanisms, a so-
lution might have used either one or both mechanisms. For example, operating systems that use
the flat memory model only rely on paging (and not segmentation) to protect themselves from
applications.

e VMware VMM used segmentation, and segmentation only, for protection. e linear
address space was statically divided into two regions, one for the virtual machine and one for the
VMM. Virtual machine segments were truncated by the VMM to ensure that they did not overlap
with the VMM itself.

Figure 3.2 illustrates VMware’s use of segment truncation, with the example of a guest
operating system that employs the flat memory model. Applications running at %cpl=3 ran with
truncated segments, and were additionally restricted by their own operating systems from access-
ing the guest operating system region using page protection.

When running guest kernel code via binary translation, the hardware CPU was at %cpl=1.
Binary translation introduced a new and specific challenge since translated code contained a mix



3.2. VMWAREWORKSTATION—FULLVIRTUALIZATIONONX86-32 39

%cs, %ds, %gs

%cs, %ds, %gs

%ds %cs, %gs

cpl = 3

cpl = 1

cpl = 0

pte.us = 1 pte.us = 0

Linear Address Space

userspace (direct execution)

kernel code/data

0xffc00000

VMM

VMM

TC

Figure 3.2: Using segment truncation to protect the VMware VMM [45]. In this example, the virtual
machine’s operating system is designed for the flat memory model. Applications run under direct
execution at user-level (cpl=3). e guest operating system kernel runs under binary translation, out
of the translation cache (TC), at cpl=1.

of instructions. Some needed to access either the VMM area (to access supporting VMM data
structures), while others needed to access the virtual machine’s portion of the linear address space.

e solution was to rely on hardware protection instead of any run-time memory checks.
Specifically, the VMware VMM reserves one segment register, %gs, to always point to the VMM
area: instructions generated by the translator used the <gs> prefix to access the VMM area, and
the binary translator guaranteed (at translation time) that no virtual machine instructions would
ever use the <gs> prefix directly. Instead, translated code used %fs for virtual machine instructions
that originally had either an <fs> or <gs> prefix. e three remaining segments (%ss, %ds, %es)
were available for direct use (in their truncated version) by virtual machine instructions.

Of course, virtual machine instructions may have had a legitimate, and even frequent, rea-
son to use addresses near the top of the linear address space, where the VMM actually resides. As
expected, segment truncation triggered a general protection fault for every such reference, which
can be emulated by the VMM. To reduce the number of such traps, VMware Workstation relied
on adaptive binary translation as an optimization to eliminate most general protection faults at
run-time. Adaptive binary translation is premised on the notion that the same few locations in
the guest kernel cause nearly all such general protection faults. It re-translates the basic block and
replaces the original instruction (that causes the trap) with a specific sequence that safely emulates
the memory access without causing the trap.



40 3. VIRTUALIZATIONWITHOUTARCHITECTURAL SUPPORT

Figure 3.2 also illustrates the role of page-based protection (pte.us). Although not used to
protect the VMM from the virtual machine, it is used to protect the guest operating system from
its applications. e solution is straightforward: the pte.us flag in the actual page tables was the
same as the one in the original guest page table. Guest application code, running at %cpl=3, was
restricted by the hardware to access only pages with pte.us=1. Guest kernel code, running under
binary translation at %cpl=1, did not have the restriction.

3.2.4 THEROLEOFTHEHOSTOPERATINGSYSTEM
VMware Workstation is a type-2 hypervisor that appears to run on top of a host operating system
such as Linux or Windows, when in fact the hypervisor, and specifically the VMware VMM, has
full control of the CPU when it executes the virtual machine [46, 162]. Figure 3.3 illustrates
the hosted architecture of VMware Workstation, which consists of three components: (i) a user-
level program (VMX), responsible for all interactions with the end-user and the host operating
system, in particular for I/O emulation purposes; (ii) a small device driver installed within the
kernel (VMM Driver); and (iii) the VMware VMM, which runs at the same level as the host
operating system, but in a disjoint environment in which the host operating system has been
temporarily suspended and removed from virtual memory.

Disk

Emulator Virtual Machine

AIO

VMX

VMM
Driver

VMM

world
switch

Host OS

CPU

idtr

Host OS Context VMM Context

S
ys

te
m

-l
ev

el
U

se
r-

le
ve

l

Any
Proc.

scsi
driver

int handler

ioctl

int handler

1

2
3

5

4

Figure 3.3: e VMware Hosted Architecture [45]. VMware Workstation consists of the three
shaded components. e figure is split vertically between host operating system context and VMM
context, and horizontally between system-level and user-level execution.



3.2. VMWAREWORKSTATION—FULLVIRTUALIZATIONONX86-32 41

e world switch is the low-level mechanism that frees the VMware VMM from any in-
terference from the host operating system, and vice-versa. Similar to a traditional context switch,
which provides the low-level operating system mechanism that loads the context of a process, the
world switch loads and restores the VMware VMM context, as well as the reverse mechanism that
restores the host operating system context. e difference between a traditional context switch
and the world switch is its scope: the context switch only concerns itself with callee-saved reg-
isters, the stack, and the address space and can furthermore assume that the kernel is identically
mapped in the outgoing and incoming address spaces. In contrast, the world switch must save
everything, including the x86-32 segment descriptor tables and the interrupt descriptor tables,
and must assume disjoint address spaces.

Although subtle in a number of ways, the implementation was quite efficient and very ro-
bust. It relied on two basic observations: first, any change of the linear-to-physical address map-
ping via an assignment to %cr3 required that at least one page—the one containing the current
instruction stream—had the same content in both the outgoing and incoming address spaces.
Otherwise, the instruction immediately following the assignment of %cr3 would be left undeter-
mined. e second observation is that certain system-level resources could be undefined as long
as the processor did not access them, e.g., the interrupt descriptor table (as long as interrupts are
disabled) and the segment descriptor tables (as long as there are no segment assignments). By
undefined, we mean that their respective registers (%idtr and %gdtr) could point temporarily to
a linear address that contained a random, or even an invalid page. With these two observations,
VMware developed a carefully crafted instruction sequence that saved the outgoing context and
restored an independent one. In an early version of VMware Workstation, the cross-page instruc-
tion sequence consisted of only 45 instructions executing symmetrically in both directions, with
disabled interrupts.

Figure 3.3 puts the world switch into perspective by illustrating the sequence of steps that
occur when an external interrupt (e.g., a disk interrupt) occurs while the VMware VMM is in
total control of the hardware. is example highlights that fact that the host operating system is
really oblivious to the existence of the VMware VMM.

1. e hardware interrupts the execution of the virtual machine. e interrupt descriptor table
(%idtr) points to a VMware VMM interrupt handler.

2. As the VMware VMM cannot handle I/O requests directly, the interrupt handler initiates
a world switch back to the host operating system context.

3. Within the host operating system, the VMM Driver implements the other end of the world
switch. When the cause of the world switch is an external interrupt, the VMM Driver issues
in software the same interrupt received in step #1.

4. At this point, the host operating system handles the interrupt as if it had occurred in the
normal host operating system context, and will call the appropriate subsystems, in this case
the disk handler.



42 3. VIRTUALIZATIONWITHOUTARCHITECTURAL SUPPORT

5. After the interrupt has completed, execution resumes where it was interrupted, i.e., within
the VMM Driver, which is understood by the host operating system as merely handling an
ioctl system call. e ioctl completes and returns control back to the VMX application.
is transition back to userspace allows the host operating system to make scheduling de-
cisions, and the VMX application to process asynchronous I/O requests (AIO). To resume
execution of the virtual machine, the VMX issues the next ioctl.

3.2.5 VIRTUALIZINGMEMORY
is section describes how the VMware VMM virtualized the linear address space shared with
the virtual machine, and how the VMM virtualized guest-physical memory and implemented a
central mechanism called memory tracing.

e VMM was responsible for creating and managing the page table structure, which was
rooted at the hardware %cr3 register while executing in the VMM context. e challenge was in
managing the hardware page table structure to reflect the composition of the page table mappings
controlled by the guest operating system (linear to guest-physical) with the mappings controlled
by the host operating system (guest-physical to host-physical) so that each resulting valid pte
always pointed to a page previously locked in memory by the VMM Driver. is was a critical
invariant to maintain at all times as to ensure the stability and correctness of the overall system.
In addition, the VMM managed its own 4 MB address space.

Memory tracing: Memory tracing provided a generic mechanism that allowed any subsystem
of the VMM to register a trace on any particular page in guest physical memory, and be notified
of all subsequent writes (and in rare cases reads) to that page. e mechanism was used by VMM
subsystems to virtualize the MMU and the segment descriptor tables, to guarantee translation
cache coherency, to protect the BIOS ROM of the virtual machine, and to emulate memory-
mapped I/O devices. When composing a pte, the VMM respected the trace settings so that pages
with a write-only trace were always inserted as read-only mappings in the hardware page table.
Since a trace could be requested at any point in time, the system used the backmap mechanism
to downgrade existing mappings when a new trace was installed. As a result of the downgrade
of privileges, a subsequent access by any instruction to a traced page would trigger a page fault.
e VMM emulated that instruction and then notified the requesting module with the specific
details of the access, such as the offset within the page and the old and new values.

Unfortunately, handling a page fault in software took close to 2000 cycles on the processors
of the time, making this mechanism very expensive. Fortunately, nearly all traces were triggered
by guest kernel code. Furthermore, there is an extreme degree of instruction locality in memory
traces, and in particular only a handful of instructions of a kernel modified page table entries and
triggered memory traces. For example, Windows 95 has only 22 such instruction locations. As
with segment truncation, the DBT relied on adaptive binary translation to generate an alternative
code sequence that avoided the page fault altogether.



3.3. XEN—THEPARAVIRTUALIZATIONALTERNATIVE 43

is was not a mere optimization. As we will discuss later in §4.2.3, memory tracing is only
practical when used in conjunction with adaptive binary translation [3].

Shadow page tables: e first application of the memory tracing mechanism was actually the
MMU virtualization module itself, responsible for creating and maintaining the page table struc-
tures (pde, pte) used by the hardware.

Like other architectures, the x86 architecture explicitly calls out the absence of any co-
herency guarantees between the processor’s hardware TLB and the page table tree. Rather, cer-
tain privileged instructions flush the TLB (e.g.,invlpg, mov %cr3). A naive virtual MMU
implementation would discard the entire page table on a TLB flush, and lazily enter mappings
as pages are accessed by the virtual machine. Unfortunately, this generates many more hardware
page faults, which are in order of magnitude more expensive to service than a TLB miss.

So, instead, the VMM maintained a large set of shadow copies of the guest operating sys-
tem’s pde/pte pages, as shown in Figure 3.4. By putting a memory trace on the corresponding
original pages (in guest-physical memory), the VMM was able to ensure the coherency between a
very large number of guest pde/pte pages and their counterpart in the VMM. is use of shadow
page tables dramatically increased the number of valid page table mappings available to the vir-
tual machine at all times, even immediately after a context switch. In turn, this correspondingly
reduced the number of spurious page faults caused by out-of-date page mappings. is category
of page faults is generally referred to as hidden page faults since they are handled by the VMM
and not visible to the guest operating system. e VMM could also decide to remove a memory
trace (and of course the corresponding shadow page), e.g., when a heuristic determined that the
page was likely no longer used by the guest operating system as part of any page table.

Figure 3.4 shows that shadowing is done on a page-by-page basis, rather than on an address
space by address space basis: the same pte pages can be used in multiple address spaces. In fact,
this is commonly used by all operating systems which map the kernel portion identically into all
address spaces. When such sharing occurred in the operating system, the corresponding shadow
page was also potentially shared in the shadow page table structures. e VMM shadowed multi-
ple pde pages, each potentially the root of a virtual machine address space. So even though the x86
architecture does not have a concept of address-space identifiers, the virtualization layer emulated
it.

e figure also illustrates the special case of the top 4 MB of the address space which is
always defined by a distinct pte page. is portion of memory is reserved for the VMM itself,
and protected from any access by the virtual machine through segment truncation (see §3.2.3).

3.3 XEN—THEPARAVIRTUALIZATIONALTERNATIVE
Despite its many optimizations, VMwareWorkstation was viewed as an explicit trade-off between
equivalence and performance, and indeed performed poorly onmanymicro benchmarks and some
system-intensive workloads [27]. e use of dynamic binary translation and of shadow paging—



44 3. VIRTUALIZATIONWITHOUTARCHITECTURAL SUPPORT

…

…

…

…

…

…

…

…

…

…

…

…

…

PDE pages PTE pages

VM

VMM

VMM area

cr3

cr3

Figure 3.4: Using shadow page tables to virtualize memory [45]. e VMware VMM individually
shadows pages of the virtual machine and constructs the actual linear address space used by the hard-
ware. e top-most region is always reserved for the VMware VMM itself.

required because of its equivalence goal—introduced a degree of atypical complexity to the current
system software.

Paravirtualization refers to hypervisors that sacrifice certain aspects of the equivalence
property for a higher degree of efficiency or scalability. e term was introduced by the Denali
isolation kernel in 2002 [182], a system designed to runs hundreds of concurrent lightweight
virtual machines, each with a single address space. e term was the popularized by the Xen
hypervisor [27]. Xen is the most influential open-source type-1 hypervisor for x86 architectures.
Since its first release in 2003, Xen has gone through numerous iterations, in particular to take
advantage of hardware support for virtualization.

In its original form on x86-32 architectures, Xen relied on paravirtualization to simply
undefine all of the 17 non-virtualizable instructions of §2.5.2 [151], which must not be used.
As a replacement, Xen defines an alternate interrupt architecture which consists of explicit calls
from the guest operating system to the hypervisor (called hypercalls) and additional memory-
mapped system registers. e Xen hypervisor relies on this modified x86-32 architecture to run
virtual machines using direct execution only. e architecture also exposes a simplified MMU
architecture that directly, but safely, exposes host-physical memory to the guest operating system.



3.3. XEN—THEPARAVIRTUALIZATIONALTERNATIVE 45

e guest operating system combines virtual-to-guest-physical mappings with the guest-physical
to host-physical information readable from the hypervisor to generate virtual-to-host-physical
mappings, which are then passed down to the hypervisor for validation.

Table 3.2 lists the paravirtualization x86 interface of Xen [27], i.e., the list of changes to the
underlying ISA exposed to virtual machines. ere are changes in terms of memory virtualization,
CPU virtualization and device I/O. As I/O is discussed later in the text (Chapter 6), we limit the
discussion here to the first two topics.

Table 3.2: Xen’s paravirtualized interface [27]

Memory Management

Segmentation Cannot install fully privileged segment descriptors and cannot overlap with the 

top end of the linear address space.

Paging Guest OS has direct read access to hardware page tables, but updates are 

batched and validated by the hypervisor. A domain may be allocated discontin-

uous machine (aka host-physical) pages.

CPU

Protection Guest OS must run at a lower privilege level than Xen.

Exceptions Guest OS must register a descriptor table for exception handlers with Xen. 

Aside from page faults, the handler remains the same.

System calls Guest OS may install a “fast” handler for system calls, allowing direct calls 

from an application into its guest OS and avoiding indirection through Xen on 

every call.

Interrupts Hardware interrupts are replaced with a lightweight event system.

Time Each guest OS has a timer interface and is aware of both “real” and “virtual” 

time.

Memory management: Like VMware Workstation, Xen relies on segment truncation for pro-
tection. e Xen hypervisor is the only entity that runs at %cpl=0 and can configure the segment
descriptor tables. All segments available to virtual machines are truncated to exclude the top
64 MB of the linear address space. Xen runs out of that protected 64 MB region.

Xen has a paravirtualized approach to the virtualization of the MMU: Each VM consists
of a contiguous guest-physical address space and a discontinuous set of host-physical pages. Both
namespaces are visible to the guest operating systems.e guest OS can directly read the hardware
page table structure accessed by the hardware CPU with PDE and PTE defined as host-physical
addresses. To change a mapping, the guest OS determines the new host-physical mapping, to be
validated by the hypervisor. Validations can be batched for performance.is approach is different



46 3. VIRTUALIZATIONWITHOUTARCHITECTURAL SUPPORT

from VMware Workstation, which relies on memory tracing to implement shadow paging, and
hides the host-physical names from the VM.

CPU: Xen’s simply replaces the 17 non-virtualizable instructions [151] with corresponding
hypercalls which allow the guest to explicitly communicate with the hypervisor, e.g., to setup
segment descriptors, disable interrupts, receive interrupt notification, and transition between
userspace and the kernel. Non-virtualizable instructions are undefined and should not be used.
With these changes, the augmented x86 architecture meets the Popek and Goldberg criteria, and
Xen is architected as a trap-and-emulate hypervisor, unlike VMware.

Xen uses the x86-32 rings for protection: Xen runs at %cpl=0. e guest operating systems
run at %cpl=1 and applications at %cpl=3. Page protection bits (pte.us) are used to protect
the guest OS from the applications. rough the combination of segment truncation and page
protection bits, a single address space can safely combine the Xen hypervisor itself, the guest
operating system and the currently running application.

To eliminate unnecessary transitions via the hypervisor, the ISA extensions include the
ability to perform fast system calls directly transitioning from the application to the guest OS.
is insight was later picked up by the virtualization extension to reduce software overheads.

3.4 DESIGNSOPTIONS FORTYPE-1HYPERVISORS
§3.2.4 described the role of the host operating system in VMware Workstation, a type-2 hy-
pervisor. We now discuss the approaches to type-1 hypervisor design used by VMware ESX
Server [7, 177], Xen [27], and Microsoft Virtual Server.

Figure 3.5 shows the two main approaches to building a type-1 hypervisor. In both cases,
we first note that the hypervisor is running, at all times, on all CPUs of the system. is is a
major architectural difference with the hosted architecture of VMware Workstation (see §3.2.4).
VMware Workstation has an asymmetrical architecture with a world switch, which implies that
no piece of software is loaded at all times in memory. In contrast, type-1 hypervisors are always
present in memory, able to directly handle all processor traps and I/O interrupts. No world switch
is required.

e primary difference between flavors of type-1 hypervisors is whether the device drivers
are embedded within the hypervisor or whether they run in a distinct, schedulable entity.

VMware ESX Server provides high performance disk and network I/O by implementing
an efficient path from the I/O requests from the applications running in the virtual machines
down to the physical devices [7]. e drivers are part of the hypervisor. e same CPU and the
same thread of control are involved in all interactions necessary to initiate I/O, which reduces
latency.

In contrast, the Xen and Microsoft Virtual Server do not include device drivers. Instead,
they rely on a distinct, schedulable entity, called “dom0”, which runs with elevated privileges, and
in particular the ability to run physical device drivers. dom0 is scheduled by Xen and its main



3.5. LIGHTWEIGHTPARAVIRTUALIZATIONONARM 47

CPU CPU CPU CPU

Disk DiskNIC NIC

Disk
driver

Disk
emul

NIC
emul

Disk
Driver

NIC
Driver

Guest OS

NIC
driver

Disk
driver

dom0

NIC
driver

Disk
driver

Guest OS

NIC
driver

Hypervisor Hypervisor

Figure 3.5: Two approaches to type-1 hypervisors: embedding drivers in the hypervisor (left) or
scheduling them in dom0 (right).

function is to perform the back-end of I/O operations on behalf of all virtual machines. e
virtual machines issue I/O request through asynchronous messages sent to dom0. is approach
has the advantage of simplicity and portability as device drivers run in a standard operating system
such as Linux (for Xen) or Windows (for Virtual Server). But it requires two distinct threads of
control. In practice, the virtual machine and dom0 typically run on distinct cores of the system,
and can take advantage of the natural overlap and asynchrony in I/O operations.

3.5 LIGHTWEIGHTPARAVIRTUALIZATIONONARM

A downside to paravirtualization is that it can require detailed understanding of the guest operat-
ing system kernel to know how to modify its source code, and then requires ongoing maintenance
and development to maintain potentially heavily modified versions of operating systems that can
be run in virtual machines. Furthermore, the modifications are both architecture and operating
system dependent, which only further add to the maintenance burden.

An alternative approach is lightweight paravirtualization [59]. Lightweight paravirtual-
ization is a script-based method to automatically modify the source code of a guest operating
system kernel to issue calls to the hypervisor instead of issuing sensitive instructions to enable a
trap-and-emulate virtualization solution. Lightweight paravirtualization is architecture specific,
but operating system independent. It is completely automated and requires no knowledge or un-
derstanding of the guest operating system kernel code.



48 3. VIRTUALIZATIONWITHOUTARCHITECTURAL SUPPORT

Lightweight paravirtualization differs from Xen’s paravirtualization as it requires no knowl-
edge of how the guest is engineered and can be applied automatically on any OS source tree
compiled by GCC. For instance, Xen defines a whole new file in arch/arm/mm/pgtbl-xen.c,
which contains functions based on other Xen macros to issue hypercalls regarding memory man-
agement. Instead of existing kernel code, preprocessor conditionals are used to implement calls to
these Xen functions in many places in the kernel code. Lightweight paravirtualization completely
maintains the original kernel logic, which drastically reduces the engineering cost and makes the
solution more suitable for test and development of existing kernel code.

However, there is a performance tradeoff between lightweight paravirtualization and tra-
ditional paravirtualization. e former simply replaces sensitive instructions with traps to the
hypervisor, so that each sensitive instruction now traps and is effectively emulated by the hypervi-
sor. If there are lots of sensitive instructions in critical paths, this can result in frequent traps and
if traps are expensive, this can become a performance bottleneck. Traditional paravirtualization
approaches typically optimize this further by replacing sections of code that may have multiple
sensitive instructions with one paravirtualized hypercall to the hypervisor instead of repeated traps
on each individual sensitive instruction, thereby improving performance.

While the designers of Xen took a traditional paravirtualization approach for x86, a
lightweight paravirtualization approach was viewed more favorably in the context of support-
ing virtualization on ARM platforms. Two early efforts at building ARM hypervisors, KVM
for ARM [59] and VMWare’s Mobile Virtualization Platform (MVP) [28], were based on
lightweight paravirtualization to address the problem that the original ARM architecture was
not virtualizable. e designers of these systems hypothesized that the trap costs on ARM were
lower than on x86, and that ARM’s sensitive instructions occurred less frequently in critical code
paths compared to x86 code, making a lightweight paravirtualization approach attractive.

Let us take a closer look at how lightweight paravirtualization was done in KVM for ARM,
which was originally built for version 5 of the ARM architecture. As will be discussed in detail in
Chapter 4, KVM is a type-2 hypervisor integrated into Linux that was originally designed for ar-
chitectures that had hardware support for virtualization. Although ARM originally did not have
such architectural support, the dominance of Linux on ARM made KVM an attractive starting
point for building an ARM hypervisor. Linux provided a large amount of widely supported soft-
ware functionality that runs on ARM hardware. KVM for ARM was an approach that simplified
the development of a hypervisor by combining the benefits of lightweight paravirtualization with
existing Linux infrastructure support for ARM.

To avoid the problems with sensitive non-privileged instructions, lightweight paravirtual-
ization is used to slightly modify the guest kernel source code. ere was no need to worry about
user space software as user space applications will execute in the same CPU mode as if they were
executing directly on a physical machine. Sensitive instructions are not generated by standard
C-compilers and are therefore only present in assembler files and inline assembly.



3.5. LIGHTWEIGHTPARAVIRTUALIZATIONONARM 49

KVM for ARM’s lightweight paravirtualization is done using an automated scripting
method to modify the guest kernel source code. e script is based on regular expressions and
has been tested on a number of kernel versions with success. e script supports inline assembler
syntax, assembler as part of preprocessor macros, and, assembler macros.

It works by replacing sensitive non-privileged instructions with trap instructions and em-
ulating the sensitive instruction in software when handling the trap. However, KVM for ARM
must be able to retrieve the original sensitive instruction including its operands to be able to
emulate the sensitive instruction when handling a trap. KVM for ARM accomplishes this by
defining an encoding of all the sensitive non-privileged instructions and their operands into trap
instructions.

e SWI instruction on ARM always traps and is normally used for making system calls.
e instruction contains a 24-bit immediate field (the payload), which can be used to encode
sensitive instructions. Unfortunately, the 24 bits are not quite enough to encode all the possible
sensitive non-privileged instructions and their operands. Some additional instructions that trap
are needed for the encoding.

e ARM architecture defines coprocessor access instructions which are used to access
the coprocessor interface. is interface does not relate to an actual physical coprocessor, but is
merely used to extend the instruction set by transferring data between general purpose registers
and registers belonging to one of the sixteen possible coprocessors. For example, the architecture
always defines coprocessor number 15 which is called the system control coprocessor and controls
the virtual memory system. Coprocessor access instructions are sensitive and privileged, so they
will always trap, even for coprocessors that are not defined by the architecture. Only a few of the
coprocessors are defined and in use, so those that are not defined can be repurposed for encoding
sensitive non-privileged instructions. Specifically, coprocessors zero through seven are not in use
and repurposed by KVM for ARM by using the coprocessor load/store access instruction. Taken
together, the coprocessor load/store access instruction has 24 bits for its operands which can
be leveraged to encode the sensitive non-privileged instructions. e combination of the SWI
and coprocessor access instructions is sufficient to encode all possible sensitive non-privileged
instructions and their operands.

e VMM needs to be able to distinguish between guest system calls and traps for sensitive
instructions. KVM for ARM makes the assumption that the guest kernel does not make system
calls to itself. Under this assumption, if the virtual CPU is in privileged mode, the payload is
simply interpreted and the encoded instruction is emulated. If the virtual CPU is in user mode,
the SWI instruction is considered as a system call made by the guest user space to the guest kernel.

As discussed in §2.5.3, the ARM architecture defines 24 sensitive non-privileged instruc-
tions in total. KVM for ARM encodes the instructions by grouping them in 15 groups; some
groups contain many instructions and some only contain a single instruction. e upper 4 bits
in the SWI payload indexes which group the encoded instruction belongs to (see Table 3.3). is
leaves 20 bits to encode each type of instruction. Since there are 5 status register access functions



50 3. VIRTUALIZATIONWITHOUTARCHITECTURAL SUPPORT

and they need at most 17 bits to encode their operands, they can be indexed to the same type and
be sub-indexed using additional 3 bits. ere are 12 sensitive data processing instructions and
they all use register 15 as the destination register and they all always have the S bit set (otherwise
they are not sensitive). ey are indexed in two groups: one where the I bit is set and one where
it’s clear. In this way, the data processing instructions need only 16 bits to encode their operands
leaving 4 bits to sub-index the specific instruction out of the 12 possible. e sensitive load/store
multiple and load/store with translation instructions are using 12 of the remaining 13 index values
as can be seen in Table 3.3.

Table 3.3: Sensitive instruction encoding types

Index Group/Instruction

0 Status register access instructions

1 LDM (2), P-bit clear

2 LDM (2), P-bit set

3 LDM (3), P-bit clear and W-bit clear

4 LDM (3), P-bit set and W-bit clear

5 LDM (3), P-bit clear and W-bit set

6 LDM (3), P-bit set and W-bit set

7 STM (2), P-bit set

8 STM (2), P-bit clear

9 LDRBT, I-bit clear

10 LDRT, I-bit clear

11 STRBT, I-bit clear

12 STRT, I-bit clear

13

14 Data processing instructions, I-bit clear

15 Data processing instructions, I-bit set

In Table 3.3 only the versions of the load/store instructions with the I-bit clear are defined.
is is due to a lack of available bits in the SWI payload. e versions with the I-bit set are encoded
using the coprocessor load/store access instruction. When the I-bit is set, the load/store address is
specified using an immediate value which requires more bits than when the I-bit is clear. Since the
operands for coprocessor access instructions use 24 bits, 2 bits can be used to distinguish between
the 4 sensitive load/store instructions. at leaves 22 bits to encode the instructions with the I-bit
set, which is exactly what is needed.



3.6. FURTHERREADING 51

An example may help illustrate the implementation of the KVM for ARM solution. Con-
sider this code in arch/arm/boot/compressed/head.S:

mrs r2, cpsr @ get current mode
tst r2, #3 @ not user?
bne not_angel

e MRS instruction in line one is sensitive, since when executed as part of booting a guest, it
will simply return the hardware CPSR. However, KVM for ARM must make sure that it returns
the virtual CPSR instead. us, it can be replaced with a SWI instruction as follows:

swi 0x022000 @ get current mode
tst r2, #3 @ not user?
bne not_angel

When the SWI instruction in line one above generates a trap, KVM for ARM loads the
instruction from memory, decodes it, emulates it, and finally returns to line two.

KVM for ARM using lightweight paravirtualization was implemented for ARMv5 and
ARMv6, but never merged into the mainline Linux kernel. With the introduction of hardware
virtualization support in ARMv7, a new KVM/ARM was designed to leverage ARM hardware
virtualization extensions as discussed inChapter 7, which became the fully supported LinuxARM
hypervisor now available in mainline Linux.

3.6 FURTHERREADING
e original VMware Workstation hypervisor is described in detail in [45]. Other papers describe
key aspects of VMware Workstation, including its I/O and networking performance [162], the
virtualization of its GPU [66]. Since their introduction, VMware Workstation has matured and
successfully transitioned to take advantage of the emerging architectural support for virtualization
of VT-x and AMD-v. Agesen et al. describe the evolution of VMware’s approach to virtualization
(see [4]).

Similarly, Pratt et al. describe the evolution of Xen, and in particular the transition from
paravirtualization to full-virtualization (on machines with hardware support for it) [146]. Chis-
nal’s 2007 textbook “e Definitive Guide to the Xen Hypervisor” provides a detailed description
of the internals of Xen, both before and after the adoption of hardware virtualization [50].

VMware ESX Server (now called vSphere) is a commercial type-1 hypervisor. It shares the
sameVMware VMMsubsystem as VMwareWorkstation, but packaged as part of a type-1 hyper-
visor that schedules I/O, CPU, and memory resources directly [7, 82, 177] and can live migrate
VMs [135]. We particularly recommend Waldspurger’s description of ESX memory manage-
ment [177], which has been recognized by an ACM SIGOPS Hall of Fame Award [2].

KVM for ARM is described in more detail in [59] and VMware’sMVP is described in [28].
An abandoned port of Xen for ARM [91] required comprehensive modifications to the guest



52 3. VIRTUALIZATIONWITHOUTARCHITECTURAL SUPPORT

kernel, and was never fully developed. None of these paravirtualization approaches could run
unmodified guest OSes. ese approaches have been superseded by solutions leveraging ARM
hardware virtualization support, first introduced in ARMv7, as will be discussed in Chapter 7.



53

C H A P T E R 4

x86-64: CPUVirtualization
with VT-x

We now describe in a sequence of three chapters the architectural support for virtualization in
x86-64 processors.is architectural support is the combination of innovation in theCPU (Chap-
ter 4), MMU (Chapter 5), and I/O subsystem (Chapter 6).

is chapter describes VT-x, the Intel technology that virtualizes the CPU itself.¹ §4.1
first describes the key requirements set forth by Intel engineers in designing VT-x. §4.2 describes
the approach to CPU virtualization, the concept of root and non-root modes, and how the ar-
chitecture relates to the Popek and Goldberg theorem. §4.3 uses KVM—the Linux kernel virtual
machine—as its case study on how to build a hypervisor that is explicitly designed to assume
hardware support for virtualization. §4.4 discusses the performance implications of CPU virtual-
ization, and in particular the implementation cost of atomic transitions between modes. Finally,
like all chapters, we close with pointers for further reading.

4.1 DESIGNREQUIREMENTS
Intel Virtualization Technology, generally known as VT-x [171], was introduced in 2005 with
the primary objective to provide architectural support for virtualization.

..

A central design goal for Intel Virtualization Technology is to eliminate
the need for CPU paravirtualization and binary translation techniques, and
thereby enable the implementation of VMMs that can support a broad range
of unmodified guest operating systems while maintaining high levels of per-
formance.

R. Uhlig et al., IEEE Computer, 2005 [171]

In stating this goal, Intel engineers observed that existing techniques such as paravirtualization
and dynamic binary translation faced some hard technical challenges in virtualizing the existing
x86 architecture. Uhlig et al. [171] lists the following specific challenges to approaches using
software techniques.
¹AMD’s approach to virtualization, called AMD-v, is architecturally similar to VT-x.



54 4. X86-64: CPUVIRTUALIZATIONWITHVT-X

• Ring aliasing and compression: guest kernel code designed to run at %cpl=0 must use the
remaining three rings to guarantee isolation. is creates an alias as at least two distinct
guest levels must use the same actual ring. Yet, software running in these two rings must be
protected from each other according to the specification of the architecture.

• Address space compression: the hypervisor must be somewhere in the linear address space
in a portion that the guest software cannot access or use.

• Non-faulting access to privileged state: some of the infamous Pentium 17 [151] instruc-
tions provide read-only access to privileged state and are behavior-sensitive, e.g., the location
in linear memory of the interrupt descriptor table (sidt), global descriptor table (sgdt), etc.
ese structures are controlled by the hypervisor and will be in a different location than the
guest operating system specifies.

• Unnecessary impactof guest transitions: to address the efficiency criteria, it is essential that
sensitive instructions (which must trigger a transition) be rare in practice. Unfortunately,
modern operating systems rely extensively on instructions that are privilege-level sensitive,
e.g., to suspend interrupts within critical regions, or to transition between kernel and user
mode. Ideally, such instructions would not be sensitive to virtualization.

• Interrupt virtualization: the status of the interrupt flag (%eflags.if) is visible to unpriv-
ileged instructions (pushf). Since the flag can never be cleared when the guest is running
as this would violate safety, any direct use of that instruction by the guest will lead to incor-
rect behavior. Furthermore, the popf instruction is control-sensitive as its semantic differs
based on whether the CPU can control interrupts (i.e., whether %cpl� %eflags.iopl).

• Access to hidden state: the x86-32 architecture includes some “hidden” state, originally
loaded from memory, but inaccessible to software if the contents in memory changed. For
example, the 32-bit segment registers are hidden: they are loaded from memory into the
processor, but cannot be retrieved from the processor back into a general-purpose register
or memory. As long as the contents in memory does not change, a segment register can be
reloaded back into the processor, e.g., after a trap resulting from virtualization and hidden
from the guest operating system. However, should the memory content ever change, that
segment register can never be reloaded. Unfortunately, some legacy operating systems, and
in particular Windows 95, modify the content of the segment descriptor table in some
critical regions and yet explicitly rely on these very specific x86-32 semantics.

Of course, the evidence from the systems described in Chapter 3 suggests that these challenges
can be mitigated in practice, but not entirely eliminated. For example, the address space com-
pression challenge impacts performance whenever the top of the linear memory is used by the
virtual machine: some guest operating systems may perform very poorly as a consequence. More
concerning, a subset of the infamous “Pentium 17” instructions always return incorrect results to
applications running at user-level, a limitation to equivalence [45].



4.2. THEVT-XARCHITECTURE 55

In designing VT-x, Intel’s central design goal is to fully meet the requirements of the Popek
and Goldberg theorem, with the explicit goal that virtual machines running on top of a VT-x-
based hypervisor meet the following three core attributes of equivalence, safety, and performance.

Equivalence: Intel’s architects designed VT-x to provide absolute architectural compatibility
between the virtualized hardware and the underlying hardware, which was furthermore to be
backward-compatible with the legacy x86-32 and x86-64 ISA. is is much more ambitious than
VMware Workstation, which was pragmatically focused on a set of well-defined guest operating
systems, and of paravirtualization approaches such as Xen, which required kernel modifications
and in practice only applied to open-source operating systems.

Safety: Prior hypervisors based on dynamic binary translation or paravirtualization provided
security and isolation, but through a reasoning that involved complex invariants that had to be
maintained in software, such as the correct use of segmentation for protection. rough archi-
tectural support specifically designed for virtualization, a much-simplified hypervisor can provide
the same characteristics with a much smaller code base. is reduces the potential attack surface
on the hypervisor and the risk of software vulnerabilities.

Performance: Ironically, an increase in performance over existing, state-of-the-art virtualization
techniques was not a release goal with the first-generation hardware support for virtualization.
Instead, the goal at the beginning was merely to setup the appropriate architecture and a roadmap
for ongoing improvements at the architectural and micro-architectural level. Indeed, the first-
generation processors with hardware support for virtualization were not competitive with state-
of-the-art solutions using DBT [3].

4.2 THEVT-XARCHITECTURE
e architecture of VT-x is based on a central design decision: do not change the semantics of
individual instructions of the ISA. is includes of course the instructions that most obviously
violate the virtualization principle. As a corollary, the architecture does not attempt to separately
address the individual aspects of the architecture that limited virtualization, as described in §4.1.
Instead, VT-x duplicates the entire architecturally visible state of the processor and introduces
a new mode of execution: the root mode. Hypervisors and host operating systems run in root
mode whereas virtual machines execute in non-root mode. is architectural extension has the
following properties.

• e processor is at any point in time either in root mode or in non-root mode. e transi-
tions are atomic, meaning that a single instruction or trap can transition from one mode to
the other. is differs notably from the conventional implementation of a context switch
by an operating system, which requires a convoluted instruction sequence.



56 4. X86-64: CPUVIRTUALIZATIONWITHVT-X

• e root mode can only be detected by executing specific new instructions, which are only
available in root mode. In particular, it cannot be inferred through any other mechanisms or
memory access. is is necessary to ensure that root-mode execution itself can be virtualized
and to support recursive virtualization.

• is new mode (root vs. non-root) is only used for virtualization. It is orthogonal to all other
modes of execution of the CPU (e.g., real mode, v8086 mode, protected mode), which are
available in both modes. It is also orthogonal to the protection levels of protected mode
(e.g%cpl=0--%cpl=3) with all four levels separately available to each mode.

• Each mode defines its own distinct, complete 64-bit linear address space. Each address
space is defined by a distinct page table tree with a distinct page table register. Only the
address space corresponding to the current mode is active in the TLB, and the TLB changes
atomically as part of the transitions.

• Each mode has its own interrupt flag. In particular, software in non-root mode can freely
manipulate the interrupt flags (%eflags.if). External interrupts are generally delivered in
root mode and trigger a transition from non-root mode if necessary. e transition occurs
even when non-root interrupts are disabled.

Figure 4.1 illustrates how the central design of VT-x is intended to be used by system software:
in root mode, software has access to the full (non-virtualized) architecture of x86-64, including
all privilege rings of protected mode (shown in the figure) as well as the legacy modes of exe-
cution (not shown). is provides backward compatibility in the architecture, and consequently
for software, e.g., a host operating system will typically run in root-%cpl=0 and its application
programs will run in root-%cpl=3. e hypervisor also runs in root-%cpl=0 where it can is-
sue new privileged instructions to enter into non-root mode. Figure 4.1 also shows that virtual
machines execute with the full duplicate of privilege rings: each guest operating system runs in
non-root-%cpl=0 and applications run in non-root-%cpl=3.

4.2.1 VT-XANDTHEPOPEK/GOLDBERGTHEOREM
Recall Popek and Goldberg’s central virtualization theorem, discussed in §2.2.

..

eorem 1 [143]: For any conventional third-generation computer, a virtual
machine monitor may be constructed if the set of sensitive instructions for
that computer is a subset of the set of privileged instructions.

e VT-x architecture meets the criteria of the theorem, but through a significant departure from
the original model proposed to demonstrate the theorem. Popek and Goldberg identified the key
criteria for virtualization. rough their proof-by-construction of the theorem, they furthermore



4.2. THEVT-XARCHITECTURE 57

cpl 3

cpl 2

cpl 1

cpl 0

n
o
n
-r

o
o
t user

Guest OS

cpl 3

cpl 2

cpl 1

cpl 0

ro
o
t

user

Hypervisor and/or Host Operating System

VM 1Host

cpl 3

cpl 2

cpl 1

cpl 0

n
o
n
-r

o
o
t user

Guest OS

VM 2

Figure 4.1: Standard use by hypervisors of VT-x root and non-root modes.

demonstrated that virtualization was achievable without requiring any additional hardware con-
straints than those necessary to support protected operating systems, and specifically by using
address space compression and ring aliasing (running both the guest operating system and appli-
cations at user level) to build the hypervisor.

Intel pragmatically took a different path by duplicating the entire state of the processor
and introducing the dedicated root-mode. In particular, the full duplication of the architecture
was motivated by the need to ensure backward compatibility for the ISA and full equivalence
for virtualized workloads [171]. Terms must therefore be redefined to convincingly express that
VT-x follows the Popek/Goldberg criteria. e corresponding core VT-x design principle can be
informally framed as follows.

..

In an architecture with root and non-root modes of execution and a full dupli-
cate of processor state, a hypervisor may be constructed if all sensitive instruc-
tions (according to the non-virtualizable legacy architecture) are root-mode
privileged.

When executing in non-root mode, all root-mode-privileged instructions are
either (i) implemented by the processor, with the requirement that they oper-
ate exclusively on the non-root duplicate of the processor or (ii) cause a trap.

We make three observations.

1. Unlike the original Popek and Goldberg theorem, this rephrasing does not take into ac-
count whether instructions are privileged or not (as defined by their availability to software



58 4. X86-64: CPUVIRTUALIZATIONWITHVT-X

running at %cpl>0), but instead only takes into consideration the orthogonal question of
whether they are root-mode privileged.

2. ese traps are sufficient to meet the equivalence and safety criteria. is is similar to the
original theorem.

3. However, reducing transitions by implementing certain sensitive instructions in hardware
is necessary to meet the performance criteria for virtualization.

A few examples help illustrate how the notion of sensitivity is orthogonal to that of (reg-
ular) privilege. First, a guest operating system running in non-root-%cpl=0 will issue certain
privileged instructions such as reading or even writing control registers: these instructions must
operate on the non-root duplicate of the processor state. Following the principle, two imple-
mentations are possible in this situation: (i) either execute the instruction in hardware onto the
non-root context since the entire processor state is duplicated. e hypervisor must not be in-
formed since the hardware fully handles the instructions; and (ii) or take a trap from non-root
mode, which allows a hypervisor to emulate the instruction.

e former is preferred from a performance perspective as it reduces the number of transi-
tions. Obviously, it requires specific architectural support by the processor. e implementation
decision is therefore a tradeoff between hardware complexity and overall performance.

As a second example, the instructions that manipulate the interrupt flag (cli, sti, popf)
are sensitive, in particular since other instructions can actually leak information about the inter-
rupt flag itself onto memory (pushf). However, recall that these four instructions are not privi-
leged instructions in the architecture, i.e., they are available to user-level applications, at least in
some cases. Given their high execution rate in modern kernels, their non-root implementation is
handled directly by the processor.

As a third example, some instructions available at user-level such as sgdt and sidt, are
known to be behavior-sensitive. ese rare instructions are not privileged, yet virtualization-
sensitive. erefore, they must be (and are) root-mode-privileged.

4.2.2 TRANSITIONSBETWEENROOTANDNON-ROOTMODES
Figure 4.2 shows the key interactions and transitions between root mode and non-root mode
in the implementation of VT-x. e state of the virtual machine is stored in a dedicated structure
in physical memory called the Virtual Machine Control Structure (VMCS). Once initialized,
a virtual machine resumes execution through a vmresume instruction. is privileged instruction
loads the state from the VMCS in memory into the register file and performs an atomic transition
between the host environment and the guest environment. e virtual machine then executes in
non-root mode until the first trap that must be handled by the hypervisor or the next external
interrupt. is transition from non-root mode to root mode is called a #vmexit.



4.2. THEVT-XARCHITECTURE 59

cpl 3

cpl 2

cpl 1

cpl 0

n
o
n
-r

o
o
t

ro
o
t

ri
n
g
 0

user

Guest OS

VM

Hypervisor
VMCS

#vmexit
#vmlaunch

#vmresume

vmread

vmwrite

Figure 4.2: VT-x transitions and control structures.

Table 4.1 lists the various possible reasons for a #vmexit. e reason itself is stored in a
dedicated register (vmcs.exit_reason) to accelerate emulation. e reasons for an exit can be
grouped into categories including the following.

• Any attempt by the guest to execute a root-mode-privileged instruction, as this is the fun-
damental requirement of the Popek and Goldberg theorem. is includes most of the priv-
ileged instructions of the classic (i.e., non-virtualizable) x86 architecture, as well as the
sensitive-yet-unprivileged instructions causing violations of the theorem.

• e new vmcall instructions, designed to allow explicit transitions between non-root mode
and root-mode, and in particular hypercalls made by the guest operating system and des-
tined to the hypervisor. is is analogous to the sysenter instruction that transitions be-
tween user mode and kernel mode.

• Exceptions result from the execution of any innocuous instruction in non-root mode, that
happens to take a trap. is includes, in particular, page faults (#PF) caused by shadow
paging, the access to memory-mapped I/O devices, or general-purpose faults (#GP) due to
segment violations.

• EPT violations are the subset of page faults caused when the extended page mapping (under
the control of the hypervisor) is invalid. is exit was introduced with extended paging (see
Chapter 5).

• External interrupts that occurred while the CPU was executing in non-root mode, e.g., as
the result of network or disk I/O on the host. Such events must be handled by the hypervisor
(in the case of type-1 designs) or the host operating system (for type-2 designs) and may or
may not have any side-effects to the virtual machine itself.



60 4. X86-64: CPUVIRTUALIZATIONWITHVT-X

• e interrupt window opens up whenever the virtual machine has enabled interrupt and
the virtual machine has a pending interrupt. Following the #vmexit, the hypervisor can
emulate the pending interrupt onto the virtual machine.

• Finally, the ISA extensions introduced with VT-x to support virtualization are also control-
sensitive and therefore cause a #vmexit, each with a distinct exit reason. Such exits
never occur during “normal virtualization,” but play a fundamental role in nested virtual-
ization [33, 191].

Table 4.1: Categories VT-x exit codes

Category Exit Reason Description

Exception 0 Any guest instruction that causes an exception

Interrupt 1 � e exit is due to an external I/O interrupt

Triple fault 2 Reset condition (bad)

Interrupt 

window

7 � e guest can now handle a pending guest interrupt

Legacy

emulation

9 Instruction is not implemented in non-root mode; software 

expected to provide backward compatibility, e.g., task 

switch

Root-mode

Sensitive

11-17, 28-29,

31-32, 46-47:

x86 privileged or sensitive instructions: getsec,

hlt, invd, invlpg, rdpmc, rdtsc, rsm,

mov-cr, mov-dr, rdmsr, wrmsr, monitor,

pause, lgdt, lidt, sgdt, sidt, lldt,

ltr, sldt

Hypercall 18 vmcall : Explicit transition from non-root to root mode

VT-x new 19-27, 50, 53 ISA extensions to control non-root execution: invept,

invvpid, vmclear, vmlaunch, vmptrld,

vmptrst, vmreas, vmresume, vmwrite,

vmxoff , vmxon

I/O 30 Legacy I/O instructions

EPT 48-49 EPT violations and miscon! gurations

e transitions between root and non-root mode are architecturally atomic: a single instruction,—
vmresume—transitions back to non-root mode and loads the VMCS state into the current pro-
cessor state. In the other direction, the trap #vmexit stores the state of the virtual CPU into the
VMCS state. Although the VMCS state is backed by a specific memory region, the architec-



4.2. THEVT-XARCHITECTURE 61

ture does not specify whether the processor must spill the entire state into the cached memory,
or whether it can hold off to a subset into the processor itself. As a result, the in-memory state
of the current VMCS is undetermined. In addition, the layout of the VMCS is undefined. e
hypervisor software must access selected portions of the guest state via the vmread and vmwrite
instruction pair.²

4.2.3 A CAUTIONARYTALE—VIRTUALIZINGTHECPUAND IGNORING
THEMMU

Today, all processor architectures with virtualization support also virtualize the MMU. is, how-
ever, has not always been the case. Indeed, the first-generation Intel CPU with VT-x provided
only elementary support for memory virtualization. In such a design, root-mode and non-root
mode each have a distinct %cr3 register specifying the base of the page table tree. e cr3 register
is atomically updated as part of the vmentry and #vmexit transition between root and non-root
mode. As a result, a hypervisor can configure 100% disjoint address spaces. is solves the ad-
dress compression challenge of previous hypervisor and removes the need to rely on segmentation
for protection of the hypervisor. But in such a minimal design, every other aspect of memory
virtualization is left to software. As in prior architectures without any architectural support, two
approaches remain possible: (1) to shadow the page tables of the virtual machine (with guest-
physical values) with a duplicate set of page tables which contains the host-physical values as was
done by VMware (see §3.2.5); or (2) to rely on paravirtualization of the virtual memory subsystem
and inform the hypervisor to validate all new mappings (see §3.3).

is choice had a severe and unanticipated consequence when shadowing page tables. Us-
ing shadow paging, the first two generations of Intel processors failed to address the performance
criteria: over 90% of #vmexit transitions were due to shadow paging and the resulting virtual
machine performance was slower than when simply disabling VT-x and using software tech-
niques [3].

e explanation for this anomaly is actually subtle: shadowing operates by keeping the
mappings of the hardware page tables in sync with the changes made by the guest operating
system in its own page tables. e mechanism to identify changes is the MMU itself: all guest
page table pages are downgraded to read-only mappings to ensure a transition from the virtual
machine to the hypervisor, i.e., a trap in classic architectures and a #vmexit in VT-x. A hypervisor
that relies entirely on direct execution will therefore necessarily suffer a trap for every change in the
virtual memory of the guest operating system. In contrast, VMware’s memory tracing mechanism
relied on adaptive binary translation to eliminate the overwhelming majority of page faults.
Adaptive dynamic binary translation is an effective technique as it relies on the great locality
of the instructions that manipulate page table entries, a handful per operating system. Once these
instruction locations have been dynamically identified, the adaptive retranslation process simply
²In designing its own virtualization extension, AMD took a slightly different approach that architecturally defines the in-
memory data structure which it calls the virtual machine control block (VMCB). Even though ISAs differ, Intel’s VMCS and
AMD’s VMCB each offer an equivalent, yet incompatible, abstraction of the virtual CPU state.



62 4. X86-64: CPUVIRTUALIZATIONWITHVT-X

emulates the instructions and updates the shadow entries without ever dereferencing the memory
location directly and therefore without taking an expensive trap.

Fortunately, this anomaly was addressed in subsequent processors.

4.3 KVM—AHYPERVISORFORVT-X
So far, we have described the hardware extensions introduced by VT-x, and discussed a few ar-
chitectural considerations. We now use KVM [113], the Linux-based Kernel Virtual Machine,
as a case study to put the innovation in practice. KVM makes for an interesting study because of
its maturity and simplicity.

• KVM is the most relevant open-source type-2 hypervisor. It is used in numerous projects,
cloud hosting solutions, and deployed in enterprises and private clouds. KVM is the offi-
cially supported hypervisor of major commercial Linux distributions and the foundation of
most Openstack deployments.

• KVM relies onQEMU [32], a distinct open-source project, to emulate I/O. Absent KVM,
QEMU is a complete machine simulator with support for cross-architectural binary trans-
lation of the CPU, and a complete set of I/O device models. Together with KVM, the
combination is a type-2 hypervisor, with QEMU responsible for the userspace implemen-
tation of all I/O front-end device emulation, the Linux host responsible for the I/O backend
(via normal system calls) and the KVM kernel module responsible to multiplex the CPU
and MMU of the processor.

• e kernel component of KVM, which implements the functionality of CPU and memory
virtualization equivalent to the VMware VMM, has been a built-in component of the Linux
kernel and is designed to avoid unnecessary redundancies with Linux. KVM was designed
from the beginning to be part of Linux, with the explicit goal to merge all kernel-resident
components with the mainline Linux source tree. is was achieved with the merge of the
KVM kernel module into the Linux mainline as of version 2.6.20 in 2007.

• Unlike Xen or VMware Workstation, KVM was designed from the ground up assuming the
existence of hardware support for virtualization.³ is makes for a particularly good study
of the intrinsic complexity of a hypervisor designed for VT-x.

4.3.1 CHALLENGES INLEVERAGINGVT-X
e developers of KVM adapted Popek and Goldberg’s three core attributes of a virtual machine
as follows.

³Originally, KVM was designed for x86-64 processors with either VT-x or AMD-v; since then, it has evolved to virtualize
other architectures notably ARM/ARM64. See §7.6.



4.3. KVM—AHYPERVISORFORVT-X 63

Equivalence: A KVM virtual machine should be able to run any x86 operating system (32-bit
or 64-bit) and all of its applications without any modifications. KVM must provide sufficient
compatibility at the hardware level such that users can choose their guest operating system kernel
and distribution.

Safety: KVM virtualizes all resources visible to the virtual machine, including CPU, physical
memory, I/O busses and devices, and BIOS firmware. e KVM hypervisor remains in complete
control of the virtual machines at all times, even in the presence of a malicious or faulty guest
operating system.

Performance: KVM should be sufficiently fast to run production workloads. However, KVM’s
explicit design of a type-2 architecture implies that resource management and scheduling deci-
sions were left as part of the host Linux kernel (of which the KVMkernel module is a component).
To achieve these goals, KVM’s design makes a careful tradeoff to ensure that all performance-
critical components are handled within the KVM kernel module while limiting the complexity of
that kernelmodule. Specifically, the KVMkernelmodule handles only the core platform functions
associated with the emulation of the x86 processor, the MMU, the interrupt subsystem (inclusive
of the APIC, IOAPIC, etc.); all functions responsible for I/O emulation are handled in userspace.

To further simplify the implementation, the original version of KVM leveraged highly two
existing open-source project: (i) QEMU [32] for all I/O emulation in user-space and (ii) the x86-
specific portions of Xen, which served as the starting point for the Linux kernel module. Since
then, KVM and Xen have followed largely disjoint paths, but the evolution of QEMU is mostly
driven by the requirements for KVM.

4.3.2 THEKVMKERNELMODULE
e kernel module only handles the basic CPU and platform emulation issues. is includes the
CPU emulation, memory management and MMU virtualization, interrupt virtualization, and
some chipset emulation (APIC, IOAPIC, etc.). But it excludes all I/O device emulation.

Given that KVM was designed only for processors that follow the Popek/Goldberg prin-
ciples, the design is in theory straightforward: (i) configure the hardware appropriately; (ii) let
the virtual machine execute directly on the hardware; and (iii) upon the first trap or interrupt,
the hypervisor then regains control, and “just” emulates the trapping instruction according to the
semantic.

e reality is much more complex. Our analysis is based on the linux-4.8 release of Oc-
tober 2016. e KVM kernel module alone has over 25,000 source lines of code (LOC). e
complexity is due in part to: (i) the need to support multiple distinct versions of VT-x going back
to the first processor with VT-x (Intel’s Prescott); (ii) the inherent complexity of the x86 instruc-
tion set architecture; and (iii) the remaining lack of architectural support in hardware for some
basic operations, which must be handled in software.



64 4. X86-64: CPUVIRTUALIZATIONWITHVT-X

Figure 4.3 illustrates the key steps involved in the trap handling logic of KVM, from
the original #vmexit until the vmresume instruction returns to non-root mode. Immediately

handle_*
handle_*

handle_*

handle_*

fetch

decode

privcheck

read mem

em_*

wr mem

wr regs

wr %rip

#vmexit

#vmentry

#GP,

#PF,…

#UD

#DIV0

#GP,#UD

#GP,#PF

#GP,#PF

hardware trap

exit condition

1

2

3

4

5

6

7

Figure 4.3: General-purpose trap-and-emulate flowchart of KVM.

upon the #vmexit, KVM first saves all the vcpu state in memory. e Intel architectural
manual [103](Appendix I) defines 54 possible exit reasons (see Table 4.1). KVM then per-
forms a first-level dispatch based on vmcs.exit_reason, with a distinct handler (handler_*
in arch/x86/kvm/vmx.c) for each exit reason. Most of these handlers are straightforward. In



4.3. KVM—AHYPERVISORFORVT-X 65

particular, some common code paths rely exclusively on VMCS fields to determine the necessary
emulation steps to perform. Depending on the situation, KVM may:

• emulate the semantics of that instruction and increment the instruction pointer to the start
of the next instruction;

• determine that a fault or interrupt must be forwarded to the guest environment. Following
the semantic of x86, KVM changes the stack pointer and stores on the stack the previous
instruction and stack pointers. Execution will then resume at the instruction specified by
the guest’s interrupt descriptor table;

• change the underlying environment and re-try the execution. is occurs for example in the
case of an EPT violation; and

• do nothing (at least to the virtual machine state). is is the case for example when an
external interrupt occurs, which is handled by the underlying host operating system. Non-
root execution will eventually resume where it left off.

Unfortunately, the information available in the VMCS is at times inadequate to handle the #vmexit
without actually decoding the instruction that caused it. KVM—as well as any hypervisor for VT-
x which attempts to provide equivalence—must therefore also include a general-purpose decoder,
capable of decoding all instructions, and a general-purpose emulator, which can emulate them.
Figure 4.3 illustrates the key steps involved in the general-purpose emulator implementation of
KVM.e core logic that performs this basic step is implemented in arch/x86/kvm/emulate.c,
a file with 5000+ lines of code filled with macros, complexity, and subtleties. e key steps of the
emulator are:

1. fetch the instruction from guest virtual memory (%cs:%eip). First, the virtual address must
be converted into a linear address, then into a guest-physical address, and finally fetched
from memory;

2. decode the instruction, extracting its operator and operands. e CISC nature and variable
length of the x86-64 instructions makes this process non-trivial;

3. verify whether the instruction can execute given the current state of the virtual CPU, e.g.,
privileged instructions can only execute if the virtual CPU is at cpl0;

4. read any memory read-operands from memory, as is the common case in the x86 CISC
architecture using the same virtual to linear to guest-physical relocation steps as for instruc-
tion fetches;

5. emulate the decoded instruction, which could be any of the instructions defined in the x86
architecture. Each instruction opcode is emulated via its own dedicated emulation routine
(em_* in the source);



66 4. X86-64: CPUVIRTUALIZATIONWITHVT-X

6. write any memory write-operands back to the guest virtual machine; and

7. update guest registers and the instruction pointer as needed.

Clearly, these steps are complex, expensive, and full of corner cases and possible exception condi-
tions. Figure 4.3 further shows the intricacy as every stage contains a possible exception case, in
which the trap-and-emulate logic concludes that the guest instruction cannot successfully execute,
and instead should generate a fault in the guest virtual CPU, e.g., a virtual #GP, #PF, or #UD.
Furthermore, the instruction emulation step can, in some rare cases, lead to a fault in the actual
hardware such as when dividing by zero. is is shown in red in the figure, leading to additional
complexity.

e emulator is also notoriously brittle, and its implementation has evolved over the years
to address defect reports as well as ongoing ISA extensions. It remains error-prone. A recent study
by Amit et al. [15] identified 117 emulation bugs in the KVM kernel module, of which 72 were
in the emulator alone.

4.3.3 THEROLEOFTHEHOSTOPERATINGSYSTEM
KVM was specifically designed to be part of Linux. Unlike other type-2 hypervisors such as
VMware Workstation [45] or VirtualBox [180] which are host-independent, KVM is deeply
integrated into the Linux environment. For example, the perf toolkit has a specific mode to
profile KVM virtual machines; this is made possible by the deep integration of the KVM and
Linux projects.

Figure 4.4 shows the core KVMvirtual machine execution loop [113], shown for one virtual
CPU. e outer loop is in usermode and repeatedly:

• enters the KVM kernel module via an ioctl to the character device /dev/kvm;

• the KVM kernel module then executes the guest code until either (i) the guest initiates I/O
using an I/O instruction or memory-mapped I/O or (ii) the host receives an external I/O
or timer interrupt;

• the QEMU device emulator then emulates the initiated I/O (if required); and

• in the case of external I/O or timer interrupt, the outer loop may simply return back to
the KVM kernel module by using another ioctl(/dev/kvm) without further side-effects.
is step in userspace is however essential as it provides the host operating system with the
opportunity to make global scheduling decisions.

e inner loop (within the KVM kernel module) repeatedly:

• restores the current state of the virtual CPU;

• enters non-root mode using the vmresume instruction. At that point, the virtual machine
executes in that mode until the next #vmexit;



4.4. PERFORMANCECONSIDERATIONS 67

User mode

Handle

IO

IO

Signal

pending?

Issue Guest

Execution ioctl Enter

non-root

Execute Guest

Handle

#vmexit

Kernel mode Non-root

yes

yes

no

no

Figure 4.4: KVM Virtual Machine Execution Loop, adapted from [113].

• handles the #vmexit according to the exit reason, as described in §4.3.2;

• if the guest issued a programmed IO operation (exit_reason = IO) or a memory-mapped
IO instruction (exit_reason = exception, but only when accessing a memory-mapped
IO page), break the loop and return to userspace; and

• if the #vmexit was caused by an external event (e.g., exit_reason = interrupt), break
the loop and return to userspace.

4.4 PERFORMANCECONSIDERATIONS
edesign of VT-x is centered around the duplication of architectural state between root and non-
root modes, and the ability to atomically transition between them: a single instruction, vmresume,
transitions back to non-root mode and loads then VMCS state into the current processor state.
In the other direction, the trap #vmexit stores the entire state of the virtual CPU into the VMCS
state.

Atomic transitions between modes do not imply a high execution speed, and certainly not
a single-cycle execution time. Intuitively, such transitions are expected to stall the entire execu-



68 4. X86-64: CPUVIRTUALIZATIONWITHVT-X

tion pipeline, given that the whole register file, privileged state, and instruction pointer change.
In reality, the measured cost of these transitions is high, and suggests a complex implementation
within the processor’s microcode firmware. Table 4.2 shows the cost of a hardware round-trip, de-
fined by a #vmexit followed by a NULL handler in the hypervisor that increments the instruction
pointer and resumes execution of the virtual machine. In early generations, such as Prescott, the
cost of a single hardware round-trip was measured in microseconds, largely exceeding the cost of
a regular trap. Since then, transitions have improved by 5� but remain high.

Table 4.2: Hardware round-trip latency, from [5]

Microarchitecture Launch Date Cycles

Prescott 3Q05 3963

Merom 2Q06 1579

Penryn 1Q08 1266

Nehalem 3Q09 1009

Westmere 1Q10 761

Sandy Bridge 1Q11 784

Table 4.3 further shows the cost of individual VT-x instructions and transitions for a
broader set of processors, including more recent releases [6]. Despite the lack of description by
Intel or an independent study of the cause of the changes, one can reasonably infer that certain
instructions, (e.g., vmread) went from being implemented in microcode to being integrated di-
rectly into the pipeline. Nevertheless, all the atomic transitions (vmresume or #vmexit) remain
very expensive despite having been highly optimized, and have not improved noticeably in the
past five generations of processors.

4.5 FURTHERREADING
Amit et al. [15] identified minor hardware limitations to the claim that VT-x is virtualizable
according to the Popek/Goldberg theorem: the physical address width is available directly through
the CPUID instruction and not virtualizable. is can cause a problem when live-migrating a
virtual machine [51, 135] across systems with different physical address widths. Also, some of the
FPU state is not fully virtualizable, and workarounds are required.

In the same work, Amit et al. primarily identified software bugs in the implementation
of KVM that violate the safety equivalence property expected of hypervisors. By comparing sys-
tematically the behavior of a KVM virtual machine with Intel’s reference simulator [15], they
identified 117 distinct bugs in KVM. e common cause for these bugs is that the entire com-
plexity of the x86 ISA is exposed to software. Although the majority of these bugs are corner-case
equivalence limitations with little practical impact, at least 6 bugs have led to security vulnerabil-
ities and can cause host DoS, guest DoS, or privilege escalation. ese concerns have called for



4.5. FURTHERREADING 69
Table 4.3: Hardware costs of individual VT-x instructions and #vmexit for different Intel processors

Processor Prescott Merom Penryn Westmere
Sandy 
Bridge

Ivy 
Bridge

Haswell Broadwell

VMXON 243 162 146 302 108 98 108 116

VMXOFF 175 99 89 54 84 76 73 81

VMCLEAR 277 70 63 93 56 50 101 107

VMPTRLD 255 66 62 91 62 57 99 109

VMPTRST 61 22 9 17 5 4 43 44

VMREAD 178 53 26 6 5 4 5 5

VMWRITE 171 43 26 5 4 3 4 4

VMLAUNCH 2478 948 688 678 619 573 486 528

VMRESUME 2333 944 643 402 460 452 318 348

vmexit/vmcall 1630 727 638 344 365 334 253 265

vmexit/cpuid 1599 764 611 389 434 398 327 332

vmexit/#PF 1926 1156 858 569 507 466 512 531

vmexit/IOb 1942 858 708 427 472 436 383 397

vmexit/EPT N/A N/A N/A 546 588 604 656

a refactoring of the KVM kernel module, and in particular to consider moving the instruction
emulator to userspace where bugs can be more easily contained [37].

Readers interested in getting a deeper understanding of KVM will quickly realize that the
source code is the best form of documentation, even though the KVM website [118] does contain
some useful pointers.

All hypervisors for the x86 architecture have embraced VT-x since its introduction in sil-
icon. Current versions of VMware Workstation leverages the VT-x MMU capabilities similarly
to KVM: the world switch no longer exists in its original form, and the core execution loop of
VMware Workstation resembles that of KVM. Adams and Agesen [3] study in great detail this
tradeoff between DBT and direct execution in the presence of hardware support. e tradeoff is
substantial whenever the hypervisor must shadow in-memory data structures that are frequently
accessed in practice. e tradeoff was fundamental prior to the introduction of extended paging
in processors, and the authors conclude that VT-x (without extended paging) hurts performance.

Xen also embraced VT-x early under the term hardware virtualization (HVM) [50, 146].
With HVM, guest operating systems no longer need to be paravirtualized to run on Xen. In-
stead, paravirtualization is merely an optional set of extensions that improve performance and
functionality by directly communicating with the hypervisor.

To the best of our knowledge, the micro-architectural cost of transitions from root to non-
root mode has never been academically studied in depth, and the salient aspects of their imple-



70 4. X86-64: CPUVIRTUALIZATIONWITHVT-X

mentation in Intel or AMD processors have not been disclosed. e cause of the 5� improvement
from Prescott to Sandy Bridge remains the cause for speculation. Instead, the focus has been to
relentlessly reduce the software cost of handling a #vmexit.



71

C H A P T E R 5

x86-64:MMUVirtualization
with Extended Page Tables

Hypervisors must virtualize physical memory, so that each virtual machine has the illusion of
managing its own contiguous region of physical memory. Recall the definitions of §1.6: each vir-
tual machine is provided the abstraction of guest-physicalmemory, while the hypervisormanages
host-physical memory, the actual underlying physical resource.

is creates a two-dimensional problem: the guest operating system defines mapping be-
tween virtual memory and guest-physical memory. e hypervisor then independently defines
mappings between guest-physical memory and host-physical memory.

In the absence of any architecture support in the memory management unit, hypervisors
rely on shadow paging to virtualize memory. In shadow paging, the hypervisor manages a com-
posite set of page tables that map virtual memory to host-physical memory (see §3.2.5 for a
description of VMware’s implementation). Shadow paging, as implemented in software, is ar-
guably the most complex subsystem of a hypervisor. It relies on memory tracing to keep track of
the changes to page table structures in memory. Shadow paging also relies heavily on heuristics
to determine which pages should be traced, as page tables can be anywhere in physical memory
and can be allocated and reallocated at the discretion of the guest operating system. Further, the
introduction of VT-x had a negative impact on the performance of shadow paging (see §4.2.3).

Extended page tables provide architectural support for MMU virtualization. §5.1 describes
the design of extended paging in x86-64 processors. §5.2 describes how KVM manages and vir-
tualizes memory, and takes advantage of extended page tables. §5.3 measures the cost of MMU
virtualization. Finally, like all chapters, we close with pointers for further reading.

5.1 EXTENDEDPAGING

Extended page tables, also known as nested page tables, eliminates the need for software-based
shadow paging. e design was published by Bhargava et al. [35] in 2008 and available in silicon
by both AMD and Intel around that same time.

Extended page tables combine in hardware the classic hardware-defined page table struc-
ture of the x86, maintained by the guest operating system, with a second page table structure,
maintained by the hypervisor, which specifies guest-physical to host-physical mappings. Both
structures are similarly organized as a tree.



72 5. X86-64:MMUVIRTUALIZATIONWITHEXTENDEDPAGETABLES

With extended paging, the TLB lookup logic, which is deeply integrated with the pro-
cessor, does not change: the TLB remains organized as a set associative cache that map virtual
pages to host-physical pages. On architectures that support superpages (e.g., 2 MB and 1 GB on
x86-64), there is typically a distinct cache for each page size.

What changes fundamentally is the TLB miss handling logic. Whenever a mapping is not
present in the TLB, the x86-64 architecture specifies that the processor will walk the page table
tree, rooted by %cr3 and insert the missing mapping in the TLB. On x86-64, in the absence of
extended paging, the tree is a n D 4 level tree for regular pages, n D 3 for 2 MB pages, and n D 2

for 1 GB pages. e page walk logic therefore must access n locations in memory to find the
missing mapping. Only then can the CPU perform the actual memory read or write.

Let’s consider the case where the virtual to guest-physical tree is n-level and the guest-
physical to host-physical tree is m-level.is is shown in Figure 5.1.OnTLBmisses, the hardware
walks the guest page table structure which consists entirely of guest-physical pages, with each
guest-physical reference required to be individually mapped to its own host-physical address. To
resolve each reference in the first tree, the processor must first perform m references in the second
tree, and then lookup the mapping in the first tree. ere are n such steps, each requiring mC

1 references. ese n � .mC 1/ references lead to the desired guest-physical address. Another
m lookups are required to convert this guest-physical address into a host-physical address. e
number of architecturally defined memory references required for an extended page lookup is
therefore n �mC nCm.

In summary, extended paging composes the two independent mappings via a quadratic
lookup algorithm. Although architecturally quadratic, current-generation processors rely exten-
sively on secondary data structures to reduce the number of actual references to the memory
hierarchy.

5.2 VIRTUALIZINGMEMORY INKVM
KVM was originally released prior to the introduction of extended paging. As a result, the KVM
kernel module may be configured to enable or disable the feature [42]. In practice, however, any
considerations to the use of KVM today (in 2017) without extended paging are limited to cases
of nested virtualization, e.g., the Turtles research prototype [33].

Figure 5.2 shows the key aspects of memory management in KVM. e figure shows that
there are three distinct page table structures, each managed by a distinct entity (visualized by the
red dot).

• QEMU, as a userspace process, allocates the guest-physical memory in a contiguous portion
of its own virtual address space. is is convenient for a number of reasons: (i) it lets the
details of memory management and allocation to the host operating system, in line with
a type-2 architecture; and (ii) it provides convenient access from userspace to the guest-
physical address space; this is used in particular by emulated devices that perform DMA to
and from the guest-physical memory. Like any process on the machine, Linux manages a



5.2. VIRTUALIZINGMEMORY INKVM 73

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

TLB

entry

idx 4 idx 3 idx 2 idx 1 offset

= guest PTE = host PTE

EPT

gCR3

Figure5.1: Sequence of architecturally-definedmemory references to load aTLB entry with extended
page tables (m D 4 and n D 4).

page table tree for this process. When the QEMU process is scheduled—which includes all
situations where the virtual machine’s VCPU is running—, the root mode %cr3 register
defines an address space that includes QEMU and the contiguous guest-physical memory.

• e virtual machine manages its own page tables. With nested paging enabled, the
non-root cr3 register points to the guest page tables, which defines the current address
space in terms of guest-physical memory. is is under the exclusive control of the guest
operating system. Furthermore, KVM does not need to keep track of changes to the guest
page tables nor to context switches. In fact, assignments to cr3 in non-root mode do not
need to cause a #vmexit when the feature is enabled.

• In the x86 architecture, the format of the regular page tables (as pointed by the cr3 register)
are different from those of the nested pages. e KVM kernel module is therefore respon-
sible for managing nested page tables, rooted at the eptp register on Intel architectures.



74 5. X86-64:MMUVIRTUALIZATIONWITHEXTENDEDPAGETABLES

App

GOSGuest-physical
memory

Host-physical memory

Linux

gemu

kvm.ko

ept

cr3
non-root

cr3
root

ke
rn

el
 m

o
d
e

u
se

rm
o
d
e

n
o
n
-r

o
o
t 

m
o
d
e

Figure 5.2: Access to guest-physical memory in KVM by the userspace QEMU/KVM component,
the kvm.ko kernel module, and the guest operating system. Each red dot represents the entity that
manages the corresponding hardware page table.

Wemake onemore additional observation, which has performance implications: it is easier for the
hypervisor to access guest-physical address space than it is to access guest-virtual address space.
Specifically, the VT-x architecture lacks architectural support for root mode software to access
efficiently the virtual address space of non-root mode environments.

Figure 5.2 shows that it is simple for the hypervisor to access the guest-physical address
space: the userspace process can simply add a constant offset to reference a memory location. e
KVM module itself can actually use the same approach, since the userspace process is already
mapping the address space. It is, however, much harder and complex for the hypervisor to access
the current virtual address spaces of the virtual machine as those mappings are only present in
the MMU of the processor while the virtual machine is executing, but not when the hypervisor
is executing.

Unfortunately, the guest instruction pointer is a virtual address and the KVM decoder must
read the content of the faulting instruction from memory. Similarly, all the memory operands of
the instruction refer to virtual addresses of the virtual machine. As a consequence, the KVM
decoder and emulate makes repeated references in software to the guest page tables to determine
the location in guest-physical memory of the instructions and operands.



5.3. PERFORMANCECONSIDERATIONS 75

e type-2 hypervisor design of KVM introduces a complication when managing guest-
physical memory. Although the format differs, the semantic mapping of the guest-physical ad-
dress space in the nested page tables must be consistent with the mappings of guest-physical ad-
dress space of the host operating system. For example, should the guest-physical mapping change,
e.g., a new page is allocated when handling an #vmexit from the virtual machine, the same map-
ping must also be reflected in address space of the QEMU process on the host. Conversely, should
the host operating system decide to swap out a page from the QEMU process, the corresponding
guest-physical extended mapping must also be removed.

e current version of KVM contains some key optimizations in the area of memory man-
agement. In particular, Linux’s KSM mechanism [19] allows for the transparent sharing of mem-
ory, similar to the solution introduced in VMware ESX Server [177]. KSM allows memory pages
with identical content to be transparently shared between Linux processes, and therefore between
KVM virtual machines. A match is detected when two distinct pages belonging to potentially
different processes, are found to have the same content and that content is declared stable, i.e.,
unlikely to change in the near future. KSM then (i) selects one page from the set; (ii) establishes
read-only mappings in all address spaces to that page; and (iii) notifies the KVM module to do
the same for the nested page tables; and (iv) deallocates all other replicas of the same page.

5.3 PERFORMANCECONSIDERATIONS
Extended page tables provide significant performance benefits over shadow paging. It eliminates
the need for memory tracing, which accounts for as much as 90% of all #vmexits in typical
virtualized workloads [5]. It also eliminates the memory footprint of the shadow page tables.

However, extended paging is not free. A two-dimensional page-walk, as defined architec-
turally, is prohibitive in 64-bit address spaces: with 4 KB pages, the guest and the host page tables
are each 4-level trees with n D m D 4 for a total of 24 architecturally defined memory references
for a single TLB miss (vs. only 4 for a non-virtualized configuration). Fortunately, the existence
of page walk caches inside the processors can limit the impact of the design [35].

Despite the ongoing focus on micro-architectural improvements, the overheads of virtual-
izing can be readily measured. Drepper measured it in 2008 [67], shortly after the introduction of
the technology, using a simple pointer-chasing benchmark. Drepper’s measurements show that
the virtualized workload executes up to 17% slower on Intel CPU and up to 39% slower on AMD
CPUwhen compared to the non-virtualized execution on the same processor.With such a bench-
mark, the difference in execution time is attributed nearly entirely to the difference in the TLB
miss handling logic of the processors, and the number of memory references that are required to
be fetched.

We perform a similar pointer-chasing experiment on a more recent, 2011-era Intel “Sandy
Bridge” processor running at 2.4 Ghz. To measure the cost of TLB misses, we create a list that
randomly links objects from a 32 GB heap, and then measure the average cost of a pointer refer-
ence. is micro-benchmark is designed to have no locality and to ensure that the great majority



76 5. X86-64:MMUVIRTUALIZATIONWITHEXTENDEDPAGETABLES

of pointer references will incur a TLB miss, irrespective of page size. Indeed, this benchmark has
a TLB miss rate between 93% and 99.9%, depending on the configuration. e test only uses
local memory for both data and page tables, as to avoid NUMA effects. Finally, the linked list is
constructed to use different caches lines of the various pages, as to ensure that the last-level cache
is efficiently used.

Figure 5.3 shows the performance of the different combination of (guest) page sizes and
extended page sizes. Since the regular page table and the extended page table are orthogonal
to each other, one can be larger or smaller than the other without any particular complication.
e first block of results shows the performance for the standard 4 KB page size, with different
extended page sizes, as well as for the non-virtualized case. e second and third blocks show the
benefit of using super pages in the (guest) operating system. We report the performance in cycles
per memory reference, which includes the cost of the memory reference (and the potential cache
miss) as well as the cost of the TLB miss.

900

800

700

600

500

400

300

200

100

0

C
y
cl

es
/M

em
o
ry

 R
ef

er
en

ce

4KB   2MB   1GB

EPT 4KB EPT 2MB EPT 1GB No Virtualization

4KB   2MB   1GB 4KB   2MB   1GB 4KB   2MB   1GB

(Guest) Page Size

Figure 5.3: Measured cost of TLB misses on Intel “Sandy Bridge” processors for various combination
of page sizes and extended page sizes.

In Figure 5.3, we first observe that the results of this micro-benchmark are all very high,
with a reference costing at least 200 cycles on average. Fortunately, realistic workloads have much
better TLB behavior because of the nearly universal locality principle [64]. We also note a sub-
stantial difference in the cost of these TLB misses: TLB misses of the most expensive configura-
tion (4 KB pages, 4 KB extended pages) is 3.25�more expensive than the cheapest configuration
(1 GB pages, non-virtualized). Finally, we observe that 4 KB page sizes are noticeably more ex-



5.4. FURTHERREADING 77

pensive than 2 MB and 1 GB page sizes, but that 2 MB and 1 GB page lead to comparable TLB
load times. Larger page sizes reduce the number of architecturally defined memory references re-
quired to load the TLB. For example, the number of required references goes from 24 down to 17
by simply increasing the extended page table size to 2 MB (since m W 4! 3). More importantly,
the reduced number of page table entries dramatically reduces the probability that the memory
references will not be served by the processor L3 cache.

Developers have recognized the need to carefully trade-off flexibility and performance in
the management of memory of virtual machines. Today, 2 MB super pages available are a standard
feature of commodity operating systems such as Linux, and most carefully tuned applications will
take advantage of the feature. Many hypervisors today use 2 MB pages for extended page tables
whenever possible. For example, VMware ESX preferably uses 2MB extended pages. It uses 4 KB
pages only when the system is under global memory pressure and the ballooning or transparent
memory sharing mechanisms [177] kick in to reduce memory pressure [176].

5.4 FURTHERREADING
Bhargava et al. [35] described the benefit of the pagewalk cache implemented in AMD Opteron.
Ahn et al. [8] propose to use a flattened host page table array to reduce the memory refer-
ences from n �mC nCm to 2nC 1 references , with n � 4 based on the guest page size used.
Gandhi et al. [72] recently measured the cost of nested paging on Intel “Sandy Bridge” CPU
for large-memory workloads, and proposed to use segmentation instead of the conventional page
table tree layout. Yaniv et al. propose to hash extended page table rather than the conventional
2D radix walk [189].

Agesen et al. [4] describe how introduction of extended paging and the dramatic reduction
in the number of #vmexit, improves efficiency and allowed VMware to rely on direct execution
to run most of the guest kernel code. More recently, Agesen et al. [5] describe how the judicious
use of DBT for very short code sequences can be used to eliminate #vmexit and further increase
performance.





79

C H A P T E R 6

x86-64: I/O Virtualization
e previous chapters define virtual machines in terms of the three key attributes proposed by
Popek and Goldberg—equivalence, safety, and performance—which help us to reason about vir-
tualization from a CPU and MMU perspective. When introducing I/O capabilities to virtual
machines, a fourth attribute becomes handy: interposition. e ability to interpose on the I/O of
guest virtual machines allows the host to transparently observe, control, and manipulate this I/O,
thereby decoupling it from the underlying physical I/O devices and enabling several appealing
benefits.

e I/O that is generated and consumed by virtual machines is denoted virtual I/O, as op-
posed to physical I/O, which is generated and consumed by the operating system that controls the
physical hardware. §6.1 enumerates the benefits of having interposable virtual I/O. §6.2 describes
how physical I/O is conducted and provides the necessary background for the chapter. §6.3 de-
scribes how equivalent I/O capabilities are provided to guest VMs, without utilizing hardware
support for I/O. §6.4 describes how to enhance the performance of virtual I/O with the help of
hardware support that was added specifically for this purpose; we shall see that there is a cost
to pay for this performance enhancement—losing the ability to interpose and all the associated
benefits.

We note that, in this chapter, the notion of “hardware support” is additive to the previous
chapters. Namely, unless otherwise stated, we assume that CPU and MMU virtualization is al-
ready supported by hardware and focus on hardware features that were added to help accelerate
the processing of virtual I/O. Some parts of this chapter are independent of the specific archi-
tecture of the CPU, but other parts are architecture-dependent. In the latter case, as the title
of this chapter suggests, we assume an Intel x86-64 processor with the VT-x virtualization ex-
tension [171]. In particular, with respect to architecture-dependent issues, this chapter describes
Intel’s x86-64 hardware support for I/O virtualization, which is called VT-d [1, 106].

6.1 BENEFITSOF I/O INTERPOSITION
e traditional, classic I/O virtualization approach—which predates hardware support—
decouples virtual from physical I/O activity through a software indirection layer. e host exposes
virtual I/O devices to its guests. It then intercepts (traps) VM requests directed at the virtual de-
vices, and it fulfills (emulates) them using the physical hardware. is trap-and-emulate approach
[78, 143] allows the host to interpose on all the I/O activity of its guests, as schematically illus-
trated in Figure 6.1.



80 6. X86-64: I/O VIRTUALIZATION

Application

Device Driver

Device

User

Kernel

Hardware

Application

Device Driver

Software-based Device

User

Guest Kernel

Hypervisor

Figure 6.1: Traditional I/O virtualization decouples virtual I/O activity from physical I/O activity,
allowing the hypervisor to interpose on the I/O of its virtual machines.

ebenefits of I/O interposition are substantial [178]. First, interposition allows the hyper-
visor to encapsulate the entire state of the virtual machine—including that of its I/O devices—at
any given time. e hypervisor is able to encode the state of the devices because (1) it implements
these devices in software, while (2) interposing on each and every VM I/O operation. Encapsu-
lation makes it possible for the hypervisor to, for example, suspend the execution of a VM, store
its encoded representation (denoted as the VM image), and resume execution at a later time. e
combination of encapsulation and decoupling of virtual from physical I/O is especially powerful,
providing transparent VM portability between different servers that may be equipped with dif-
ferent I/O devices. e hypervisor’s role is to map between virtual to physical I/O devices. us,
it can suspend the VM’s execution on a source server, copy its image to a target server, and resume
execution there [115], even if the physical I/O devices at the source and target servers are differ-
ent. All that is required is for the target hypervisor to recouple the virtual devices of the VM with
the locally available physical devices. e VM remains unaware throughout the move—nothing
has changed from its perspective. In fact, the VM need not stop execution while it moves between
servers, a feature known as live migration [51, 135].

e hypervisor can exploit its ability to interpose on the I/O and dynamically decouple/re-
couple a physical device from/to a VM even if the VM stays on its original machine rather than
moves. For example, when upgrading, reconfiguring, or otherwise modifying the VM’s storage
device, the hypervisor can use its indirection layer to hide the modifications, e.g., by copying the
stored content from an old device to a new one, in a transparent manner, while the VM is running.

Arguably, the most notable benefit of CPU virtualization is consolidation, namely, the abil-
ity to run multiple virtual servers on a much smaller number of physical servers, by multiplexing
the hardware. With classic I/O virtualization, it is the ability to interpose on the I/O that provides
I/O device consolidation. Specifically, interposition allows the hypervisor to map multiple virtual
devices onto a much smaller set of physical devices, thereby increasing utilization, improving ef-
ficiency, and reducing costs.

I/O interposition additionally allows the hypervisor to aggregate multiple physical I/O de-
vices into a single, superior virtual device. e virtual device provides better performance and
robustness by seamlessly unifying physical devices, exposing them to VMs as one, load balancing



6.2. PHYSICAL I/O 81

between them, and hiding failures of individual devices by transparently falling back on other
devices.

I/O interposition further allows the hypervisor to add support for new features that are
not natively provided by the physical device. Examples include: replicated disk writes to trans-
parently recover from disk failures; preserving old versions of disk blocks, instead of overwriting
them, to allow for snapshots, record-replay, and time travel capabilities; storage deduplication,
which eliminates duplicate copies of repeated data and thus utilizes a given storage capacity more
effectively; seamless networking and storage compression/decompression and encryption/decryp-
tion; metering, accounting, billing, and rate-limiting of I/O activity; quality of service guarantees
and assurances; and security-related features such network intrusion detection and deep packet
inspection.

Lastly, while not immediately obvious, traditional I/O virtualization realized through I/O
interposition allows hypervisors to apply all the canonical memory optimizations to the memory
images of VMs, including memory overcommitment (where the combined size of the virtual
address spaces allocated to VMs exceeds the size of the physical memory), demand-based paging
and lazy allocation based on actual memory use, swapping of unused memory to disk, copy-on-
write, page migration, transparent huge pages, and so on. If VMs were allowed to use physical I/O
devices directly, these optimizations would not have been possible, because (1) I/O devices are
often capable of directly accessing the memory on their own without CPU involvement, (2) this
type of direct access does not tolerate page faults, and (3) hypervisors have no general way to know
which memory regions would serve as target locations of such direct device accesses. We further
discuss this issue below.

..

In summary, classic I/O virtualization is implemented via I/O interposition,
which provides many advantages such as added features and state encapsula-
tion that allows for migration.

6.2 PHYSICAL I/O

e previous section conducted a high-level discussion about the advantages of traditional virtual
I/O. Next, our goal is to describe how virtual I/O really works. In order to do that, we first need a
better understanding of physical I/O, as virtual machines believe that they perform such I/O, and
it is the hypervisor’s job tomaintain this illusion. A lot of topics, details, and legacy issues fall under
the title of physical I/O that hypervisors need to virtualize—much too many to fit in the limited
space of this book. erefore, in this section, we only briefly describe some key mechanisms that
are required to allow us to explain the more important aspects of virtual I/O; these mechanisms
would then be used in the following sections. Readers who already have reasonable understanding
regarding how physical I/O works, notably over PCIe fabrics, may skip this section.



82 6. X86-64: I/O VIRTUALIZATION

DDR4

DDR4

DDR4

DDR4

D
M

I

P
C

Ie

P
C

Ie

P
C

Ie
 x

8

P
C

Ie
 x

8

QPI link

QPI link

DDR4

DDR4

DDR4

DDR4

DRAM DRAM

HDDs

SSD

SATA

USB

VGA PS2

USB flash

Display

Keyboard Mouse

CPU1 up to 22 cores CPU2 up to 22 cores

M
em

o
ry

C
o
n
tr

o
ll

er M
em

o
ry

C
o
n
tro

ller

Xeon
E5-2600

v4

C610
series

I/O hub

Host to
DMI bridge

Host to
PCI bridge

Host to
PCI bridge

Intel 40GbE PCIe
ethernet adapter

Total 40
PCIe lines
to CPU1

Total 40
PCIe lines
to CPU2

Intel NVMe SSD

Xeon
E5-2600

v4

Figure 6.2: High-level view of a possible internal organization of an Intel server. In this example,
the server houses two CPUs from the E5-2600 v4 family, each of which may consist of 4–22 cores,
depending on the specific model.

6.2.1 DISCOVERINGAND INTERACTINGWITH I/ODEVICES
A typical computer consists of a wide variety of I/O devices, including network controllers, disk
drives, video, mouse, and keyboard. Figure 6.2 depicts a high-level view of a possible organization
of a modern Intel server. Such a system may house several CPU packages, which communicate via
the Intel QuickPath Interconnect (QPI) [134]. CPU cores access thememorymodules (DIMMs)
through their memory controllers, and they communicate with the various I/O devices through
the relevant host bridges. Notably, communications with Peripheral Component Interconnect
Express (PCIe) devices flow through the host-to-PCIe bridge [141]. e PCIe fabric poses the
greatest challenge for efficient virtualization, because it delivers the highest throughput as com-
pared to other local I/O fabrics. For this reason, hardware support for I/O virtualization largely
focuses on PCIe; this chapter likewise focuses on virtualizing PCIe devices, for the same reason.

Upon startup, at boot time, the operating system kernel must somehow figure out which
devices are available in the physical machine. e exact way to obtain this goal is nontrivial; it
varies and depends on several factors, but typically it involves the Basic Input/Output System
(BIOS) firmware [63], or its successor, the Unified Extensible Firmware Interface (UEFI) [170].
e firmware (BIOS or UEFI) then provides a description of the available devices in some
standard format, such as the one dictated by the Advanced Configuration and Power Interface
(ACPI) [169]. In §6.2.3, we provide a detailed example of how PCIe devices are discovered. Gen-



6.2. PHYSICAL I/O 83

erally speaking, however, the device discovery process requires the host OS to query the physical
firmware/hardware. us, when virtualizing the OS, it will be the hypervisor that will be queried,
allowing it to present devices as it sees fit to the guest OS, irrespective of the real physical devices.

Let us assume that the I/O devices have been discovered. In this state, they interact with
the CPU and the memory in three ways, as depicted in Figure 6.3 and as discussed next.

Core

RAM

Host Bridge

CPU Package

I/O Device

(1) MMIO
      and PIO

(3) 
Interrupt

(2) DMA

I/O Device I/O Device

Local I/O Bus

M
em

o
ry

C
o
n
tr

o
ll

er

Figure 6.3: ere are three ways that I/O devices can interact with the CPU and the memory:
(1) MMIO and PIO allow CPU cores to communicate with I/O devices; (2) DMA allows I/O devices
to access the memory; and (3) interrupts allow I/O devices to communicate with CPU cores.

PIO and MMIO: Port-mapped I/O (PIO) and memory-mapped I/O (MMIO) provide the
most basic method for CPUs to interact with I/O devices. e BIOS or UEFI associate the
registers of the I/O devices with unique, dedicated addresses. e CPU often uses these addresses
to implement control channels, namely to send commands to the I/O devices and then to receive
the corresponding statuses by polling the appropriate registers for reading.

Addresses of PIO—called “ports”—are separated from the memory address space and have
their own dedicated physical bus. Such addresses are typically limited to 16 bits. ey are used via
the special OUT and IN x86 instructions, which write/read 1–4 bytes to/from the I/O devices.
e addresses are usually well known and set by hardware vendors; for example, ports 0x0060–
0x0064 are used to read from and send commands to keyboards and mice with PS/2 connectors.

MMIO is similar, but the device registers are associated with physical memory addresses,
and they are referred to using regular load and store x86 operations through the memory bus. e
association between device registers and memory addresses is predetermined on startup. e host
bridge controller andmemory controller are aware of these associations and route data accordingly.



84 6. X86-64: I/O VIRTUALIZATION

DMA: Using PIO and MMIO to move large amounts of data from I/O devices to memory
and vice versa can be highly inefficient. Such data transfers might take a long time, during which
the core must be continuously and synchronously involved to perform explicit in/out/load/store
instructions. A better, more performant alternative is to allow I/O devices to access the mem-
ory directly, without CPU core involvement. Such interaction is made possible with the Direct
MemoryAccess (DMA) mechanism. e core only initiates the DMA operation, asking the I/O
device to asynchronously notify it when the operation completes (via an interrupt, as discussed
next). e core is then free to engage in other unrelated activities between the DMA initiation
and completion.

Interrupts: I/O devices trigger asynchronous event notifications directed at the CPU cores by
issuing interrupts. Each interrupt is associated with a number (denoted “interrupt vector”), which
corresponds to an entry in the x86 Interrupt Descriptor Table (IDT). e IDT is populated on
startup by the OS with (up to) 256 pointers to interrupt-handler OS routines. When an interrupt
fires, the hardware invokes the associated routine on the target core, using the interrupt vector
to index the IDT. e OS declares the location and size of the IDT in a per-core IDT register
(IDTR). e IDTR value can be different or the same across cores; it holds a virtual address.

LAPIC: During execution, the OS occasionally performs interrupt-related operations, includ-
ing: enabling and disabling interrupts; notifying the hardware upon interrupt handling comple-
tion; sending inter-processor interrupts (IPIs) between cores; and configuring the timer to deliver
clock interrupts. All these operations are performed through the per-core Local Advanced Pro-
grammable Interrupt Controller (LAPIC). e LAPIC interrupt request register (IRR) consti-
tutes a 256-bit read-only bitmap marking fired interrupt requests that have not yet been handled
by the core. e LAPIC in-service register (ISR) similarly marks interrupts that are currently be-
ing handled. When the OS enables interrupt delivery, the LAPIC clears the highest-priority bit
in the IRR, sets it in the ISR, and invokes the corresponding handler. e OS signals the comple-
tion of the handling of the interrupt via the end-of-interrupt (EOI) LAPIC register, which clears
the highest-priority bit in the ISR. Interrupts are sent to other cores using the interrupt command
register (ICR). Registers of the newest LAPIC interface, x2APIC, are accessed through read and
write operations of model-specific registers (MSRs), as opposed to previous interfaces (such as
xAPIC) that were accessed via regular load/store operations from/to a predefined MMIO area.

6.2.2 DRIVINGDEVICESTHROUGHRINGBUFFERS
I/O devices, such as PCIe solid state drives (SSDs) and network controller (NICs), can deliver
high throughput rates. For example, as of this writing, devices that deliver 10–100 Gbit/s are a
commodity. To understand how such high-throughput devices are virtualized, it would be helpful
to understand how they work. Overwhelmingly, these devices stream their I/O through one or
more producer/consumer ring buffers. A ring is a memory array shared between the OS device
driver and the associated device, as illustrated in Figure 6.4. e ring is circular in that the device



6.2. PHYSICAL I/O 85

(Updated by OS)

(Configured by OS)

(Updated by device)

I/O Device Registers DRAM

N-1

6

5

4

3

2

1

0

●
●
●

Tail

Head

Base

Size=N

Target Buffer

Target Buffer

Target Buffer

Target Buffer

Ring Buffer

Figure 6.4: High-throughput I/O devices typically use a ring buffer to communicate with their OS
device driver. e shaded area marks the range of DMA descriptors currently accessible to the device.
Each entry points to a DMA target buffer. e device will write incoming data into DMA target
buffers or read outgoing data from DMA target buffers, depending on the direction of the DMA.

and driver wrap around to the beginning of the array when they reach its end. e entries in
the ring are called DMA descriptors. eir exact format and content may vary between I/O
devices, but they typically specify at least the address and size of the corresponding DMA target
buffers—the memory areas used by the device DMAs to write/read incoming/outgoing data. e
descriptors also commonly contain status bits that help the driver and the device to synchronize.

Devices must also know the direction of each requested DMA, namely, whether the data
should be transmitted from memory (into the device) or received (from the device) into memory.
e direction can be specified in the descriptor, as is typical for disk drives, or the device can
employ different rings for receive and transmit activity, as is typical for NICs. (In the latter case,
the direction is implied by the ring.) e NIC receive and transmit rings are denoted Rx and Tx,
respectively. NICs employ at least one Rx and one Tx per port (physical cable). ey may employ
multiple Rx/Tx rings per port to promote scalability, as different rings can be easily handled
concurrently by different cores.

Upon initialization, the OS device driver allocates the rings and configures the I/O device
with the ring sizes and base locations. For each ring, the device and driver utilize a head and a
tail pointers to delimit the ring content that can be used by the device: [head,tail). e base, size,
head, and tail registers of the device ring are accessible to the OS driver via MMIO. e device
iteratively consumes (removes) descriptors from the head, and it increments the head to point
to the next descriptor to be used subsequently. Similarly, the driver adds descriptors to the tail,
incrementing the tail to point to the entry that it will use subsequently. e Rx ring is full during



86 6. X86-64: I/O VIRTUALIZATION

a period of I/O inactivity. e Tx ring is empty during a period of I/O inactivity. e device
and driver may distinguish between ring emptiness and fullness—when head and tail point to
the same location in Figure 6.4—using the aforementioned descriptor status bits; for example,
“produced” and “consumed” bits that are set by the driver and the device, respectively.

To illustrate, assume the OS wants to transmit two packets after a period of network inac-
tivity. Initially, the Tx head and tail point to the same descriptor k, signifying (with status bits)
that Tx is empty. e OS driver sets the k and k C 1 descriptors to point to the two packets, turns
on their “produced” bits, and lets the NIC know that new packets are pending by updating the
tail register to point to k C 2 (modulo N ). e NIC sequentially processes the packets, beginning
at the head (k), which is incremented until it reaches the tail (k C 2). With Tx, the head always
“chases” the tail throughout the execution, meaning the NIC tries to send the packets as fast as
it can.

e device asynchronously informs its OS driver that data was transmitted or received by
triggering an interrupt. e device coalesces interrupts when their rate is high. Upon receiving an
interrupt, the driver of a high-throughput device handles the I/O burst. Namely, it sequentially
iterates through and processes all the descriptors whose corresponding DMAs have completed.
In the case of Rx, for example, processing includes handing the received packets to the TCP/IP
stack and rearming the Rx ring with new buffers.

6.2.3 PCIE
As noted above, much of the advancements in hardware support for I/O virtualization re-
volve around PCI Express (Peripheral Component Interconnect Express; officially abbreviated
as PCIe) [141], which is a specification of a local serial bus that is standardized by the PCI Spe-
cial Interest Group (PCI-SIG) industry consortium. Architecturally, PCIe is similar to a lossless
network infrastructure: it consists of a layers (transaction, data link, physical); it transmits pack-
ets over links from one node to another according to well-defined routing rules; and it has flow
control, error detection, retransmission, and quality of service.

Hierarchy: e topology of the PCIe fabric is arranged as a tree, as illustrated in Figure 6.5.
(We will later see that hardware support for I/O virtualization dictates dynamic runtime changes
in this tree.) e root of the tree is the host bridge (also shown in Figure 6.3), which channels all
types of PCIe traffic to/from the cores/memory: PIO, MMIO, DMA, and interrupts. e host
bridge resides in the Root Complex (RC), usually on the CPU. e edges of the tree are PCIe
buses, and the nodes of the tree are PCIe functions. Functions are either bridges (inner nodes)
or endpoints (leaves or root). Endpoints correspond to individual I/O channels in physical PCIe
devices; for example, a dual-port NIC has two endpoints—one per port. A bridge connects two
buses, and a switch aggregates two or more bridges. A bus connects one upstream node to at most
32 downstream devices, such that each device houses up to 8 PCIe functions. Each bus consists
of 1–32 PCIe lanes (unrelated to the hierarchy); in the current version of PCIe (v3), each lane
delivers 985 MB/s, both upstream (toward the RC) and downstream (toward the endpoint).



6.2. PHYSICAL I/O 87

bus  dev  fun

pri  sec  sub bus  dev  fun

bus  dev  fun

bus  dev  fun

bus  dev  funbus  dev  fun

pri  sec  sub

bus  dev  fun

pri  sec  sub

bus  dev  fun

pri  sec  sub

bus  dev  fun

pri  sec  sub

bus  dev  fun

pri  sec  sub

bus  dev  fun

pri  sec  sub

bus  dev  fun

bus  dev  fun

0     1     0

0     1     5

0     0     0

1     0     0

1     2     5

2     1     0

2     4     4

2     2     0

2     5     5 5     0     0

4     0     6

4     0     2

4     0     0

3     0     0

6     0     0

2     0     0

2     3     3

0     2     0

0     6     6

3     0     1

4     0     1

…   …   …

4     0     7

CPU Package

Memory Controller

Core

PCIe Bus

PCIe Function PCIe Bridge PCIe Endpoint

Core Host Bridge

Root Complex (RC)

Core

Core

PCIe Switch

b
u
s 

0

b
u
s 

2

bus 1

bus 3

bus 4

bus 5

bus 6

Figure 6.5: PCIe tree topology example. e abbreviations “dev”, and “fun” stand for device and
function. e abbreviations “pri”, “sec”, and “sub” stand for primary, secondary, and subordinate.

Node Enumeration: Every PCIe function (node) and PCIe bus (edge) in the PCIe graph is
uniquely identified. Let N be a PCIe node in the tree. N’s identifier is a 16-bit number in the
form of bus:device.function (BDF), such that bus, device, and function consist of 8, 5, and 3
bits.¹ As can be seen in Figure 6.5, N’s bus is the number of the bus that directly connects to
N from upstream—let us denote this bus as B. N’s device is a serial number belonging to the

¹Be warned of the overloaded terms. A function number is different than a PCIe function. e former is a 3-bit index,
whereas the latter is physical hardware, as well as the type of the node of the PCIe tree identified by a full BDF. e same
applies to the device 5-bit number, which is different than a physical device, which serves as an aggregator of PCIe functions.



88 6. X86-64: I/O VIRTUALIZATION

enumeration of all the devices that are immediately reachable through B. Finally, N’s function is
a serial number belonging to the enumeration of all the functions housed by N’s encapsulating
device. For example, in Figure 6.5, 3:0.0 (top/right) is an endpoint PCIe function that resides
in the first (and only) downstream device reachable through Bus 3; 3:0.1 is the second PCIe
function in the same device; and 2:2.0 is a bridge PCIe function residing in the third device
reachable through Bus 2.

Edge Enumeration: Figure 6.5 shows that the PCIe graph edges (buses) are uniquely numbered
from 0 and up. e maximal number of buses in the system is 256 (as bus has 8 bits). Recursively,
buses that are descendants of some bus B are numerically larger than B, and buses that are ances-
tors of B are numerically smaller. is enumeration allows every PCIe bridge G to be associated
with three buses: primary, secondary, and subordinate. e primary and secondary are, respec-
tively, the upstream and downstream buses that G connects. G’s subordinate is its numerically
largest descendant bus. In follows that the numeric identifiers of all the buses that reside under
G range from its secondary bus to its subordinate bus. For example, the buses under bridge 1:0.0
range from 2 (secondary) to 5 (subordinate). Importantly, the primary/secondary/subordinate
per-bridge attributes accurately describe the PCIe hierarchy and determine how PCIe packets
are routed.

Configuration Space: As noted in §6.2.1, on startup, the OS typically discovers the system’s I/O
devices by using the BIOS/UEFI firmware, which provides device information via some standard
format like ACPI tables. For PCIe devices, discovery involves the PCIe configuration space array,
as depicted in Figure 6.6. is array is accessible to the OS via MMIO operations. Later on, when
we virtualize the OS, we will need to simulate this array for the VM.

e OS can find the array’s address and size in the standard “MCFG” APCI table (Fig-
ure 6.6a).² In our example, MCFG indicates that the array should include an entry for every valid
BDF. Since there are (216 =) 64 KB such BDFs, and since PCIe specifies that the per-BDF con-
figuration space size is 4 KB, then the array size is (64 KB � 4 KB =) 256 MB. e configuration
space associated with a given BDF can be found by adding 4 KB � BDF to the address of the
array.

e 4 KB configuration space of a PCIe node identified by BDF consists of three parts
(Figure 6.6c). e first 256 bytes constitute a valid PCI (rather than PCIe) configuration space,
for backward compatibility (PCIe superseded PCI). Of these, the first 64 bytes constitutes the
header (Figure 6.6d), which identifies such attributes as the functional class of the device (net-
work, storage, etc.), the vendor ID (assigned by PCI-SIG), and the device ID (assigned by the
vendor). ese attributes allow the OS to identify the devices, associate them with appropriate
drivers, initialize them, and make them available for general use.

²Running the “dmesg j grep MMCONFIG” shell command in Linux prints the line that contains the string MMCONFIG
in the output of the OS boot process. (MMCONFIG stands for “memory-mapped configuration space”). e result is: PCI:
MMCONFIG for domain 0000 [bus 00-ff] at [mem 0xe0000000-0xefffffff], in accordance to Figure 6.6b.



6.2. PHYSICAL I/O 89

ACPI MCFG
Table

4 KB PCIe
Config Space

64 B PCI endpoint
Config Space HeaderMemory

start bus: 0

end bus: 255

base address:

0xE0000000 4  KB config space PCIe

extended

config

registers

192 B

capability

structures

64 B PCI config

space header

4 KB config space

4 KB config space

4 KB config space

…
…

…

…

…

…

BAR 5

BAR 1

BAR 0

class ID

device ID

vendor ID

0xEFFFFFFF

0xE0000000

2
5
6
M

B
 P

C
Ie

 c
o
n
fi

g
 s

p
ac

e

ar
ra

y
 (

M
M

IO
)

2
5
6
B

 P
C

Ie
 c

o
n
fi

g
 s

p
ac

e

(a) (b) (c) (d)

Figure 6.6: e PCIe configuration space on x86 is accessible via the MCFG APCI table. Sub-
figure (d) depicts the header of an endpoint. e header of a bridge is somewhat different; notably, it
specifies the bridge’s primary, secondary, and subordinate buses, thereby allowing theOS to reconstruct
the PCIe tree.

Each endpoint can have up to six Base Address Registers (BARs), which publicize the
MMIO (or PIO) addresses to be used when the OS wishes to interact with the device—the
locations where device registers are found. For example, in the device depicted in Figure 6.4,
corresponding configuration space BARs will specify where to find the head, tail, base, and size
registers. e exact semantics of the areas pointed to by the BARs are determined by the manu-
facturers of the devices.

MSI: So far, we considered two address space types for I/O: port-mapped (PIO) and memory-
mapped (MMIO). PCIe supports a third type—for interrupts. Message Signaled Interrupts
(MSI) allow a device to send a PCIe packet whose destination is a LAPIC of a core; the third
address space is thus populated with addresses of all the system’s LAPICs. An MSI interrupt
is similar to a DMA operation, but instead of targeting the memory, it targets a LAPIC. e
MSI interrupt propagates upstream through the PCIe hierarchy until it reaches the host bridge
(Figure 6.5), which forwards it to the destination LAPIC that is encoded in the packet.



90 6. X86-64: I/O VIRTUALIZATION

e OS configures a device to use MSI interrupts by writing the address of the target
LAPIC and the desired interrupt vector to the Message-Address and Message-Data registers,
which reside in the capability structures area of the configuration space (middle part of Fig-
ure 6.6c). When firing an interrupt, the device then sends the content of Message-Data to
Message-Address. MSI supports up to 32 interrupts per device, whereas the newer MSI-X sup-
ports up to 2048.³

We remark that the OS configures the PCIe configuration space using the usual PIO/M-
MIO mechanisms—from the OS perspective, the configuration space is really just another I/O
device.

..

In summary, OSes interact with I/O devices via PIO, MMIO, DMA,
and interrupts mediated through LAPICs. OS drivers usually drive high-
throughput I/O devices through ring buffers, which reside in MMIO space.
PCIe devices are arranged in a BDF tree hierarchy. e PCIe configuration
space encodes this hierarchy, while providing (MMIO) pointers to device reg-
isters.

6.3 VIRTUAL I/OWITHOUTHARDWARE SUPPORT

A guest operating system does not cease to behave as an operating system merely because it runs as
a guest. Generally speaking, it still believes that it exclusively controls all the physical I/O devices,
and it discovers, initializes, and drives these devices exactly as described in §6.2. e problem is
that, without explicit hardware support, the hypervisor typically cannot allow the guest to interact
with I/O devices in this way. Consider, for example, the system’s hard drive controller. is device
must be safely shared between the hypervisor and its guests in a manner that allows all of them
to peacefully co-exist. But our guest is unaware of the fact that it must share, and it would not
know how even if it did. Consequently, allowing the guest to access the disk drive directly would
most likely result in an immediate crash and permanent data loss. A similar case can be made for
other I/O devices.

To avoid this problem, the hypervisor must prevent guests from accessing real devices while
sustaining the illusion that devices can be accessed; the hypervisor must therefore “fake” I/O
devices for its guests, denoted as virtual I/O devices. e hypervisor achieves this goal by trapping
all the guest’s I/O-related operations and by emulating them to achieve the desired effect.

³MSI/MSI-X replaced the legacy IOAPIC: an interrupt controller for the entire CPU package that interacted with individual
LAPICs. IOAPIC supported only 24 interrupts, it sometimes violated DMA/interrupt ordering, and it required dedicated
wiring.



6.3. VIRTUAL I/OWITHOUTHARDWARE SUPPORT 91

6.3.1 I/O EMULATION (FULLVIRTUALIZATION)
In §1.5, we briefly mentioned the concept of I/O emulation, which may also be called full I/O
virtualization. Here we describe in more detail how this concept is realized. In §6.2.1, we have
noted that (1) the OS discovers and “talks” to I/O devices by using MMIO and PIO operations,
and that (2) the I/O devices respond by triggering interrupts and by reading/writing data to/from
memory via DMAs. Importantly, no other type of OS/device interaction exists. e hypervisor
can therefore support the illusion that the guest controls the devices by (1) arranging things such
that every guest’s PIO and MMIO will trap into the hypervisor, and by (2) responding to these
PIOs and MMIOs as real devices would: injecting interrupts to the guest and reading/writing
to/from its (guest-physical) memory as if performing DMAs.

Emulating DMAs to/from guest memory is trivial for the hypervisor, because it can read
from and write to this memory as it pleases. Guest’s MMIOs are regular loads/stores from/to
guest memory pages, so the hypervisor can arrange for these memory accesses to trap by map-
ping the pages as reserved/non-present (both loads and stores trigger exits) or as read-only (only
stores trigger exits). Guest’s PIOs are privileged instructions, and the hypervisor can configure the
guest’s VMCS to trap upon them. Likewise, the hypervisor can use the VMCS to inject interrupts
to the guest. (Before VT-x and VMCSes: the hypervisor injected interrupts by directly invoking
the appropriate interrupt handler routine pointed to by the guest’s IDT, which was emulated by
the hypervisor; PIOs were replaced by hypercalls using dynamic binary translation; and MMIOs
and DMAs were emulated identically to how they are emulated with VT-x, as described above.)

Figure 6.7 schematically illustrates the aforementioned interactions for the KVM/QEMU
hypervisor. Generally, every hosted virtual machine is encapsulated within a QEMU process,
such that different VMs reside in different processes. Internally, a QEMU process represents the
VCPUs (virtual cores) of its VM using different threads. Additionally, for every virtual device that
QEMU hands to its VM, it spawns another thread, denoted as “I/O thread”. VCPU threads have
two execution contexts: one for the guest VM and one for the host QEMU. e role of the host
VCPU context is to handle exits of the guest VCPU context.e role of the I/O thread is to handle
asynchronous activity related to the corresponding virtual device, which is not synchronously
initiated by guest VCPU contexts. For example, handling incoming network packets.

e illustration in Figure 6.7 depicts a VM that has two VCPUs and one I/O device. e
guest VM device driver issues MMIOs/PIOs to drive the device. But the device is virtual, so
these operations are directed at ordinary, read/write-protected memory locations, triggering exits
that suspend the VM VCPU context and invoke KVM. e latter relays the events back to the
very same VCPU thread, but to its host, rather than guest, execution context. QEMU’s device
emulation layer then processes these events, using the physical resources of the system, typically
through regular system calls. e emulation layer emulates DMAs by writing/reading to/from
the guest’s I/O buffers, which are accessible to it via shared memory. It then resumes the guest
execution context via KVM, possibly injecting an interrupt to signal to the guest that I/O events
occurred.



92 6. X86-64: I/O VIRTUALIZATION

QEMU I/O Thread

QEMU Thread—VCPU 1

QEMU Thread—VCPU 0

KVM

Linux

Guest

U
se

r
K

er
n
el

Guest Hypervisorwhite background gray background

Device EmulationDevice Driver shared memory

sy
stem

 calls

exit

resume/inject interrupt

Figure 6.7: I/O emulation in the KVM/QEMU hypervisor. e guest device driver and QEMU’s
device emulation are operational in all VCPU threads (shown only in VCPU 0). e host execution
context of the VCPUhandles synchronous exits of the guest execution context.e I/O thread handles
asynchronous activity. e shared memory channel corresponds to buffers that the guest posts for
DMA.

By utilizing the emulation technique we just described, the hypervisor can decide which set
of virtual I/O devices to expose to the guest. Figure 6.8 lists the set of PCI devices exposed to a
typical Linux virtual machine hosted by QEMU/KVM. e figure shows the output of the lspci
shell utility when invoked inside the VM (lspci prints the configuration space hierarchy depicted
in Figure 6.6). Different than a bare-metal OS, the guest’s lspci does not read the real ACPI
tables and configuration space that were established by the real BIOS/UEFI firmware. Instead, it
reads the content of emulated ACPI tables and configuration space, as generated by an emulated
BIOS/UEFI.We can see that, by default, QEMUemulates the Intel 440FXhost bridge controller
as the root of the BDF hierarchy (00:0.0). In this hierarchy, we can further see that QEMU
emulates two NICs for this VM: Intel’s 82540EM Gigabit Ethernet Controller (00:03.0), and
Red Hat’s Virtio network device (00:04.0). Next, we discuss the emulated Intel NIC, to give one
concrete example of how I/O emulation works for a specific device. We defer discussion about
the other NIC to §6.3.2, where we define, motivate, and explain I/O paravirtualization.



6.3. VIRTUAL I/OWITHOUTHARDWARE SUPPORT 93
00:00.0 Host bridge: Intel Corporation 440FX - 82441FX PMC [Natoma] (rev 02)
00:01.0 ISA bridge: Intel Corporation 82371SB PIIX3 ISA [Natoma/Triton II]
00:01.1 IDE interface: Intel Corporation 82371SB PIIX3 IDE [Natoma/Triton II]
00:01.3 Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev 03)
00:02.0 VGA compatible controller: Device 1234:1111 (rev 02)
00:03.0 Ethernet controller: Intel Corporation 82540EM Gigabit Ethernet
00:04.0 Ethernet controller: Red Hat, Inc Virtio network device
00:05.0 SCSI storage controller: Red Hat, Inc Virtio block device

Figure 6.8: Output of the lspci shell command executed within a typical Linux VM, which is running
on top of the KVM/QEMU hypervisor.

00:03.0 Ethernet controller: Intel 82540EM Gigabit Ethernet Controller
Flags: bus master, fast devsel, latency 0, IRQ 11
Memory at febc0000 (32-bit, non-prefetchable) [size=128K]
I/O ports at c000 [size=64]
Expansion ROM at feb40000 [disabled] [size=256K]
Kernel driver in use: e1000

Figure 6.9: Partial lspci output for the emulated Intel NIC, identifying its guest driver as e1000, and
revealing its MMIO BAR addresses (0xfebc0000) as specified in its emulated configuration space.

e1000: e 82540EM NIC corresponds to an old network controller that was launched by Intel
in 2002 [100] and has since been superseded by multiple generations of newer models. Naturally,
our physical host machine does not have this NIC (it is equipped with a newermodel by a different
vendor). e NIC’s physical absence is not an issue, however, as it is emulated purely by software.
In fact, the 82540EM is so old that it predates PCIe and only supports PCI. But this too is not
a issue (regardless of PCIe being backward compatible with PCI), because QEMU exposes the
BDF hierarchy as PCI in any case. at is, the emulated 00:00.0 Intel 440FX host bridge (root
of BDF hierarchy) is a PCI- rather than PCIe-to-host bridge. Since the bridge is emulated by
software, it does not matter that the underlying physical I/O system uses the newer PCIe fabric.

e 82540EM model of the emulated Intel NIC is not particularly special or important
in any sense. What is important is for the VM to have an appropriate driver for the hypervisor
to match with its own network emulation layer, such that these two software components would
be compatible (the two rounded rectangles in Figure 6.7). Using the lspci utility, we can print
detailed configuration space and other information of PCI devices. Figure 6.9 shows some of
this information for our emulated Intel NIC. e last line indicates that the guest kernel driver
associated with this NIC is e1000 [99]. e latter is the name of a legacy Intel driver that ships by
default with all prevalent OSes, and has been shipping with them for years. As such, all prevalent
hypervisors rely on the presence of e1000 in guest OSes to provide default networking capabilities,
utilizing it as the de-facto standard for network emulation. e e1000 driver supports the family
of Intel’s PCI/PCI-X Gigabit Ethernet NICs (the 82540EM is simply a member of this family).

e third line in Figure 6.9 specifies the MMIO BAR address of the emulated NIC, where
its registers are found. e semantics of the registers and their exact location relative to the BAR
are determined by the specification of the NIC [101]. Table 6.1 lists some of the central registers



94 6. X86-64: I/O VIRTUALIZATION

used by the e1000 driver. e receive and transmit categories directly correspond to the base,
size, head, and tail registers of the Rx and Tx rings, as described in §6.2.2. When the guest
attempts to access a register, KVM suspends it and resumes QEMU host context, providing it
with the register’s address and a description of the attempted operation. QEMU then responds
appropriately based on the NIC specification. By faithfully adhering to this specification, and by
using the same BAR, the emulation layer behaves exactly as the guest e1000 driver expects and
produces an outcome identical to a functionally-equivalent physical NIC.

Table 6.1: Key NIC registers [101] used by the e1000 driver [99]. When added to the MMIO BAR
specified in the configuration space, the offset provides the address of the corresponding registers.

Category Name Abbreviates O� set Description

receive RDBAH

RDLEN

RDH

RDT

receive descriptor base address

receive descriptor length

receive descriptor head

receive descriptor tail

0x02800

0x02808

0x02810

0x02818

base address of Rx ring

Rx ring size

pointer to head of Rx ring

pointer to tail of Rx ring

transmit TDBAH

TDLEN

TDH

TDT

transmit descriptor base address

transmit descriptor length

transmit descriptor head

transmit descriptor tail

0x03800

0x03808

0x03810

0x03818

base address of Tx ring

Tx ring size

pointer to head of Tx ring

pointer to tail of Tx ring

other STATUS

ICR

IMS

IMC

status

interrupt cause read

interrupt mask set

interrupt mask clear

0x00008

0x000C0

0x000D0

0x000D8

current device status

bitmap of causes

enable interrupts

disable interrupts

e QEMU e1000 emulation layer (file hw/net/e1000.c in the QEMU codebase) imple-
ments the NIC registers by utilizing an array named mac_reg. According to the NIC specifica-
tion, for example, the ICR register (which specifies the reason for the last interrupt) is cleared
upon a read. us, when the guest reads the emulated ICR, the read operation triggers an exit,
which transfers control to KVM, which resumes the host context of QEMU, which analyzes the
instruction that triggered the exit and consequently invokes the mac_icr_read routine. e code
of mac_icr_read is listed in Figure 6.10. As can be seen, the emulation layer correctly emulates
the NIC’s specification by first saving the ICR value in a local variable, zeroing the register, and
only then returning the previous value.

6.3.2 I/O PARAVIRTUALIZATION
While I/O emulation implements a correct behavior, it might induce substantial performance
overheads, because efficient emulation was not recognized as a desirable feature when the phys-



6.3. VIRTUAL I/OWITHOUTHARDWARE SUPPORT 95

s t a t i c u i n t 3 2 _ t ma c_ i c r _ r e ad ( E1000Sta te * s )
{

u i n t 3 2 _ t r e t = s�>mac_reg [ ICR ] ;
s�>mac_reg [ ICR] = 0 ;
r e t u rn r e t ;

}

Figure 6.10: eQEMU routine that emulates guest e1000 ICR read operations (simplified version).

ical device was designed. It is probably safe to assume that the original designers of the Intel
82540EM Gigabit Ethernet Controller were not aware of the possibility that this device will be
routinely virtualized, let alone that its interface would become the de-facto standard for network
virtualization. Indeed, sending/receiving a single Ethernet frame via e1000 involves multiple reg-
ister accesses, which translate to multiple exits per frame in virtualized setups.

ere are other contributing factors to the overheads of emulation. For example, some read-
only e1000 NIC registers are frequently accessed but do not have side-effects when they are being
read. Consider the STATUS register, for example, which is accessed twice for every sent message.
STATUS reports the current status of the NIC without changing the NIC’s state. us, in prin-
ciple, the hypervisor could have supported STATUS reads that do not trigger exits, by providing
the VM with read-only permissions for this register. But this potential optimization is not pos-
sible. Because efficient virtualization was not a design goal, the NIC registers are tightly packed
in the MMIO space, such that STATUS and ICR reside on the same memory page. STATUS
must therefore be read-protected, because memory permissions work in page granularity, and
ICR must be read-protected for correctness (Figure 6.10).

Virtualization overheads caused by inefficient interfaces of physical devices could, in prin-
ciple, be eliminated, if we redesign the devices to have virtualization-friendlier interfaces. Such a
redesign is likely impractical as far as physical devices are concerned. But it is practical for virtual
devices, which are exclusively implemented by software. is observation underlies I/O paravir-
tualization, whereby guests and hosts agree upon a (virtual) device specification to be used for I/O
emulation, with the explicit goal of minimizing overheads. Identically to baseline I/O emulation,
the guest uses a device driver that is served by a matching host emulation layer, as depicted in
Figure 6.7. e difference is that the specification of this virtual device is defined with virtual-
ization in mind, so as to minimize the number of exits. Such a device is said to be paravirtual
(rather than fully virtual), as it makes the guest “aware” that it is being virtualized: the guest
must install a special device driver that is only compatible with its hypervisor, not with any real
physical hardware.

I/O paravirtualization offers substantial performance improvements for some workloads as
compared to I/O emulation. But there are also disadvantages. As noted, paravirtualization of-
tentimes requires that guest OS administrators install the paravirtual drivers. (Administrators of
production-critical servers usually tend to prefer not to install new software if they can help it,



96 6. X86-64: I/O VIRTUALIZATION

fearing that the new software is somehow incompatible with the existing software.) Paravirtual-
ization is additionally less portable than emulation, as drivers that work for one hypervisor will
typically not work for another. Additionally, hypervisor developers who wish to make paravirtual-
ization available for their guest OSes will need to implement andmaintain a (different) paravirtual
device driver for every type of guest OS they choose to support.

Virtio: e framework of paravirtual I/O devices of KVM/QEMU is called virtio [154, 168],
offering a common guest-host interface and communication mechanism. Figure 6.11 shows some
of the devices that are implemented using this framework, notably, network (virtio-net), block
(virtio-blk), and character (virtio-console). As usual, each paravirtual device driver (top of the
figure) corresponds to a matching emulation layer in the QEMU part of the hypervisor (bottom).
Despite being paravirtual, virtio devices are exposed to guests like any other physical/emulated
device and thus require no special treatment in terms of discovery and initialization. For example,
in Figure 6.8, the BDF 00:04.0 is associated with a virtio-net NIC. e configuration space
information of this NIC reveals all the data that is required in order to use this NIC, for example,
the location of its Rx and Tx rings and their registers.

e central construct of virtio is virtqueue, which is essentially a ring (Figure 6.4) where
buffers are posted by the guest to be consumed by the host. Emulated devices are inefficient largely
because everyMMIO/PIO access implicitly triggers an exit. In contrast, guests that use virtqueues
never trigger exits unless they consciously intend to do so, by invoking the virtqueue_kick
function, to explicitly let the hypervisor know that they require service. Byminimizing the number
of kicks, guests reduce exit overheads and increase batching.

In addition to the ring, each virtqueue is associated with two modes of execution that
assist the guest and host to further reduce the number of interrupts and exits. e modes are
NO_INTERRUPT and NO_NOTIFY (abbreviated names). When a guest turns on the NO_INTERRUPT
mode, it informs the host to refrain from delivering interrupts associated with the paravirtual
device until the guest turns off this mode. Virtio-net, for example, aggressively leverages this
execution mode in the transmission virtqueue (Tx), because it does not typically care when the
transmission finishes. Instead, virtio-net opts to recycle already-serviced Tx buffers just before
posting additional buffers to be sent. Only when the virtqueue is nearly full does the guest turn
off the NO_INTERRUPT mode, thereby enabling interrupts. is policy reduces the number of in-
terrupts significantly.

Symmetrically, when the host turns on the NO_NOTIFYmode, it informs the guest to refrain
from kicking it. e host emulation side of virtio-net routinely uses this execution mode, because
TCP traffic tends to be bursty. at is, packets and frames often show up together, in bursts. us,
when a burst of frames is sent by the guest, the host only needs the first kick. It then knows that it
should start processing the ring, which is done iteratively within a loop until no more frames are
left to process. While iterating, the host needs no additional kicks. Hence, it turns NO_NOTIFY
on until the end of the loop and thereby minimizes virtualization overheads.



6.3. VIRTUAL I/OWITHOUTHARDWARE SUPPORT 97

Guest Linux Kernel

Host QEMU

Virtio
drivers/virtio/virtio.c

Virtio
hw/virtio/virtio.c

Virtio-net
drivers/net/virtio_net.c

Virtio-blk
drivers/block/virtio_blk.c

Virtio-console
drivers/char/virtio_console.c

Virtio-balloon
drivers/virtio/virtio_balloon.c

Virtio-net
hw/net/virtio_net.c

Virtio-blk
hw/block/virtio_blk.c

Virtio-console
hw/char/virtio_console.c

Virtio-balloon
hw/virtio/virtio_balloon.c

Figure 6.11: e virtio framework is used to implement paravirtual device drivers for various types
of I/O, including network I/O (Ethernet), block device I/O, console character device I/O, and bal-
looning. Baseline virtio implements virtqueue. e individual drivers use virtqueue according to their
needs. e device drivers shown are standard in Linux but do not typically ship with other OSes.

Efficiently virtualizing the network is challenging, because of the staggering throughput
that modern NICs deliver, easily generating millions of packets per second, which the CPU needs
to handle. For this reason, the KVM/QEMU hypervisor makes an exception for paravirtual net-
working. In addition to virtio-net, it also supports vhost-net [166], which breaks the traditional
design of having the emulation layer entirely contained within QEMU—the userland part of
the hypervisor. Vhost-net provides the same functionality as virtio-net, but instead of forward-
ing all the I/O events to QEMU, it handles much of the packet processing in the Linux kernel.
In so doing, vhost-net nearly halves the number of context switches. Namely, virtio-net repeat-
edly context-switches between guest context and QEMU context via KVM (Figure 6.7), whereas
vhost-net usually returns to guest context directly from KVM, without going through QEMU.

Performance: We now experimentally compare I/O paravirtualization and I/O emulation, to
highlight their performance differences. Table 6.2 shows the results of running the Netperf TCP
stream benchmark [108] within a Linux VM configured to access the network via e1000 or virtio-
net (regular, not vhost). Netperf attempts to maximize throughput over a single TCP connection,
utilizing a 16 KB message size. In our experiment, the stream traffic is outgoing from Netperf
to its peer, which runs on the host system as an ordinary Linux process. (Namely, no traffic goes
through a physical NIC in this experiment—only the two competing virtual NICs are involved.)
e system is set to use a single core, which is saturated, spending 100% of its cycles on running
the benchmark.



98 6. X86-64: I/O VIRTUALIZATION
Table 6.2: Netperf TCP stream running in a Linux 3.13 VM on top of Linux/KVM (same version)
and QEMU 2.2, equipped with e1000 or virtio-net NICs, on a Dell PowerEdge R610 host with a
2.40GHz Xeon E5620 CPU

Metric e1000 Virtio-net Ratio

Guest throughput (Mbps)

exits per second

interrupts per second

239

33,783

3,667

5,230

1,126

257

22x

1/30x

1/14x

TCP segments per exit

per interrupt

per second

avg. size (bytes)

avg. processing time (cycles)

1/9

1

3,669

8,168

652,443

25

118

30,252

21,611

79,132

225x

118x

8x

3x

1/8x

Ethernet frames per second

avg. size (bytes)

23,804

1,259

–

–

–

–

By Table 6.2, virtio-net performs significantly better than e1000, delivering 22x higher
throughput. Virtio-net’s superiority is, in fact, the result of three combined improvements. Much
of virtio-net’s success stems from achieving its design goals of reducing the number of exits (30x
less) and interrupts (14x less). Unsurprisingly, the main contributing factor responsible for the
reduced overhead is the fact that, unlike e1000, virtio kicks KVM explicitly when needed, rather
than implicitly triggering unintended exits due to legacy PIOs/MMIOs.

Both e1000 and virtio-net drive Ethernet NICs. Consequently, their per-frame maximum
transmission unit (MTU) is defined to be 1500 bytes. Nevertheless, the NICs support TCP seg-
mentation offload (TSO), which allows the network stack to hand to them Tx segments of up
to 64KB, trusting them to break down the segments into MTU-sized frames, on their own, be-
fore transmission. e “segments per exit” metric in the table indicates that each segment requires
nine exits to be processed with e1000. In contrast, with virtio-net, one exit is sufficient to transmit
25 segments, demonstrating that the NO_NOTIFY virtqueue mode, which disables kicking during
bursts of activity, is highly effective. Similarly, e1000 requires one interrupt per segment, whereas
virtio-net leverages this single interrupt to process 118 segments. is difference indicates that
the NO_INTERRUPT virtqueue mode, which disables interrupts when possible, is likewise effective.

e quantity of exits and interrupts, however, tells only part of the story. ere are two
additional factors involved in determining the measured performance. First, observe that the av-
erage segment size of virtio-net is nearly 3x larger than that of e1000. e average segment size
is in fact determined by the TCP/IP software stack of the guest. is stack employs a batching
algorithm that aggregates messages, attempting to get more value from the NIC’s TSO capabil-
ity, as larger segments translate to less cycles that the core must spend on processing the message.



6.3. VIRTUAL I/OWITHOUTHARDWARE SUPPORT 99

e profile of e1000 networking, which is much slower, discourages this sort of segment aggre-
gation. Consequently, its segments are smaller, which translates to fewer bytes transmitted per
exit/interrupt.

e other contributing factor for the performance difference is the fact that much effort
went into optimizing the virtio-net code, as opposed to the e1000 code, which seems to exclu-
sively focus on correctness rather than performance. A striking example that demonstrates this
difference is the manner by which the TSO capability is virtualized. Both e1000 and virtio-net
(pretend to) support this capability, exposing it to the guest OS. Virtual NICs can leverage TSO
to accelerate performance in two ways: (1) if the traffic is internal to the host and does not involve
sending frames over physical Ethernet (as in our benchmarking setup), then no segmentation is
required, and it can be optimized away; and (2) if the traffic does flow through a physical NIC
to another host system, then the TSO capability of the physical NIC can be used, if available.
Wheres virtio-net employs both of these optimizations, e1000 employs neither, opting to per-
form segmentation in software at the QEMU emulation layer. Hence, we include the bottom part
of Table 6.2, which provides statistics regrading the Ethernet frames that the e1000 emulation
layer emits.

6.3.3 FRONT-ENDSANDBACK-ENDS
While this section has focused on I/O emulation and paravirtualization of the KVM/QEMU
hypervisor, all production hypervisors architect their virtual I/O stacks similarly.e stack consists
of two components. e first is a front-end, which encompasses a guest virtual device driver
and a matching hypervisor emulation layer that understands the device’s semantics and interacts
with the driver at the guest. e second component is a back-end, which is used by the front-
end to implement the functionality of the virtual device using the physical resources of the host
system. Among the two components, the front-end serves as the interface that is exposed to the
virtual machine, and the back-end serves as the underlying implementation. Importantly, the two
components are architected to be independent of each other. us, production hypervisors allow
users to compose their virtual machines from different front-ends and back-ends.⁴

Figure 6.12 shows the emulated network front-ends and back-ends made available by
QEMU [148]. We have already mentioned e1000 and virtio-net. e rtl8139 corresponds to
an emulation of the Realtek RTL8139C(L)+ 10/100M Fast Ethernet Controller [150]. In terms
of back-ends, TAP is a virtual Ethernet network device, implemented in the kernel, that can
forward Ethernet frames to and from the process that connects to it. e Ethernet frames can
also be forwarded using a regular user-level socket, or over a Virtual Distributed Ethernet (VDE)
[174]. e MACVTAP back-end accelerates the performance of vhost-net by eliminating an ab-

⁴e terms front-end and back-end, when applied to I/O virtualization, are overloaded. ey are used differently and incon-
sistently by different people in different contexts. e definitions presented here are consistent with the QEMU documenta-
tion [148] and with the authoritative survey of Waldspurger and Rosenblum on I/O virtualization [178].



100 6. X86-64: I/O VIRTUALIZATION

Virtio-net
driver

Vhost-net
emulation

Virtio-net
emulation

e1000
emulation

rlt8139
emulation

Virtio-net
driver

e1000
driver

rlt8139
driver

compatible

MACVTAP TAP VDEsocket

compatible

F
ro
n
t-
en
d

B
ac
k
-e
n
d

Guest

Hypervisor

Figure 6.12: e QEMU network front-ends and back-ends are composable: virtual machines can
be configured to use a certain front-end and any of its compatible back-ends.

straction layer within the Linux kernel at the cost of losing routing flexibility (instead of going
through a software bridge, the vhost-net traffic flows directly to a NIC) [167].

Other device types offer different front-ends and back-ends. For example, when consid-
ering storage, a VM may be configured to use, say, a SCSI, IDE, or paravirtual block device
front-ends, and a local or remote file back-end.

..

In summary, hypervisors employ I/O emulation by redirecting guest MMIOs
and PIOs to read/write-protected memory. Emulation exposes virtual I/O
devices that are implemented in software but support hardware interfaces.
Paravirtualization improves upon emulation by favoring interfaces that min-
imize virtualization overheads. e downside of paravirtualization is that it
requires hypervisor developers to implement per-guest OS drivers, and it hin-
ders portability by requiring users to install hypervisor-specific software.

6.4 VIRTUAL I/OWITHHARDWARE SUPPORT
In the beginning of §6.3, when we started the discussion about how virtual I/O is implemented,
we ruled out the possibility to allow VMs to directly access physical devices, because they are not
aware of the fact that they must share, which would undoubtedly result in undesirable behavior
and possibly unrecoverable damage. is difficulty motivated device emulation and paravirtual-
ization, which incur virtualization overheads but provide safe virtual I/O and the benefits of I/O



6.4. VIRTUAL I/OWITHHARDWARE SUPPORT 101

Guest
VMO

Guest
VM1

Guest
VM2

Guest
VMO

Guest
VM1

Guest
VM2

IO
path

IO
device

IO
pathHypervisor

Host Hardware Host Hardware

Hypervisor

(a) Emulation/paravirtualization (b) Direct device assignment

Figure6.13: Direct device assignment exclusively dedicates an I/O device to a specific VM, improving
performance by reducing virtualization overheads at the cost of forgoing I/O interposition.

interposition outlined in §6.1. But if we are willing to forego I/O interposition and its many
advantages, there is in fact another, more performant alternative that reduces the overheads of
virtualization. Given a physical device d, the hypervisor may decide to assign the right to access
d exclusively to some specific virtual machine v, such that no other VM, and not even the hyper-
visor, are allowed access; the hypervisor can do so if it has an extra physical device that it does
not strictly need. is approach, denoted direct device assignment, is illustrated in Figure 6.13.
Seemingly, in such a setup, v can safely access d directly, since nobody else is using it. e upshot
would be better performance for v, because the overhead of virtualization would be significantly
reduced.

Such naive device assignment may work in certain contexts, but it suffers from two serious
problems. e immediate one is lack of scalability. Extra physical I/O devices, if they exist, are
inherently limited in quantity. e number of virtual machines that a modern server can support
is much larger than the number of physical I/O devices that it can house. e second drawback
is less obvious but more severe. If v controls a device, then v can program the device to perform
DMAoperations directed at any physical memory location. In other words, by assigning d to v, we
allow v to (indirectly) access the entire physical memory, including areas belonging to other VMs
or the hypervisor. erefore, by utilizing naive direct device assignment, we essentially eliminate
isolation between VMs. We thus have to trust v not to abuse its power, maliciously or mistakenly,
which is overwhelmingly unacceptable.

Hardware support for I/O virtualization allows us to resolve the aforementioned two prob-
lems, and this section is dedicated to overviewing how. Specifically, the first part of the section
describes the hardware mechanisms that are able make direct device assignment both secure and
scalable. Security is obtained with the help of the I/OMemoryManagement Unit (IOMMU),
and scalability is obtained via Single-Root I/O Virtualization (SRIOV). e combination of
SRIOV and IOMMU makes device assignment a viable performant approach, leaving one last



102 6. X86-64: I/O VIRTUALIZATION

major source of virtualization overhead: interrupts. e second part of this section therefore de-
scribes the hardware mechanisms that help hypervisors mitigate this overhead.

6.4.1 IOMMU
Recall that device drivers of the operating system initiate DMAs to asynchronously move data
from devices into memory and vice versa, without having to otherwise involve the CPU (§6.3).
Not so long ago, DMA operations could have only been applied to host-physical memory ad-
dresses. In the ring buffer depicted in Figure 6.4, for example, this constraint means that the
driver must use physical target buffers when populating the ring’s descriptors. e device then
uses these addresses for DMA in their raw form—they do not undergo address translation.

As noted, this DMA policy essentially means that virtual machines with assigned de-
vices can indirectly read/write any memory location, effectively making MMU-enforced isola-
tion meaningless. A second, less apparent problem is that such VMs can also indirectly trigger
any interrupt vector they wish (explained below). e third problem has more of a technical
nature. VMs do not know the (real) physical location of their DMA buffers, since they use guest-
physical rather than host-physical addresses (Figure 5.1). Consequently, to be able to use DMAs
of directly assigned devices, VMs must somehow become aware of the fact that their “physical”
memory is not actually physical, and they need the hypervisor to expose to them the underlying
host-physical addresses.

To address all these problems, all major chip vendors introduced I/O memory management
units (IOMMUs), notably in Intel’s Virtualization Technology for Directed I/O (VT-d) [106],
AMD’s I/O Virtualization Technology (AMD-Vi) [11], ARM’s System Memory Management
Unit Architecture Specification (IOMMU is called SMMU) [23], IBM POWER [93, 94], and
Sun (later Oracle) SPARC [164]. While the IOMMU implementations differ, they have a similar
functionality. Recall that this chapter focuses on VT-d.

e IOMMU consists of two main components: a DMA remapping engine (DMAR) and
an interrupt remapping engine (IR). DMAR allows DMAs to be carried out with I/O virtual
addresses (IOVAs), which the IOMMU translates into physical addresses according to page tables
that are set by the hypervisor. Likewise, IR translates interrupt vectors fired by devices based on
an interrupt translation table configured by the hypervisor. IOVAs live in I/O address spaces that
can overlap, be the same, or be completely different than host or guest address spaces.

DMA Remapping: To simplify the explanation of DMAR, let us first consider bare metal se-
tups, where there are only regular processes and no virtual machines. In such setups, the role the
IOMMU plays for I/O devices is similar to the role the regular MMU plays for processes, as illus-
trated in Figure 6.14a. Processes access the memory using virtual addresses, which are translated
into physical addresses by the MMU. Analogously, I/O devices access the memory via DMAs
associated with IOVAs, which are translated into physical addresses by the IOMMU. e OS
controls how IOVAs get translated similarly to themanner by which it controls how regular virtual
addresses get translated. Specifically, given a target memory buffer of a DMA, the OS associates



6.4. VIRTUAL I/OWITHHARDWARE SUPPORT 103

Physical Memory

Process

1D
MMU

1D
IOMMU

2D
MMU

1D
IOMMU

2D
MMU

2D
IOMMU

I/O device Guest I/O device Guest I/O device

Physical Memory Physical Memory

IOVA

(gVA)gVA
IOVA

(gPA)gVAIOVAVA

hPA hPAhPA hPAPA PA

L
o
ad

 a
n
d
 S

to
re

 O
p
er

at
io

n
s

D
M

A
 O

p
eratio

n
s

(a) Bare metal, 1D-IOMMU (b) Virtual, 1D-IOMMU (c) Virtual, 2D-IOMMU

Figure 6.14: In non-virtual setups, the IOMMU is for devices what the MMU is for processes (a).
When virtual machines are involved, the usage model of the IOMMU (for facilitating direct device
assignment) depends on whether the IOMMU supports 1D or 2D page walks. With a 1D IOMMU,
the hypervisor does not expose an IOMMU to the guest, causing it to program DMAs with guest-
physical addresses (b). With a 2D IOMMU, the guest has its own IOMMU, to be programmed as it
pleases (c).

the physical address (PA) of that buffer with some IOVA. en, the OS maps the IOVA to the
PA by inserting the IOVA)PA translation into IOMMU data structures.

Figure 6.15 depicts these structures for Intel x86-64 [106]. PCIe dictates that each DMA
will be associated with the 16-bit bus-device-function (BDF) number that uniquely identifies the
corresponding I/O device in the PCIe hierarchy (as described in §6.2.3). e DMA propagates
upstream, through the hierarchy (Figure 6.5), until it reaches the root complex (RC) where the
IOMMU resides. e IOMMU uses the 8-bit bus identifier to index the root table in order to
retrieve the physical address of the context table. It then indexes the context table using the 8-
bit concatenation of the device and function identifiers. e result is the physical location of the
root of the page table hierarchy that houses all the IOVA)PA translations of this particular I/O
device (PCIe function).

e IOMMU walks the page table similarly to the MMU, checking for translation valid-
ity and access permissions at every level. If the translation is invalid, or the access permissions
mismatch, the IOMMU fails the translation. Similarly to how the MMU utilizes its TLB, the
IOMMU caches translations using its IOTLB. However, different than the MMU, the IOMMU
typically does not handle page faults gracefully. I/O devices usually expect their DMA target
buffers to be present and available, and they do not know how to recover otherwise. (Recall that
before IOMMUs, devices worked with physical addresses; even with IOMMUs, devices still “be-
lieve” that the DMA addresses they are given are physical.) For this reason, when the hypervisor



104 6. X86-64: I/O VIRTUALIZATION

PTE

PFN offset

Root
Entry

Root
Table

Context
Table

Page Table Hierarchy

Physical Address

Requester Identifier

Context
Entry PTE

PTE PTE

bus dev func
15 8 3 0 63

63 12 0

48 39 30 21 12 0

IOVA (DMA address)

idx idxidx offsetidx0…0

Figure 6.15: IOVA translation with the Intel IOMMU.

directly assigns a device to a virtual machine, it typically pins the entire address space of the VM
to the physical memory, to avoid DMA page faults. In so doing, the hypervisor loses its ability to
apply the canonical memory optimizations to the address space of the VM, as discussed in §6.1.

Let us now consider a virtual setup with virtual machines. As of this writing, overwhelm-
ingly, modern Intel servers support a two-dimensional (2D) MMU (see §5.1) but only one-
dimensional (1D) IOMMU. Recall that a 2D-MMU allows the guest and hypervisor to maintain
their own page tables, such that: (1) the guest OS page tables map guest-virtual addresses (gVAs)
to guest-physical addresses (gPAs); (2) the hypervisor page tables map guest-physical addresses
to host-physical addresses (hPAs); and (3) the processor makes use of the two page table levels
for translating gVAs all the way to hPAs, as depicted in the left of Figure 6.14b. When directly
assigning a device to a guest, the hypervisor copes with having an IOMMU that is only 1D by
not exposing an IOMMU to the guest. e guest then believes that it must program DMA op-
erations with physical addresses, which are in fact gPAs. To make this work, when mapping the
address space of the guest in the IOMMU, the hypervisor uses IOVAs identical to the guest’s
gPAs, such that the guest memory addresses and its (identical) I/O addresses point to the same
host-physical location, as depicted in the right of Figure 6.14b.

Not exposing an IOMMU to the guest is suboptimal in several respects. Similarly to the
MMU, it makes sense to virtualize the IOMMU, such that guest and host would directly control
their own page tables, and the hardware would conduct a 2D page-walk across the two levels, as
depicted in Figure 6.14c. 2D IOMMUs allow guests to protect themselves against errant or ma-
licious I/O devices—similarly to bare metal OSes—by mapping and unmapping the target buffer
of each DMA right before the DMA is programmed and right after it completes. is policy is
called strict IOMMU protection [125, 142], and it is recommended by hardware vendors and



6.4. VIRTUAL I/OWITHHARDWARE SUPPORT 105

operating system developers [106, 109, 131, 183]. Another benefit of 2D IOMMUs is that they
help guests to use legacy devices that, for example, do not support memory addresses wider than
32 bit. Such a constraint is potentially problematic, but it can be easily resolved by programming
the IOMMU to map the relevant 32 bit-addresses to higher memory locations. A third bene-
fit of 2D IOMMUs is that they allow guests to directly assign devices to their own processes,
allowing for user-level I/O, which is lately becoming increasingly popular [98]. 2D IOMMUs
have been thus far implemented with the help of software emulation [12]. But they are already
defined by the x86-64 I/O virtualization specifications of Intel [106] and AMD [11]. As of this
writing, it seems that 2D IOMMU support can be enabled in certain Broadwell and Skylake Intel
processors [122, 186].

Interrupt Remapping: Recall that PCIe defines (MSI/MSI-X) interrupts similarly to DMA
memory writes directed at some dedicated address range, which the RC identifies as the “inter-
rupts space” (see §6.2.3). In x86, this range is 0xFEEx_xxxx (where x can be any hexadecimal
digit). Each interrupt request message is self-describing: it encodes all the information required
for the RC to handle it.

To understand why interrupt remapping is necessitated, let us first consider how interrupt
delivery of an assigned device d, which is given to a virtual machine v, works without IR (illus-
trated in Figure 6.16). Setting the interrupt vector (“data”) and target LAPIC (“address”) that
are associated with d requires the operating system to MMIO-write these data and address into
the MSI fields of d’s configuration space. But since v is a virtual machine, its configuration space
is emulated: it is not allowed to access the physical configuration space, which is (or can be per-
ceived as) a singular device that affects the entire system. Assume that the hypervisor decided that
d’s (physical) interrupt vector is 50, and that, later, v configured this vector to be 30 via its emu-
lated configuration space (Figure 6.16a). erefore, the configuration space emulation layer of the
hypervisor records internally that v expects to get a vector of 30 from d, rather than 50. Hence-
forth, when d fires an interrupt (vector 50), the corresponding MSI message passes through the
IOMMU unchanged, because there is no IR (Figure 6.16b). It then reaches the target LAPIC,
thereby triggering an exit that invokes the hypervisor, because the latter configured v’s VMCS to
exit upon interrupts (Figure 6.16c). When awakened, the hypervisor delivers the interrupt to v
using vector 30, as indicated by v’s emulated configuration space (Figure 6.16d).

e above interrupt delivery procedure is seemingly safe. But in fact it can be exploited by
v to arbitrarily change the physical interrupt vector delivered to the hypervisor (Figure 6.16c),
i.e., to values different than 50 [185]. Because d is directly assigned to v, the latter can program
the former to DMA-write any value (any vector) into the interrupt space, by using 0xFEEx_xxxx
as a DMA target address. Crucially, without IR, the IOMMU cannot distinguish between a
legitimate, genuine MSI interrupted fired by d and a rogue DMA that just pretends to be an
interrupt.

Figure 6.17 demonstrates how the IR capability of the IOMMU eliminates the vul-
nerability. First, the type and format of the MSI registers in the configuration space change



106 6. X86-64: I/O VIRTUALIZATION
Emulated Config Space

Physical Device + Config Space IOMMU
MSI

interrupt

50

interrupt

50

hypervisor

injects

interrupt

30

Hypervisor Guest VM

Interrupt Delivery
MSI address MSI data

0xFEEx.xxxx       30   

MSI address MSI data

0xFEEx.xxxx       50   

no

IR capability,

interrupt

pass-through

VMCS configured

to cause vmexit

on external

interrupt

process

interrupt 30

on vmentry

(a) (b) (c) (d)

vmexit

Figure 6.16: MSI interrupt delivery without interrupt remapping support.

Emulated Config Space

Physical Device + Config Space IOMMU
MSI

interrupt
interrupt

50

hypervisor

injects

interrupt

30

Hypervisor Guest VM

Memory Reference
MSI address MSI data

0xFEEx.xxxx       30   

MSI Registers

0xFEE  1       IRindex

IR table, up to 64K 128-bit entries

…

…

source b:d.f  vector 50  target LAPIC ID

…

…

IR enabled

IRTA

VMCS configured

to cause vmexit

on external

interrupt

process

interrupt 30

on vmentry

Interrupt Delivery

(a) (b) (c) (d)

vmexit

interrupt

format:

1 - remappable

Figure 6.17: MSI interrupt delivery with interrupt remapping support. (IRindex is denoted “inter-
rupt_index” in the VT-d specification.)

(Figure 6.17a, to be compared with Figure 6.16a). Instead of storing the physical interrupt vec-
tor and target LAPIC, MSI registers now store an IRindex, which is an index to the IR table,
pointed to by the IR Table Address (IRTA) register at the IOMMU. As before, the content of
MSR registers in the physical configuration space is exclusively set by the hypervisor. When d
fires an interrupt directed at 0xFEEx_xxxx, the IOMMU deduces the IRindex form this “ad-
dress” and “data” (Figure 6.17b). e IOMMU then determines the target LAPIC and physical



6.4. VIRTUAL I/OWITHHARDWARE SUPPORT 107

interrupt vector based on the associated IR table entry. e rest of the interrupt delivery flow is
identical to the flow depicted in Figure 6.16.

In addition to the target LAPIC and interrupt vector, the IR table entry contains d’s BDF
for anti-spoofing, to indicate that d is indeed allowed to raise the interrupt associated with this
IRindex. Only after verifying the authenticity and legitimacy of the interrupt, does the IOMMU
deliver it to the hypervisor, as before. Since the target LAPIC and interrupt vector are determined
based on the IR table—which is set by the hypervisor—they cannot be forged. Although v can
still program DMAs that look like interrupts, they will only be delivered to v as the hypervisor
intended, and they will not trick the IOMMU into issuing the wrong physical interrupt vector.

6.4.2 SRIOV
With IOMMUs making direct device assignment safe, we go on to discuss how hardware sup-
port (in the PCIe and device level) additionally makes it scalable. Since (1) physical servers can
house only a small number of physical devices as compared to virtual machines, and because (2) it
is probably economically unreasonable to purchase a physical device for each VM, the PCI-SIG
standardized the SRIOV specification, which extends PCIe to support devices that can “self-
virtualize”. Namely, an SRIOV-capable I/O device can present multiple instances of itself to
software. Each instance can then be assignment to a different VM, to be used directly (and ex-
clusively) by that VM, without any software intermediary. Traditionally, it is the role of the oper-
ating system to multiplex the I/O devices. Conversely, an SRIOV device knows how to multiplex
itself at the hardware level.

An SRIOV device is defined to have at least one Physical Function (PF) and multiple
Virtual Functions (VFs), which serve as the aforementioned device instances, as illustrated in
Figure 6.18. A PF is a standard PCIe function (defined in §6.2.3). It has a standard configura-
tion space, and the host software manages it as it would any other PCIe function. In addition
to supporting the standard operations, the PF also allows the host to allocate, deallocate, and
configure VFs. A VF is a lightweight PCIe function that implements only a subset of the com-
ponents of a standard PCIe function. For example, it does not have its own power management
capabilities and instead shares such capabilities with its PF, and it cannot (de)allocate other VFs.
Accordingly, it has a limited configuration space that presents limited capabilities. When a VF
is assigned to a virtual machine, the former provides the latter the ability to do direct I/O—the
VM can safely initiate DMAs, such that the hypervisor remains uninvolved in the I/O path. e
theoretical bound on the number of VFs that can be exposed by a single physical device is 64 K.
Current Intel and Mellanox implementations of SRIOV NICs enable up to 128 and 512 VFs per
device, respectively [105, 128].

Using the lspci shell command, Figure 6.19 shows some of the content of the configuration
space of an X540 Intel NIC, which supports SRIOV. As can be seen, the output indeed includes
the SRIOV standard PCIe extended capability. e output further specifies the maximal num-
ber of VFs that this NIC supports (64), and the current number of allocated VFs (0). Another



108 6. X86-64: I/O VIRTUALIZATION

Hypervisor

PF VF0 VF1

PF device driver

Guest

VF device driver

Embedded Ethernet Switch

SRIOV NIC

Guest

VF device driver

Figure 6.18: SRIOV-capable NIC in a virtualized environment.

06:00.0 Ethernet controller: Intel Ethernet Controller 10-Gigabit X540-AT2
Subsystem: Intel Corporation Ethernet 10G 2P X540-t Adapter
Flags: bus master, fast devsel, latency 0
Memory at 91c00000 (64-bit, prefetchable) [size=2M]
Memory at 91e04000 (64-bit, prefetchable) [size=16K]
Expansion ROM at 91e80000 [disabled] [size=512K]
Capabilities: [70] MSI-X: Enable+ Count=64 Masked-
Capabilities: [a0] Express Endpoint, MSI 00
Capabilities: [150] Alternative Routing-ID Interpretation (ARI)
Capabilities: [160] Single Root I/O Virtualization (SR-IOV)

Total VFs: 64, Number of VFs: 0
VF offset: 128, stride: 2, Device ID: 1515
Supported Page Size: 00000553, System Page Size: 00000001
Region 0: Memory at 92300000 (64-bit, non-prefetchable)
Region 3: Memory at 92400000 (64-bit, non-prefetchable)

Capabilities: [1d0] Access Control Services

Figure 6.19: Partial lspci output of the Intel X540 NIC shows the SRIOV and ARI capabilities.

relevant capability that the NIC supports is Advanced Routing-ID Interpretation (ARI) [139].
Recall that PCIe enumerates bridges and device endpoints with a 16-bit bus:device.function
(BDF) identifier, such that bus, device, and function consist of 8, 5, and 3 bits. e ARI capa-
bility lets SRIOV devices support more functions at endpoints than just the eight that the BDF
enumeration permits (3 bits). In particular, ARI allows manufacturers of SRIOV-capable devices
to omit the endpoint’s 5-bit device identifier for this purpose. e 16-bit identifier of such end-
points is bus.function, such that both bus, and function consist of 8 bits, thereby supporting up
to 256 functions per endpoint.

In §6.2.3, we described the PCIe hierarchy and its BDF enumeration. SRIOV changes
the manner by which this enumeration is performed. Consider the enumeration depicted in



6.4. VIRTUAL I/OWITHHARDWARE SUPPORT 109

Figure 6.5, and assume that we now replace the device that houses PCIe function 5:0.0 with
an SRIOV device d that supports one PF and up to 2048 VFs (similarly to the the Altera Ar-
ria 10 [10]). Further assume that d uses ARI (which requires that all its ancestors in the PCIe tree
also support ARI). Figure 6.20 highlights the differences in the BDF tree due to the change we
applied, as compared to Figure 6.5. In the example shown, 600 of the 2048 VFs of d are allocated;
the remaining VFs can be allocated later. We can see that all the rules that govern BDF enumer-
ation still apply. e difference is that the enumeration construction process (conducted by the
BIOS/UEFI, and perhaps also later by the OS while booting) queries the configuration space of
devices and, if they are SRIOV-capable, creates a “hole” in the hierarchy that is big enough to
accommodate all their possible future VF creations. A PCIe bus can connect to 256 endpoints,
so d requires reserving nine buses: eight to account for the 2048 potential VFs and another for
the single PF (PFs and VFs can reside on the same bus; the nine’s bus is needed because eight
are not enough). Consequently, Buses 5–13 are reserved for d, which means function 6:0.0 from
Figure 6.5 becomes 14:0.0 in Figure 6.20.⁵

Figure 6.21 compares the network performance of SRIOV device assignment to that of
e1000 emulation (§6.3.1) and virtio-net paravirtualization (§6.3.2), by running Netperf stream
inside a virtual machine, which uses the three I/Omodels to communicate with a remotemachine.
e underlying physical NIC is SRIOV-capable, and the traffic of all three I/O models eventually
flows through it. However, the e1000 and virtio-net front-ends are implemented/mediated by the
hypervisor, which uses the SRIOV-capableNIC as a back-end. In contrast, the VM in the SRIOV
experiment uses a VF, thereby keeping the hypervisor uninvolved when it interacts with its NIC
instance through the corresponding ring buffers.

e results in Figure 6.21 indicate that using SRIOV is indeed advantageous in terms of
performance, improving the throughput of the VM by 1.31–1.78x relative to paravirtualization,
depending on the message size. e results further show that, as expected, the throughput is in-
versely proportional to the number of exits—fewer exits translate to reduced virtualization over-
heads, allowing the VM to spend additional CPU cycles to push more data into the network.

6.4.3 EXITLESS INTERRUPTS
With SRIOV and the IOMMU, the hypervisor can safely and scalably assign devices directly
to guests. But direct device assignment does not eliminate all the major sources of virtualization
overhead. Whereas it eliminates most of the exits that occur when guests “talk” to their assigned
devices (via MMIOs, for example), it does not address the overheads generated when assigned
devices “talk back” by triggering interrupts to notify guests regarding the completion of their I/O
requests. Intel VT-x (rather than VT-d) provides the hypervisor with the basic hardware support
needed to inject virtual interrupts into guests. Next, we outline this support, asses its overheads,

⁵In Linux, users can easily create and destroy VFs by writing the desired number of VFs to the sriov_numvfs file that is associated
with the device, which is found under the /sys file system. For example, “echo 10 > /sys/class/net/eth1/device/sriov_numvfs”.



110 6. X86-64: I/O VIRTUALIZATION

bus  dev  fun

pri  sec  sub bus  dev  fun bus  fun

bus  dev  fun

bus  dev  fun

bus  dev  fun

pri  sec  sub

bus  dev  fun

pri  sec  sub

bus  dev  fun

pri  sec  sub

bus  dev  fun

pri  sec  sub

bus  dev  fun

pri  sec  sub

bus  dev  fun

pri  sec  sub

bus  dev  fun

bus  dev  fun

0     1     0

0     1     13

0     0     0

1     0     0

1     2     13

2     1     0

2     4     4

2     2     0

2     5     13

4     0     6

4     0     2

4     0     0

3     0     02     0     0

2     3     3

0     2     0

0     14     14

14     0     0

3     0     1

4     0     1

…   …   …

4     0     7

CPU Package

Memory Controller

Core

PCIe BusPCIe Function

PCIe Bridge PCIe Endpoint PCIe Endpoint with ARI enabled

Core Host Bridge

Root Complex (RC)

Core

Core

PCIe Switch

b
u
s 

0

b
u
s 

2

bus 1

bus 14

bus 3

bus 4

bus 5

SRIOV Device

the next

available 

bus is 14

changes in

subordinate

buses

bus 7

buses 8-13
reserved

bus 6 bus 5
bus   fun

5          0      PFO

VF1

VF2

VF254

VF255

5          1      

5          2      

…        …      

5        254      

5        255      

bus   fun

6          0      VF256

VF257

VF258

VF511

VF511

6          1      

6          2      

…        …      

6        254      

6        255      

bus   fun

7          0      VF512

VF513

VF6007          87      

…        …      

internal PCIe routing

7          1      

Figure 6.20: e process of BDF enumeration of PCIe bridges and endpoints changes in the presence
of SRIOV-capable devices, creating “holes” in the hierarchy to accommodate for the creation of VFs
(compare with Figure 6.5).

show that they are significant, and describe software—and later hardware—means to alleviate
this problem.

Basic VT-x Interrupt Support: Similarly to other CPU registers, the VMCS stores the value of
the guest’s Interrupt Descriptor Table Register (IDTR, defined in 6.2.1), such that it is loaded
upon entering guest mode and saved on exit, when the hypervisor’s IDTR is loaded instead.



6.4. VIRTUAL I/OWITHHARDWARE SUPPORT 111

14

12

10

8

6

4

2

0

35

30

25

20

15

10

5

0
256B 1KB 4KB 16KB 64KB 256B 1KB 4KB 16KB 64KB

SRIOV
virtio-net
e1000

1.68x

1.77x
1.78x

1.58x

1.31x

Message Size

T
h
ro

u
g
h
p
u
t 

[G
b
p
s]

E
x
it

s 
p
er

 s
ec

o
n
d
 [

th
o
u
sa

n
d
s]

Figure 6.21: Netperf TCP stream running in a single-VCPU Linux 4.4.2 VM served by Linux/KVM
(same version) and QEMU 2.5 on a Dell PowerEdge R420 host equipped with a 1.9 GHz Xeon E5-
2420 CPU and a 40 Gbps SRIOV-capable Mellanox ConnectX-3 NIC. Networking of the VM is
done through e1000, virtio-net (with vhost-net and MACVTAP), and a VF of the ConnectX-3. e
destination is a remote R420, which does not employ virtualization. e numbers show the ratio of
virtio-net to SRIOV.

Roughly speaking, control over all interrupts implies control over the CPU.⁶ e hypervisor needs
to maintain control, rather than surrender it to the untrusted guest, so it sets a VMCS control
bit (denoted “external-interrupt exiting”), which configures the core to exit whenever an exter-
nal interrupt fires. e chain of events that transpire when such an event occurs is depicted in
Figure 6.22.

Assume that the guest is computing (i), but then an I/O device raises an MSI/MSI-X
interrupt (ii), causing an exit that transfers control to the hypervisor (iii). Using the “VM-exit
information” fields in the VMCS, the hypervisor figures out that the cause for the exit was an
external interrupt. It therefore handles the interrupt and acknowledges the completion of the
interrupt handling activity through the LAPIC End of Interrupt (EOI) register, as required by
the x86 specification (iv). In our example, the physical interrupt is associated with the guest, so the
hypervisor injects an appropriate virtual interrupt (possibly with a different vector) to the guest (v).
Technically, the hypervisor injects by writing to the “interruption-information” field (that resides
in the “VM-entry control” area of the VMCS) the type of the event (external interrupt) and its
vector. e actual interrupt delivery takes place within the guest during vmentry, when the guest’s
state—including its IDTR—is already loaded to the CPU, thereby allowing the guest to handle

⁶e hypervisor can regain control by using the preemption time feature of x86 virtualization, which triggers an unconditional
exit after a configurable period of time elapses.



112 6. X86-64: I/O VIRTUALIZATION

(i) compute
(iii) exit (ii) MSI interrupt

(iv) handle interrupt (and EOI)

(viii) update state

(v) inject interrupt

(vii) EOI

(ix) resume

(vi) handle interrupt

(x) finish handler
and resume compute

Guest Hypervisor Physical Device

Figure 6.22: Chain of events when a physical device triggers an interrupt, without hardware support
for direct interrupt delivery.

the interrupt (vi). Shortly after, the guest acknowledges interrupt completion, which, again, results
in an exit, because the hypervisor emulates the LAPIC for the guest (vii). e hypervisor updates
its internal state accordingly (viii) and resumes guest execution (ix). e guest can now complete
the handler routine and return to normal execution (x).

To complete the description of the basic VT-x interrupt support, we note in passing that
it is possible for the guest to be in a state whereby it is not ready to receive an interrupt, notably
because its interrupt flag is off. In this case, the hypervisor sets the “interrupt-window exiting”
VMCS bit, which will cause the core to trigger an exit when the guest is ready to receive interrupts
yet again, at which point the hypervisor will be able to inject as usual.

Assigned EOI Register: VT-x interrupt support, as described above, requires at least two exits
per interrupt. us, when devices generate many interrupts per second, the overhead of virtualiza-
tion can be substantial. e question is whether we can alleviate this overhead. Let us first focus
on eliminating the exits associated with EOI. e operating system uses the LAPIC to control all
interrupt activity (§6.2.1). To this end, the LAPIC employs multiple registers used to configure,
block, deliver, and (notably in this context) signal EOI. If we assume that an interrupt of a phys-
ical device can somehow be safely delivered directly to the guest without hypervisor involvement
(discussed below), then the EOI register should correspondingly also be assigned to the guest.
EOI assignment, however, is not possible with older LAPIC generations, because they expose all
the LAPIC registers in a tightly packed predefined memory area that is accessed through regular
load and store instructions. erefore, with an emulated LAPIC, providing the guest with write
permissions to one register implies that the guest can write to all registers that reside in the same
page, as memory protection is conducted in page granularity.



6.4. VIRTUAL I/OWITHHARDWARE SUPPORT 113

ankfully, the current LAPIC interface, x2APIC, exposes its registers usingmodel specific
registers (MSRs), which are accessed through “read MSR” and “write MSR” instructions. e
CPU exits on LAPIC accesses according to an MSR bitmap controlled by the hypervisor. e
bitmap specifies the “sensitive”MSRs that cannot be accessed directly by the guest and thus trigger
exits. In contrast to other LAPIC registers, with appropriate safety measures [13], EOI can be
securely assigned to the guest.

Assigned Interrupts: Assume a guest is directly assigned with a device. By utilizing a software-
based technique called exitless interrupts (ELI) [80], it is possible to additionally securely
assign the device’s interrupts to the guest—without modifying the guest or resorting to
paravirtualization—by employing the architectural support described thus far. An assigned exit-
less interrupt does not trigger an exit. It is delivered directly to the guest without host involvement.
Consequently, ELI eliminates most of the remaining virtualization overhead.

ELI is structured based on the assumption that in high-performance, SRIOV-based device
assignment deployments nearly all physical interrupts arriving to a given core are targeted at
the guest that runs on that core. By turning off the aforementioned VMCS “external-interrupt
exiting” control bit, ELI delivers all physical interrupts on the core to the guest running on it.
At the same time, ELI forces the guest to reroute to the hypervisor all the interrupts that are not
assigned to it, as follows. While the guest initializes and maintains its own IDT, ELI runs the
guest with a different IDT—called shadow IDT—which is prepared by the hypervisor. Just like
shadow page tables can be used to virtualize the guest MMU without any cooperation from the
guest (§4.2.3), IDT shadowing can be used to virtualize interrupt delivery. Using the trap and
emulate technique, the hypervisor monitors the updates that the guest applies to its emulated,
write-protected IDT, and it reacts accordingly so as to provide the desired effect.

eELImechanism is depicted in Figure 6.23. By shadowing the guest IDT, the hypervisor
has explicit control over which handlers are invoked upon interrupts. It thus configures the shadow
IDT to (1) deliver assigned interrupts directly to the guest’s interrupt handler, and to (2) force an
exit for non-assigned interrupts by marking the corresponding IDT entries as non-present.

Performance: Figure 6.24 (left) shows the benefit of employing the ELI technique—which
encompasses EOI assignment—utilizing Netperf TCP stream (with 256 B message size),
Apache [18, 69] (HTTP server driven by ApacheBench [17]), and Memcached [70] (key-value
storage server driven by Memslap [9]) to communicate with a remote client machine via an
SRIOV-capable Emulex OneConnect 10Gbps NIC. Each of the benchmarks is executed on
bare-metal and under two virtualized setups: the SRIOV device assignment baseline, and SRIOV
supplemented with ELI. We can see that baseline SRIOV performance is considerably below
bare-metal performance: Netperf ’s VM throughput is at 60% of bare-metal throughput, Apache
is at 65%, and Memcached is at 60%. It is therefore evident that using ELI gives a significant
throughput increase over baseline SRIOV: 63%, 49%, and 66% for Netperf, Apache, and Mem-
cached, respectively. Importantly, with ELI, Netperf achieves 98% of bare-metal throughput,



114 6. X86-64: I/O VIRTUALIZATION

Guest IDT

Guest

physical interrupt
assigned interrupt

non-assigned interrupt (exit)

Shadow IDT

Hypervisor

Interrupt Handler

Figure 6.23: ELI interrupt delivery flow.

Netperf

(+63%)

Apache

(+49%)

Memcached

(+66%)

SR
IO

V

SR
IO

V
+ELI

SR
IO

V

SR
IO

V
+ELI

SR
IO

V

SR
IO

V
+ELI

100%

80%

60%

40%

20%

0%

120%

100%

80%

60%

40%

20%

0%

5G

4G

3G

2G

1G

0G

10K

8K

6K

4K

2K

0K

160K

120K

80K

40K

0K

%
 o

f 
B

ar
e-

m
et

al
 P

er
fo

rm
an

ce

A
b
so

lu
te

 T
h
ro

u
g
h
p
u
t 

(p
er

 s
ec

)

E
L

I’
s 

T
h
ro

u
g
h
p
u
t 

Im
p
ro

v
em

en
t

10K 20K 30K 40K 50K 60K 70K 80K

96

88

80

72

6456 48 40

32

24

16

Interrupts/second

Figure 6.24: Left: throughput of three SRIOV benchmarks, with/without ELI, shown as percentage
of bare-metal performance (left y axis) and in absolute terms (right y axis); numbers under the titles
show ELI’s relative improvement over SRIOV. Right: Netperf ’s relative performance improvement
gained with ELI as a function of interrupts per second; labels along the curve specify the NIC’s inter-
rupt coalescing interval inmicroseconds. Data taken from the ELI paper [80], utilizing a single-VCPU
Linux 2.6.35 VM served by Linux/KVM (same version) and QEMU 0.14 on an IBM System x3550
M2 server equipped with a 2.93 GHz Xeon X5570 CPU and an Emulex OneConnect 10 Gbps NIC.

Apache 97%, and Memcached nearly 100%. Namely, ELI all but eliminates virtualization over-
heads.

We now proceed to investigate the dependence of ELI’s improvement on the amount of
interrupt coalescing done by hardware (NIC), which immediately translates to the amount of
generated interrupts. (We note that software interrupt mitigation techniques, employed by the
Linux kernel, are also in affect throughput the experiments.) e Emulex OneConnect NIC
imposes a configurable cap on coalescing, allowing its users to set a time duration T , such that the



6.4. VIRTUAL I/OWITHHARDWARE SUPPORT 115

NIC will not fire more than one interrupt per T�s (longer T implies less interrupts). e available
coalescing cap values are: 16 �s, 24 �s, 32 �s, 40 �s, : : :, 96 �s. Figure 6.24 (right) plots the results
of the associated experiments, such that the labels along the curve denote the corresponding
value of T . Unsurprisingly, higher interrupt rates imply higher savings due to ELI. e smallest
interrupt rate that the NIC generates for this workload is 13 K interrupts/sec (with T =96 �s),
but even with this maximal coalescing, ELI still provides a 10% performance improvement over
baseline SRIOV. ELI additionally achieves nearly 100% of bare-metal throughput in all of the
experiments shown in Figure 6.24 (right), indicating that, when it is used, coalescing has a lesser
effect on throughput. Granularity of coalescing can therefore be made finer as needed, so as to
refrain from the increased latency that coarse coalescing induces (not shown).

6.4.4 POSTED INTERRUPTS
We have seen that the overhead of interrupts and EOIs can be substantial in virtualized en-
vironments. ELI combats this problem by using software-based interrupt and EOI assignment.
While effective, ELI has two notable drawbacks. First, it increases hypervisor complexity, not just
because of IDT shadowing, but also because of the security measures that the hypervisor must
employ [80] to prevent malicious or buggy guests from exploiting the technique. For example, the
guest might decide never to acknowledge completion of interrupts, which affects the hypervisor,
since guest and hypervisor share the physical LAPIC EOI register. e second drawback is that
ELI is inherently an all-or-nothing approach: either all interrupts go initially to the guest, which
might adversely affect, for example, the interrupt latency experienced by the hypervisor, or ELI
cannot be used.

Unlike all other virtualization techniques discussed in this chapter, ELI, which is the prod-
uct of a fairly recent academic exercise [13, 80], has never been widely deployed—hardware sup-
port that deems it unnecessary was quick to emerge.⁷ Ideally, we would like such support to
allow the hypervisor to easily assign specific interrupts of specific devices to specific guests, and
to have all other interrupts delivered directly to the host without requiring any sophisticated soft-
ware hacks. Posted interrupts is a recently introduced mechanism that provides such support.
It divides into two components: (1) CPU posted interrupts, which correspond to IPIs, namely,
interrupts that are directly injected by the hypervisor that runs on one core to a guest that runs
on a different core without involving the hypervisor on the latter core, and (2) IOMMU posted
interrupts (denoted “VT-d posted interrupts” by Intel), which correspond to interrupts that are
delivered directly from I/O devices to guest VMs. Both components rely on Intel’s APIC virtu-
alization (APICv), which provides a “virtual APIC” for the guest, whose semantics are preserved
by the underlying hardware, rather than by the hypervisor via LAPIC emulation. Using the vir-

⁷We nevertheless include ELI in this book to motivate such hardware support, as we do not yet have performance numbers
associated with the latter. To our knowledge, Intel processors that support functionality similar to that of ELI (“VT-d posted
interrupts,” to be discussed shortly) have started to ship only recently, in 2016. AMD has likewise recently added similar
functionality, called Advanced Virtual Interrupt Controller (AVIC).



116 6. X86-64: I/O VIRTUALIZATION

tual APIC, the hypervisor can configure guests to receive and acknowledge the completion of
interrupts without involving the hypervisor on the guest’s core [107].

Virtual APIC: e hypervisor configures the VMCS of the guest to point to a 4 KB memory
area, denoted as the “virtual APIC page,” which the processor uses in order to virtualize access
to APIC registers and track their state, and to manage virtual interrupts. e page houses all the
registers of the guest’s virtual APIC. Recall that a physical APIC has an IRR, ISR, EOI, and
ICR registers (their meaning and connections are described in §6.2.1). us, correspondingly,
the processor maintains a virtual version of these registers in the virtual APIC page (vIRR, vISR,
vEOI, vICR), at the same offsets as their physical counterparts.When a virtual register is updated,
the hardware emulates the side-effects that would have occurred if a physical APIC register was
updated similarly; this behavior is called “APIC-write emulation.” For example, when the guest
acknowledges interrupt completion in its vEOI, the hardware removes the associated interrupt
bit from the vISR and then, e.g., delivers to the guest the highest-priority pending interrupt,
updating vIRR and vISR accordingly. Only after the APIC-write emulation is performed does
the hardware trigger exits, if necessary. In our example, if the hypervisor configured the VMCS
to trigger exits upon EOI updates, the vISR is updated and only then the exit takes place.

APICv allows the hypervisor to associate a guest with a fully functioning hardware-
supported virtual APIC, which is of course different than the physical APIC. Below, we outline
how to trigger interrupts directed at a specific guest virtual APIC, while keeping the hypervisor
at the target core uninvolved. e subsequent (virtual) EOI operation would likewise only affect
this particular virtual APIC and its guest. e interrupt handling operations of the virtual APIC
are completely decoupled from the hypervisor’s physical interrupt activity. Generally speaking,
APICv provides an interface for compute entities (a different core, an SRIOV device) to turn on
bits in designated virtual APIC spaces and have the system behave as if an interrupt was generated
for the associated guest, and only for it.

CPU Posted Interrupts: Let us describe the delivery flow of CPU posted interrupts through an
example, which also highlights how virtual APICs work. e example is depicted in Figure 6.25
and explained in detail in the text that follows. Let R denote the value of an interrupt vector,
which the hypervisor on Core 1 would like to deliver directly to a guest that currently executes on
Core 2, without causing an exit on Core 2. e hypervisor must initially update the guest’s posted
interrupt descriptor (“PI descriptor”), which is pointed to by the guest’s VMCS (Figure 6.25a).
Ordinarily, for correctness, hypervisor softwaremust notmodify any of the data structures pointed
to by the VMCS while the associated guest is running. But this requirement does not apply to the
PI descriptor, so long as it is modified using an atomic read-modify-write instruction. e format
of the PI descriptor is specified in Table 6.3 [106] and explained next. e hypervisor uses the PI
descriptor’s first field—the posted-interrupt requests (PIR) bitmap—to set the bit that identifies
the interrupt vector R that the hypervisor wishes to directly deliver to the guest. In our example,
R=30.



6.4. VIRTUAL I/OWITHHARDWARE SUPPORT 117

PI Descriptor Virtual-APIC

PIR 256-bit vISR

vIRR

vEOI

vICR

vTPR

vPPR

NDST: LAPIC ID NV: 242

SNON

Virtual-APIC Address

PI Descriptor Address

PI Notification Vector

SVI

VMCSinterrupt

30

IPI interrupt 242

(b)

(a)

(c)

Interrupt Delivery Memory Reference

RVI

notification vector (NV)

triggers interrupt evaluation,

thus core delivers interrupt 30

to the guest without vmexit

hypervisor sets bit

for vector 30 in PIR

and sends NV to

target NDST

Hypervisor

wants to

deliver

interrupt 30

to the VM

Guest VM

processes

interrupt 30

core1 core2

Figure 6.25: CPU posted interrupt illustration.

Table 6.3: e posted interrupts (PI) descriptor consists of 512 bits (64 bytes)

Bits Name Description

255:0 PIR Post-Interrupt Requests, one bit per requested vector

256 ON Outstanding Noti� cation, logically, a bitwise OR of PIR

257 SN Suppress Noti� cation, of non-urgent interrupts

271:258 - Reserved (must be 0)

279:272 NV Noti� cation Vector, doorbell to notify about pending PIR

287:280 - Reserved (must be 0)

319:288 NDST Noti� cation Destination, a physical APIC ID

511:320 - Reserved (must be 0)

ere are two additional fields in the PI descriptor that are relevant for delivering R without
causing an exit. e first is the notification destination (NDST), which holds the ID of the
destination LAPIC where R will fire (Core 2 in our example). e second is the notification
vector (NV), which holds the value of some interrupt vector, interpreted by the destinationNDST
as a notification event, which triggers the direct delivery of R; the specific numerical value of
NV is selected by the hypervisor (in our example, it is 242). In other words, the NV serves as a
“doorbell,” to let the NDST core know that some other core requested that a posted interrupt



118 6. X86-64: I/O VIRTUALIZATION

would be delivered to the guest that runs at the NDST. e hypervisor core (Core 1) sends the
NV (242) to the NDST (Core 2) via an IPI (Figure 6.25b).

Observe that, in addition to the PI destination, the value of NV is also stored in the VMCS
(bottom row within the gray VMCS area in Figure 6.25). As such, Core 2 understands that it has
special meaning, and that it is used as a doorbell for pending posted interrupts.⁸

Importantly, if the guest is executing when the NV (242) reaches the NDST (Core 2), the
handler of 242 is not invoked; without yet disturbing the guest, Core 2 needs to figure out what
to do. To this end, Core 2 first appends the PIR bits into the guest’s vIRR register. In so doing, it
effectively turns interrupts posted by remote cores into requested interrupts in the virtual APIC
of the guest. Core 2 then “evaluates pending virtual interrupts,” which means that it applies the
regular APIC logic with respect to the registers at the virtual APIC page. When the state of the
virtual APIC permits it, the evaluation of pending virtual interrupts results in the direct delivery
of an interrupt to the virtual machine.

Technically, direct virtual interrupt delivery—of an interrupt vector R—is initiated when
Core 2 stores R in the “requesting virtual interrupt” (RVI) 8-bits field in the VMCS. Core 2 does
that according to rules that strictly follow those of physical APICs. First, R is selected to be the
maximal (highest priority) bit index set in the vIRR register.en, R is assigned to RVI if no other
interrupt vector is currently stored there, or if R’s numeric value is bigger than RVI (R’s priority
is higher). When R resides in RVI, Core 2 evaluates whether R can actually be delivered to the
guest, in which case it is moved to the VMCS “servicing virtual interrupt” (SVI) 8-bits field. Once
again, the decision to deliver R is based on physical APIC rules. For example, if the guest turned
off its (virtual) interrupts, or if it is currently serving a higher-priority (virtual) interrupt, R will
not be delivered. When Core 2 finally assigns R to SVI and delivers R to the guest (Figure 6.25c),
it likewise follows the semantics of physical interrupts, turning R off in vIRR, turning R on in
vISR, and assigning the value of the highest set vIRR bit into RVI. When the guest finishes to
handle R, it acknowledges the completion through its vEOI, prompting Core 2 to remove R from
vISR and VSR and to initiate the evaluation procedure of pending virtual interrupts yet again.

e hypervisor at Core 2 remains uninvolved in all of this activity. It is not notified regarding
any of these events unless it explicitly sets VMCS bits that declare that it would like to be notified.

IOMMU Posted Interrupts: Given that hardware support for CPU posted interrupts is avail-
able, the task of additionally supporting IOMMU posted interrupts—which directly channel
interrupts from assigned devices to their guests without host involvement—is straightforward.
Figure 6.26 illustrates IOMMU posted interrupts. e figure in fact encompasses and extends
Figure 6.17, which depicts interrupt delivery with IOMMU interrupt remapping (IR). e main
difference between the two is that, with IOMMU posted interrupt, an IR table entry may now

⁸At this point, readers may wonder why NV is stored twice: in the PI descriptor as well as in the VMCS. In fact, for CPU
posted interrupts, the NV need not reside in the PI descriptor—the hardware is indifferent [107]. e same, by the way,
applies to NDST. e presence of NV and NDST in the PI descriptor becomes crucial for IOMMU posted interrupts, as will
be explained later on.



6.4. VIRTUAL I/OWITHHARDWARE SUPPORT 119

PI Descriptor

PIR 256-bit

NDST: target LAPIC ID

NV: 242

IR table, up to 64K 128-bit entries

…

…

source b:d.f   vector 30   PI descriptor

…

…

PI desc.

VMCS

MSI

interrupt

Notification

interrupt 242

interrupt 30

(e)

(a) (b)

(d)

(c)

Interrupt Delivery

Emulated Config Space

Physical Device + Config Space

Memory Reference

notification vector (NV)

triggers interrupt evaluation,

thus core delivers interrupt 30

to the guest without vmexit

interrupt

format:

1 - remappable

IOMMU sets

bit 30 in PIR

and sends NV

IOMMU

IR enabled

IRTA

Guest VM

process
interrupt

30

core1MSI Registers

0xFEE    1       IRindex

MSI address     MSI data

0xFEEx.xxxx          30    

Figure 6.26: IOMMU (VT-d) posted interrupt illustration (compare with Figure 6.17).

specify the interrupt vector that the guest expects to receive when its assigned device fires an in-
terrupt (Figure 6.17a), as well as a pointer to the PI descriptor of that guest. Upon receiving the
interrupt, the IOMMU consults the associated IR table entry (Figure 6.17b). rough this entry,
the IOMMU accesses the guest’s PI descriptor, turns on the appropriate bit in the PIR (30 in
our example), and retrieves the NV (242 in our example) and NDST (Core 1’s LAPIC in our
example) that are associated with the guest (Figure 6.17c). It then delivers NV to Core 1, which
initiates the chain of events described above under CPU posted interrupts.

..

In summary, the IOMMU and SRIOV allow for safe and scalable direct de-
vice assignment. Exitless/posted interrupts additionally enable direct interrupt
delivery, making I/O virtualization performance approach bare-metal perfor-
mance. e downside of direct device assignment is losing I/O interposition.
e pros and cons of the alternative virtual I/O models are summarized in
Table 6.4.



120 6. X86-64: I/O VIRTUALIZATION
Table 6.4: Pros and cons of the three virtual I/O models

Virtual I/O Model Emulation Paravirtualization Device Assignment

Portable, no host-speci� c software P O P

Interposition and memory optimizations P P O

Performance worse better best

6.5 ADVANCEDTOPICSANDFURTHERREADING
I/O Page Faults: Recall that currently most I/O devices are unable to tolerate I/O page faults,
which is the situation that arises when the IOMMU fails to translate the IOVA of a DMA op-
eration. is inability means that the hypervisor cannot apply any of the canonical memory opti-
mizations to VMs with assigned devices—memory overcommitment, demand-paging based on
actual use, memory swapping, etc.—because the VM can use any memory address for DMAing,
and so the corresponding VM image regions should physically reside in memory. erefore, pro-
duction hypervisors resort to pinning the entire address space of VMs with assigned devices to
the physical memory. In an attempt to resolve this problem, the PCI-SIG recently supplemented
the ATS (address translation services) PCIe standard with PRI (page request interface) [140].
ATS/PRI standardize the interaction between the I/O device, the IOMMU, and the OS, such
that they are able to resolve I/O page faults. Roughly, with ATS/PRI, the IOMMU is able to
tell the OS that it encountered a page fault, the OS is able to respond when the fault is resolved,
and the device is able to wait until then. e standard permits I/O devices to cache translations in
their own IOTLBs, and so the OS is able to tell the device to invalidate such translations when
needed.

e effort to utilize ATS/PRI is spearheaded by AMD’s HSA—heterogeneous system ar-
chitecture [89]. HSA is aimed at unifying the address spaces of CPUs and on-die GPUs, enabling
seamless page fault resolution and thereby making pinning/copying between them unnecessary
[90, 119]. e HSA goals are making SOCs (which combine CPU and GPU cores) “easier to
program; easier to optimize; [and provide] higher performance” [152]. GPUs process data that
is local to the server, and they can thus be adequately served by the ATS/PRI standard—when a
GPU experiences a page fault, the relevant GPU thread(s) can be easily suspended until the fault
is resolved, without losing any of the data. is reasoning fails when applied to a NIC that at-
tempts to receive incoming data, which is external to the server. If the corresponding DMA-write
of the NIC triggers an I/O page fault, the NIC is left with no room to store the external data.
More incoming data might arrive subsequently (at full line rate), and it too might fault. NICs
must therefore employ some other solution to be able to tolerate I/O page faults. Such a solution
is described by Lesokhin et al. [120]; it is already deployed in recent Mellanox InfiniBand NICs.

Sidecores: I/O page faults allow the hypervisor to apply the canonical memory optimizations to
images of VMs that have directly assigned devices. Still, the guest I/O that flows through these



6.5. ADVANCEDTOPICSANDFURTHERREADING 121

assigned devices is, by definition, not interposable. As noted earlier, the superior performance
associated with direct device assignment comes at a cost—the hypervisor cannot observe or ma-
nipulate the guest I/O traffic, which prevents many of the benefits of I/O interposition (§6.1).
For this reason, researchers are working to develop an improved interposable virtual I/O model,
whose performance is competitive to that of direct device assignment. is model makes use of
hypervisor (side)cores that are dedicated to processing the virtual I/O of the VMs. Briefly, in
the sidecore model, VMs do not experience virtualization exits. Instead the hypervisor sidecores
poll on relevant memory locations of guest VMs, repeatedly observing the memory values and
reacting accordingly. More specifically, each VM writes its I/O requests to memory shared with
the host as is usual for the trap-and-emulate I/O model. Unusual, however, is that the VM does
not trigger an exit. Instead, the host sidecores poll the relevant memory regions and process the
request on arrival.

e benefits of the sidecores I/O model are: (1) more cycles to the VMs, whose guest OSes
are asynchronous in nature and do not block-wait for I/O; (2) less cache pollution on the cores
of the VMs since the hypervisor I/O-handling code no longer executes on these cores; and (3) an
easily controllable, more performant scheduling of I/O threads,⁹ because, in this I/O model, I/O
threads run exclusively on sidecores and hence no longer interfere with the execution of VMs. e
combined effect of the three benefits yields a substantial performance improvement. For example,
the Elvis system—which implements paravirtual block and net devices on sidecores—is up to 3x
more performant than baseline paravirtualization and is oftentimes on par with SRIOV+ELI [83].
e sidecore approach has been successfully applied to various other tasks, including IOMMU
virtualization [12], storage virtualization [34], GPU processing [159], and rack-scale comput-
ing [116].

⁹Recall that each virtual device is implemented in a different I/O thread of the hypervisor, as depicted in Figure 6.7.





123

C H A P T E R 7

Virtualization Support in ARM
Processors

is chapter describes the current, state-of-the-art support for virtualization in modern ARM
processors. Much of this work is based on the original paper on KVM/ARM, the Linux ker-
nel virtual machine for ARM [60]. §7.1 first describes the key design principles behind ARM’s
virtualization technology. §7.2 describes the approach to CPU virtualization, the concept of the
EL2 hypervisor mode, and how the architecture relates to the Popek and Goldberg theorem.
§7.3 discusses the closely related question of MMU virtualization through nested page tables.
§7.4 discusses support for interrupt virtualization. §7.5 discusses support for timer virtualiza-
tion. §7.6 uses KVM/ARM as its case study on how to build a hypervisor explicitly designed to
assume ARM hardware support for virtualization, and contrast it with KVM x86, as discussed
in Chapter 4. §7.7 discusses some micro-architectural implications of the design, including the
performance overhead of the new architectural features. §7.8 discusses the implementation com-
plexity of KVM/ARM. §7.9 discusses improvements to the ARM virtualization support for type-
2 hypervisors such as KVM/ARM. Finally, like all chapters, we close with pointers for further
reading.

7.1 DESIGNPRINCIPLESOFVIRTUALIZATIONSUPPORT
ONARM

ARMArchitecture Virtualization Extensions [39] were introduced in 2010 as part of the ARMv7
architecture to provide architectural support for virtualization. Until then, virtualization solutions
on ARM systems were based on paravirtualization and not widely used [28, 59, 91]. However,
as ARM CPUs continued to increase in performance, interest in ARM virtualization also grew.
ARM CPUs are pushing upward from mobile devices such as smartphones and tablets into tra-
ditional servers where virtualization is an important technology. Given ARM’s widespread use in
embedded systems and its business model of licensing to silicon partners who then build ARM
chips, it was important for ARM to support virtualization but in a manner that enabled its part-
ners to implement it in a cost effective manner. e central design goal of ARM Virtualization
Extensions was to make it possible to build ARM hypervisors that can run unmodified guest op-
erating systems without adding significant hardware complexity, while maintaining high levels of
performance. With the success of Intel Virtualization Technology, ARM recognized the bene-



124 7. VIRTUALIZATIONSUPPORT INARMPROCESSORS

fit of hardware virtualization support to overcome the limitation of previous ARM architectures
not being classically virtualizable without the need for CPU paravirtualization or dynamic binary
translation.

ARM’s central design goal is to fully meet the requirements of the Popek andGoldberg the-
orem, with the explicit goal that virtual machines running on top of a Virtualization Extensions-
based hypervisor meet the following three core attributes of equivalence, safety, and performance:

Equivalence: ARM’s architects designed the Virtualization Extensions to provide architectural
compatibility between the virtualized hardware and the underlying hardware, including being
backward-compatible with older generations of ARM’s ISA. However, ARM also introduced in
ARMv7 a hardware technology for providing hardware-based security known as TrustZone. By
design, TrustZone is not virtualized by the Virtualization Extensions. is view of equivalence is
the same as that for Intel’s VT-x from the pragmatic point of view of applications and operating
systems.

Safety: ARM Virtualization Extensions also meet the safety requirement in a manner similar
to Intel’s VT-x. rough architectural support specifically designed for virtualization, a simpler
hypervisor can provide the same characteristics with a smaller code base.is reduces the potential
attack surface on the hypervisor and the risk of software vulnerabilities.

Performance: ARM benefited from the hindsight of Intel’s VT-x in its design, so that deliver-
ing good performance was a goal from the beginning for first-generation hardware support for
virtualization. For example, nested page tables, not part of the original x86 virtualization hard-
ware, are standard in ARM. Furthermore, ARM went beyond Intel’s VT-x in various aspects
of its design to provide additional hardware mechanisms to improve virtualization performance,
especially in the presence of multicore systems which have become more commonplace.

7.2 CPUVIRTUALIZATION
Like Intel’s VT-x design, the architecture of the Virtualization Extensions focuses on supporting
the existing ISA in the context of virtualization. ARM does not change the semantics of individ-
ual instructions of the ISA, or separately address the individual aspects of the architecture limiting
virtualization, such as the non-virtualizable instructions. Instead, the Virtualization Extensions
introduces a new more privileged mode of execution of the processor, referred to as HYP (hyper-
visor) mode in the ARMv7 architecture when it was first introduced, but now referred to as EL2
since the introduction of the ARMv8 architecture.

We first provide an overview of the ARM architecture then discuss its virtualization sup-
port. Figure 7.1 shows the overall CPU modes on the ARM architecture, including TrustZone
(Security Extensions). TrustZone splits the modes into two worlds, secure and non-secure, which
are orthogonal to the CPU modes. A special mode,monitormode, is provided to switch between
the secure and non-secure worlds. Although ARM CPUs power up starting in the secure world,



7.2. CPUVIRTUALIZATION 125

assuming TrustZone is implemented, ARM bootloaders typically transition to the non-secure
world at an early stage. e secure world is used for trusted computing use cases such as digital
rights management. TrustZone may appear useful for virtualization by using the secure world for
hypervisor execution, but this does not work because trap-and-emulate is not supported. ere is
no means to trap operations executed in the non-secure world to the secure world. Non-secure
software can therefore freely configure, for example, virtual memory. Any software running at the
highest non-secure privilege level therefore has access to all non-secure physical memory, making
it problematic to isolate multiple VMs running in the non-secure world. While it may be possible
to retrofit TrustZone to support virtualization, that was not the intent of TrustZone, and it would
be undesirable to exclude current uses of TrustZone in a system running hypervisors because it is
being used for virtualization support.

Figure 7.1 shows a newCPUprivilege level called EL2 introduced to support virtualization.
ARM Virtualization Extensions are centered around this new CPU privilege level (also known
as exception level), EL2, added to the existing user and kernel levels, EL0 and EL1, respectively.
Since ARM software stacks generally run in the non-secure world, EL2 was introduced as a trap-
and-emulate mechanism to support virtualization in the non-secure world. EL2 is a CPU mode
that is strictly more privileged than the other CPU modes, EL0 and EL1. Note that ARMv8 only
has one kernel mode, EL1, unlike previous ARM architecture versions that supported multiple
kernel modes as discussed in §2.5.3.

To support VMs, software running in EL2 can configure the hardware to trap to EL2 from
EL0 or EL1 on various sensitive instructions and hardware interrupts. is configurability allows
for more flexible uses of the system. Consider three examples. First, a partitioning hypervisor that
does not support resource overcommittment may not trap on some instructions that a normal
hypervisor would trap on. Second, it may be desirable to allow a VM to use ARM debug registers
directly and therefore not trap accesses to them, but if debugging on the host was being done at
the same time, the VM should not be allowed to access them but should instead trap and their
behavior should be emulated. ird, if one wanted to just emulate a different CPU from the one
being used, it would be necessary to trap on accesses to the CPU identifier registers, but it would
not be necessary to trap on other accesses required for running a full hypervisor.

Non-Secure state

EL0 User

EL1 Kernel

EL2 Hypervisor

Monitor Mode (Secure EL3)

Secure state

EL0 User

EL1 Kernel

Figure 7.1: ARM processor modes.



126 7. VIRTUALIZATIONSUPPORT INARMPROCESSORS

To allow VMs to interact with an interface identical to that of the physical machine while
isolating them from the rest of the system and preventing them from gaining full access to the
hardware, a hypervisor enables the virtualization features in EL2 before switching to a VM. e
VM will then execute normally in EL0 and EL1 until some condition is reached that requires
intervention of the hypervisor. At this point, the hardware traps into EL2 giving control to the
hypervisor, which can then manage the hardware and provide the required isolation across VMs.
Once the condition is processed by the hypervisor, theCPU can be switched back into EL0 or EL1
and the VM can resume execution. When all virtualization features are disabled in EL2, software
running in EL1 and EL0 works just like on a system without the Virtualization Extensions where
software running in EL1 has full access to the hardware.

e ARM architecture allows each trap to be configured to trap directly into a VM’s EL1
instead of going through EL2. For example, traps caused by system calls or page faults from
EL0 can be configured to trap to a VM’s EL1 directly so that they are handled by the guest OS
without intervention of the hypervisor. is avoids going to EL2 on each system call or page
fault, reducing virtualization overhead. Additionally, all traps into EL2 can be disabled and a
single non-virtualized kernel can run in EL1 and have complete control of the system.

ARM designed the virtualization support around a separate CPU mode distinct from exist-
ing privileged modes, because they envisioned a standalone hypervisor underneath a more com-
plex rich OS kernel [62]. ey wanted to make it easier for silicon partners to implement the
Virtualization Extensions, and therefore reduced the number of control registers available in EL2
compared to EL1. For example, EL2 only has one page table base register while EL1 can make
use of two. Arguably, by reducing the number of control registers available in EL2, the hypervisor
implementation could be made simpler by reducing the amount of state that needed to be ma-
nipulated. Similarly, they mandated certain bits to be set in the page table entries, because they
did not envision a hypervisor sharing page tables with software running in user space, which is
for example what the Linux kernel does with kernel mode.

Compared to Intel’s VT-x, ARM Virtualization Extensions reflect a different approach
with respect to CPU virtualization. ARM supports virtualization through a separate CPU mode,
EL2, which is a separate and strictly more privileged CPU mode than previous user and kernel
modes. In contrast, Intel has root and non-root mode, which are orthogonal to the CPU protec-
tion modes. While sensitive operations on ARM trap to EL2, sensitive operations can trap from
non-root mode to root mode while staying in the same protection level on Intel. A crucial dif-
ference between the two hardware designs is that Intel’s root mode supports the same full range
of user and kernel mode functionality as its non-root mode, whereas ARM’s EL2 is a strictly
different CPU mode with its own set of features. A hypervisor using ARM’s EL2 has an arguably
simpler set of features to use than the more complex options available with Intel’s root mode.
More importantly, the simpler set of features of ARM’s EL2 are most likely easier for hardware
vendors to implement than the requirement of duplicating the entire architecturally visible state
of the processor as done with Intel’s root mode.



7.2. CPUVIRTUALIZATION 127

Both ARM and Intel trap into their respective EL2 and root modes, but Intel provides
specific hardware support for a VM control block which is automatically saved and restored when
switching to and from root mode using only a single instruction. is is used to automatically
save and restore guest state when switching between guest and hypervisor execution. In contrast,
ARM provides no such hardware support and any state that needs to be saved and restored must
be done explicitly in software.e absence of this hardware support in ARM reduces the hardware
complexity of implementing virtualization support, but it also provides some flexibility in what
is saved and restored in switching to and from EL2. For example, trapping to ARM’s EL2 is
potentially faster than trapping to Intel’s root mode if there is no additional state to save. On the
other hand, if much of the state in the software equivalent of a VM control block needs to be
saved and restored on each switch to the hypervisor, the hardware-supported VM control block
feature is most likely faster. Exactly what state needs to be saved and restored when switching to
and from EL2 depends on the hypervisor design and what state the hypervisor needs to use.

Compared to the properties of Intel’s root mode, ARM’s Virtualization Extensions provide
the following properties:

• the processor is at any point in time in exactly oneCPUmode, EL2, EL1, or EL0.e actual
transition from one mode to another is atomic, but the process of saving and restoring state
as needed when transition from one mode to another is not atomic;

• the CPU mode can be determined by executing the MRS instruction, which is available in
any mode as discussed in §2.5.3. e expectation is that applications and operating systems
will continue to run using the same CPU modes, whether within a VM or not. However,
under this assumption, EL2 execution itself cannot be virtualized and recursive virtual ma-
chines are not supported since a nested hypervisor can determine that it is not running in
EL2. is is under revision though and architecture support for nested virtualization on
ARM will become available starting with ARMv8.3 [38];

• EL2 is designed to be used for virtualization, but it is simply a more privileged CPU mode
and could be used for other purposes;

• eachmode has its own distinct complete linear address space defined by a distinct page table.
EL2 has its own translation regime, which defines the registers and page table formats
used in a given mode. However, EL1/EL0 share a translation regime so that both of their
address spaces and page tables can be accessible in either EL1 or EL0. Only entries in the
TLB for the currently active address space are matched as TLB entries are each tagged
with a translation regime. Since the entries are tagged, there is no need to flush the TLB in
transitioning between EL2 and other CPU modes; and

• ARM has two types of interrupts—normal (IRQ) and fast (FIQ)—and two corresponding
interrupt flags for the current mode of the processor. Software in EL1 can freely manipulate
the interrupt flag for each type of interrupt without trapping. EL2 can configure each type



128 7. VIRTUALIZATIONSUPPORT INARMPROCESSORS

of interrupt to either be delivered directly to EL1 or to trap to EL2. When the interrupt is
delivered directly to EL1, the interrupt flag configured directly by EL1 controls real physical
interrupts. When the interrupt traps to EL2, the interrupt flag configured directly by EL1
controls virtual interrupts.

7.2.1 VIRTUALIZATIONEXTENSIONSANDTHEPOPEK/GOLDBERG
THEOREM

Recall Popek and Goldberg’s central virtualization theorem, discussed in §2.2.

..

eorem 1 [143]: For any conventional third-generation computer, a virtual
machine monitor may be constructed if the set of sensitive instructions for
that computer is a subset of the set of privileged instructions.

e Virtualization Extensions architecture meets the criteria of the theorem, but through a sig-
nificant departure from the original model proposed to demonstrate it. ARM pragmatically took
a different path by introducing a new more privileged EL2 that operates below and maintains
the existing CPU modes. is ensures backward compatibility for the ISA. Terms must therefore
be redefined to convince oneselves that the Virtualization Extensions follow the Popek/Gold-
berg criteria. e corresponding core Virtualization Extensions design principle can be informally
framed as follows.

..

In an architecture with an additional, separate more privileged hypervisor
mode of execution, a VMM may be constructed if all sensitive instructions
(according to the non-virtualizable legacy architecture) are hypervisor-mode
privileged. When executing in non-hypervisor mode, all hypervisor-mode-
privileged instructions are either (i) implemented by the processor, with the
requirement that they operate exclusively on the non-hypervisor state of the
processor, or (ii) cause a trap to the hypervisor mode.

We make two observations: (i) the theorem does not take into account whether instruc-
tions are privileged or not, but instead only takes into consideration the orthogonal question of
whether and how they execute in non-hypervisor mode; and (ii) only traps are required tomeet the
equivalence and safety criteria. However, reducing transitions by implementing certain sensitive
instructions in hardware is necessary to meet the performance criteria.

7.3 MEMORYVIRTUALIZATION
ARM and Intel are quite similar in their support for virtualizing physical memory. Both introduce
an additional set of page tables to translate guest to host physical addresses, although ARM ben-



7.3. MEMORYVIRTUALIZATION 129

efited from hindsight by including this feature as part of its initial virtualization support whereas
Intel did not include its equivalent Extended Page Table (EPT) support, discussed in §5.1, un-
til its second-generation virtualization hardware. Using ARM’s hardware support to virtualize
physical memory, when running a VM, the physical addresses managed by the VM are actually
Intermediate Physical Addresses (IPAs), also known as guest physical addresses (gPAs), and
need to be translated into host physical addresses (hPAs). Similarly to nested page tables on x86,
ARM provides a second set of page tables, Stage-2 page tables, which translate from gPAs to
hPAs corresponding to guest and host physical addresses, respectively. Stage-2 translation can be
completely disabled and enabled from EL2. Stage-2 page tables use ARM’s new LPAE (Large
Physical Address Extension) page table format, with subtle differences from the page tables used
by kernel mode.

Figure 7.2 shows the complete address translation scheme. ree levels of page tables are
used for Stage-1 translation from virtual to guest physical addresses, and four levels of page tables
are used for Stage-2 translation from guest to host physical addresses. Stage-2 translation can be
entirely enabled or disabled using a bit in theHypConfiguration Register (HCR). e base register
for the Stage-2 first-level (L1) page table is specified by the Virtualization Translation Table Base
Register (VTTBR). Both registers are only configurable from EL2.

TTBR

Stage 1

Stage 2

VTTBR

VA

GPA

PA

Table

L1

Table

L2

Page

L3

Table

L1

Table

L2

Page

L3

Page

L4

Figure 7.2: Stage-1 and Stage-2 page table walk on ARM using the LPAE memory long format
descriptors. e virtual address (VA) is first translated into a guest physical address (gPA) and finally
into a host physical address (hPA).



130 7. VIRTUALIZATIONSUPPORT INARMPROCESSORS

7.4 INTERRUPTVIRTUALIZATION

ARM defines the Generic Interrupt Controller (GIC) architecture [21]. e GIC routes inter-
rupts from devices to CPUs and CPUs query the GIC to discover the source of an interrupt.
e GIC is especially important in multicore configurations, because it is used to generate Inter-
Processor Interrupts (IPIs) from one CPU core to another. e GIC is split in two parts, the
distributor and the CPU interfaces. ere is only one distributor in a system, but each CPU
core has a GIC CPU interface. Both the CPU interfaces and the distributor are accessed over a
Memory-Mapped interface (MMIO). e distributor is used to configure the GIC, for example,
to set the CPU core affinity of an interrupt, to completely enable or disable interrupts on a system,
or to send an IPI to another CPU core. e CPU interface is used to acknowledge (ACK) and to
signal End-Of-Interrupt (EOI). For example, when a CPU core receives an interrupt, it will read
a special register on the GIC CPU interface, which ACKs the interrupt and returns the number
of the interrupt. e interrupt will not be raised to the CPU again before the CPU writes to the
EOI register of the CPU interface with the value retrieved from the ACK register.

Interrupts can be configured to trap to either EL2 or EL1. Trapping all interrupts to EL1
and letting OS software running in EL1 handle them directly is efficient, but does not work in the
context of VMs, because the hypervisor loses control over the hardware. Trapping all interrupts
to EL2 ensures that the hypervisor retains control, but requires emulating virtual interrupts in
software to signal events to VMs. is is cumbersome to manage and expensive because each step
of interrupt and virtual interrupt processing, such as ACKing and EOIing, must go through the
hypervisor.

e GIC includes hardware virtualization support in the form of a virtual GIC (VGIC) so
that receiving virtual interrupts does not need to be emulated in software by the hypervisor. e
VGIC introduces a VGIC CPU interface as well as a corresponding hypervisor control interface
for each CPU. VMs are configured to see the VGIC CPU interface instead of the GIC CPU
interface. Virtual interrupts are generated by writing to special registers, the list registers, in the
VGIC hypervisor control interface, and the VGIC CPU interface raises the virtual interrupts di-
rectly to a VM’s kernel mode. Because the VGIC CPU interface includes support for ACK and
EOI, these operations no longer need to trap to the hypervisor to be emulated in software, reduc-
ing overhead for receiving interrupts on a CPU. For example, emulated virtual devices typically
raise virtual interrupts through a software API to the hypervisor, which can leverage the VGIC
by writing the virtual interrupt number for the emulated device into the list registers. is causes
the VGIC to interrupt the VM directly to kernel mode and lets the guest OS ACK and EOI
the virtual interrupt without trapping to the hypervisor. Note that the distributor must still be
emulated in software and all accesses to the distributor by a VM must still trap to the hypervisor.
For example, when a virtual CPU sends a virtual IPI to another virtual CPU, this will cause a
trap to the hypervisor, which emulates the distributor access in software and programs the list
registers on the receiving CPU’s GIC hypervisor control interface.



7.5. TIMERVIRTUALIZATION 131

ARM’s support for virtual interrupts had no x86 counterpart until the more recent intro-
duction of Intel’s virtual APIC support [104], as discussed in Chapter 6. Similar to ARM’s sup-
port for virtual interrupts, Intel’s APIC virtualization support also allows VMs to EOI interrupts
without trapping to the hypervisor. Furthermore, the Intel virtual APIC support allows VMs to
access a number of APIC registers without trapping to the hypervisor by providing a backing
page in memory for the VM’s virtualized APIC state. While Intel has recently introduced posted
interrupts, x86 support for direct interrupt delivery, ARM has introduced a similar mechanism in
version 4.0 of the GIC architecture (GICv4) [22]. However, GICv4 is not yet available in current
ARM hardware.

7.5 TIMERVIRTUALIZATION
ARM defines the Generic Timer Architecture which includes support for timer virtualization.
Generic timers provide a counter that measures passing of time in real-time, and a timer for each
CPU, which is programmed to raise an interrupt to the CPU after a certain amount of time
has passed. Timers are likely to be used by both hypervisors and guest OSes, but to provide
isolation and retain control, the timers used by the hypervisor cannot be directly configured and
manipulated by guest OSes. Such timer accesses from a guest OS would need to trap to EL2,
incurring additional overhead for a relatively frequent operation for some workloads. Hypervisors
may also wish to virtualize VM time, which is problematic if VMs have direct access to counter
hardware.

ARM provides virtualization support for the timers by introducing a new counter, the vir-
tual counter and a new timer, the virtual timer. A hypervisor can be configured to use physical
timers while VMs are configured to use virtual timers. VMs can then access, program, and cancel
virtual timers without causing traps to EL2. Access to the physical timer and counter from ker-
nel mode is controlled from EL2, but software running in kernel mode always has access to the
virtual timers and counters. Additionally, EL2 configures an offset register, which is subtracted
from the physical counter and returned as the value when reading the virtual counter. Note that
prior to the use of generic timers, the frequent operation of simply reading a counter is a memory
mapped operation, which would typically trap to EL2 and generate additional overhead.

ARM’s support for virtual timers has no real x86 counterpart.e x86 world of timekeeping
consists of a myriad of timing devices available partially due to the history and legacy of the
PC platform. Modern x86 platforms typically support an 8250-series Programmable Interval
Timer (PIT) for legacy support and a Local APIC (LAPIC) timer. e Intel hardware support
for virtualization adds the VMX-Preemption timer which allows hypervisors to program an exit
from a VM independently from how other timers are programmed. e VMX-Preemption timer
was added to reduce the latency between a timer firing and the hypervisor injecting a virtual
timer interrupt. is is achieved because a hypervisor doesn’t have to handle an interrupt from
the LAPIC timer, but can directly tell from a VM exit that the preemption timer has expired.
Contrary to ARM, x86 does not support giving full control of individual timer hardware to VMs.



132 7. VIRTUALIZATIONSUPPORT INARMPROCESSORS

x86 does allow VMs to directly read the Time Stamp Counter (TSC), wheres ARM allows access
to the virtual counter. e x86 TSC is typically higher resolution than the ARM counter, because
the TSC is driven by the processor’s clock where the ARM counter is driven by a dedicated clock
signal.

7.6 KVM/ARM—AVMMBASEDONARMVIRTUALIZATION
EXTENSIONS

So far, we have described the hardware extensions introduced by ARM’s Virtualization Exten-
sions, and discussed a few architectural considerations. We now use KVM [113], the Linux-based
Kernel Virtual Machine, as a case study of how to adapt its design for ARM from its original
design for VT-x to create KVM/ARM, the Linux ARM hypervisor [60].

Instead of reinventing and reimplementing complex core functionality in the hypervisor,
and potentially introducing tricky and fatal bugs along the way, KVM/ARM builds on KVM
and leverages existing infrastructure in the Linux kernel. While a standalone bare metal hypervi-
sor design approach has the potential for better performance and a smaller Trusted Computing
Base (TCB), this approach is less practical on ARM. ARM hardware is in many ways much
more diverse than x86. Hardware components are often tightly integrated in ARM devices in
non-standard ways by different device manufacturers. ARM hardware lacks features for hard-
ware discovery such as a standard BIOS or a PCI bus, and there is no established mechanism for
installing low-level software on a wide variety of ARM platforms. Linux, however, is supported
across almost all ARM platforms and by integrating KVM/ARM with Linux, KVM/ARM is
automatically available on any device running a recent version of the Linux kernel. is is in con-
trast to bare metal approaches such as Xen [188], which must actively support every platform on
which they wish to install the Xen hypervisor. For example, for every new SoC that Xen needs
to support, the developers must implement a new serial device driver in the core Xen hypervisor.

While KVM/ARM benefits from its integration with Linux in terms of portability and
hardware support, a key problem that needed to be addressed is that the ARM hardware virtual-
ization extensions were designed to support a standalone hypervisor design where the hypervisor
is completely separate from any standard kernel functionality. In the following, we describe how
KVM/ARM’s design makes it possible to benefit from integration with an existing kernel and at
the same time take advantage of the hardware virtualization features.

7.6.1 SPLIT-MODEVIRTUALIZATION
Simply running a hypervisor entirely in ARM’s EL2 is attractive since it is the most privileged
level. However, since KVM/ARM leverages existing kernel infrastructure such as the scheduler,
running KVM/ARM in EL2 implies running the Linux kernel in EL2. is is problematic for
at least two reasons. First, low-level architecture dependent code in Linux is written to work in
kernel mode, and would not run unmodified in EL2, because EL2 is a completely different CPU



7.6. KVM/ARM—AVMMBASEDONARMVIRTUALIZATIONEXTENSIONS 133

mode from normal kernel mode. e significant changes required to run the kernel in EL2 would
be very unlikely to be accepted by the Linux kernel community. More importantly, to preserve
compatibility with hardware without EL2 and to run Linux as a guest OS, low-level code would
have to be written to work in both modes, potentially resulting in slow and convoluted code paths.
As a simple example, a page fault handler needs to obtain the virtual address causing the page
fault. In EL2, this address is stored in a different register than in kernel mode.

Second, running the entire kernel in EL2 would adversely affect native performance. For
example, EL2 has its own separate address space. Whereas kernel mode uses two page table base
registers to provide the familiar 3 GB/1 GB split between user address space and kernel address
space, EL2 uses a single page table register and therefore cannot have direct access to the user
space portion of the address space. Frequently used functions to access user memory would require
the kernel to explicitly map user space data into kernel address space and subsequently perform
necessary teardown and TLB maintenance operations, resulting in poor native performance on
ARM.

ese problems with running a Linux hypervisor using ARM EL2 do not occur for x86
hardware virtualization. x86 root mode is orthogonal to its CPU privilege modes. e entire
Linux kernel can run in root mode as a hypervisor because the same set of CPU modes available
in non-root mode are available in root mode. Nevertheless, given the widespread use of ARM and
the advantages of Linux on ARM, finding an efficient virtualization solution for ARM that can
leverage Linux and take advantage of the hardware virtualization support is of crucial importance.

KVM/ARM introduces split-mode virtualization, a new approach to hypervisor design
that splits the core hypervisor so that it runs across different privileged CPU modes to take ad-
vantage of the specific benefits and functionality offered by each CPU mode. KVM/ARM uses
split-mode virtualization to leverage the ARM hardware virtualization support enabled by EL2,
while at the same time leveraging existing Linux kernel services running in kernel mode. Split-
mode virtualization allows KVM/ARM to be integrated with the Linux kernel without intrusive
modifications to the existing code base.

is is done by splitting the hypervisor into two components, the lowvisor and the high-
visor, as shown in Figure 7.3. e lowvisor is designed to take advantage of the hardware virtu-
alization support available in EL2 to provide three key functions. First, the lowvisor sets up the
correct execution context by appropriate configuration of the hardware, and enforces protection
and isolation between different execution contexts. e lowvisor directly interacts with hardware
protection features and is therefore highly critical and the code base is kept to an absolute mini-
mum. Second, the lowvisor switches from a VM execution context to the host execution context
and vice-versa. e host execution context is used to run the hypervisor and the host Linux kernel.
We refer to an execution context as a world, and switching from one world to another as a world
switch, because the entire state of the system is changed. Since the lowvisor is the only compo-
nent that runs in EL2, only it can be responsible for the hardware reconfiguration necessary to
perform a world switch. ird, the lowvisor provides a virtualization trap handler, which handles



134 7. VIRTUALIZATIONSUPPORT INARMPROCESSORS

Host

User

VM

User

Host

Kernel

VM

Kernel

QEMU

KVM

Highvisor

Lowvisor

EL0 (User)

EL1 (Kernel)

EL2 (Hypervisor)

Trap Trap

Figure 7.3: KVM/ARM system architecture.

interrupts and exceptions that must trap to the hypervisor. All traps to the hypervisor must first
go to the lowvisor. e lowvisor performs only the minimal amount of processing required and
defers the bulk of the work to be done to the highvisor after a world switch to the highvisor is
complete.

e highvisor runs in kernel mode as part of the host Linux kernel. It can therefore di-
rectly leverage existing Linux functionality such as the scheduler, and can make use of standard
kernel software data structures and mechanisms to implement its functionality, such as locking
mechanisms and memory allocation functions. is makes higher-level functionality easier to im-
plement in the highvisor. For example, while the lowvisor provides a low-level trap-handler and
the low-level mechanism to switch from one world to another, the highvisor handles Stage-2
page faults from the VM and performs instruction emulation. Note that parts of the VM run in
kernel mode, just like the highvisor, but with Stage-2 translation and trapping to EL2 enabled.

Because the hypervisor is split across kernel mode and EL2, switching between a VM and
the highvisor involves multiple mode transitions. A trap to the highvisor while running the VM
will first trap to the lowvisor running in EL2. e lowvisor will then cause another trap to run
the highvisor. Similarly, going from the highvisor to a VM requires trapping from kernel mode
to EL2, and then switching to the VM. As a result, split-mode virtualization incurs a double
trap cost in switching to and from the highvisor. On ARM, the only way to perform these mode
transitions to and from EL2 is by trapping. However, it turns out that this extra trap is not a
significant performance cost on ARM, as discussed in §7.7.

KVM/ARM uses a memory mapped interface to share data between the highvisor and
lowvisor as necessary. Because memory management can be complex, it leverages the highvi-
sor’s ability to use the existing memory management subsystem in Linux to manage memory



7.6. KVM/ARM—AVMMBASEDONARMVIRTUALIZATIONEXTENSIONS 135

for both the highvisor and lowvisor. Managing the lowvisor’s memory involves additional chal-
lenges though, because it requires managing EL2’s separate address space. One simplistic ap-
proach would be to reuse the host kernel’s page tables and also use them in EL2 to make the
address spaces identical. is unfortunately does not work, because EL2 uses a different page
table format from kernel mode. erefore, the highvisor explicitly manages the EL2 page tables
to map any code executed in EL2 and any data structures shared between the highvisor and the
lowvisor to the same virtual addresses in EL2 and in kernel mode.

7.6.2 CPUVIRTUALIZATION
To virtualize the CPU, KVM/ARM must present an interface to the VM which is essentially
identical to the underlying real hardware CPU, while ensuring that the hypervisor remains in
control of the hardware. is involves ensuring that software running in the VM must have per-
sistent access to the same register state as software running on the physical CPU, as well as en-
suring that physical hardware state associated with the hypervisor and its host kernel is persistent
across running VMs. Register state not affecting VM isolation can simply be context switched
by saving the VM state and restoring the host state from memory when switching from a VM to
the host and vice versa. KVM/ARM configures access to all other sensitive state to trap to EL2,
so it can be emulated by the hypervisor.

Table 7.1 shows the CPU register state visible to software running in kernel and user mode,
and KVM/ARM’s virtualization method for each register group. e lowvisor has its own ded-
icated configuration registers only for use in EL2, and is not shown in Table 7.1. KVM/ARM
context switches registers during world-switches whenever the hardware supports it, because it al-
lows the VMdirect access to the hardware. For example, the VM can directly program the Stage-1
page table base register without trapping to the hypervisor, a fairly common operation in most
guest OSes. KVM/ARM performs trap and emulate on sensitive instructions and when accessing
hardware state that could affect the hypervisor or would leak information about the hardware to
the VM that violates its virtualized abstraction. For example, KVM/ARM traps if a VM executes
the WFI instruction, which causes the CPU to power down, because such an operation should
only be performed by the hypervisor to maintain control of the hardware. KVM/ARM defers
switching certain register state until absolutely necessary, which slightly improves performance
under certain workloads.

e difference between running inside a VM in kernel or user mode and running the hy-
pervisor in kernel or user mode is determined by how the virtualization extensions have been
configured by EL2 during the world switch. A world switch from the host to a VM performs the
following actions:

1. store all host GP registers on the EL2 stack;

2. configure the VGIC for the VM;

3. configure the timers for the VM;



136 7. VIRTUALIZATIONSUPPORT INARMPROCESSORS
Table 7.1: VM and Host State on a Cortex-A15

Action Nr. State

Context Switch 38

26

16

4

2

32

4

General Purpose (GP) Registers

Control Registers

VGIC Control Registers

VGIC List Registers

Arch. Timer Control Registers

64-bit VFP Registers

32-bit VFP Control Registers

Trap-and-Emulate -

-

-

-

-

-

CP14 Trace Registers

WFI Instructions

SMC Instructions

ACTLR Access

Cache Ops. by Set/Way

L2CTLR / L2ECTLR Registers

4. save all host-specific configuration registers onto the EL2 stack;

5. load the VM’s configuration registers onto the hardware, which can be done without affect-
ing current execution, because EL2 uses its own configuration registers, separate from the
host state;

6. configure EL2 to trap floating-point operations for lazy context switching of floating-point
(VFP) registers, trap interrupts, trap CPU halt instructions (WFI/WFE), trap SMC in-
structions, trap specific configuration register accesses, and trap debug register accesses;

7. write VM-specific IDs into shadow ID registers, defined by the ARM Virtualization Ex-
tensions and accessed by the VM in lieu of the hardware values in the ID registers;

8. set the Stage-2 page table base register (VTTBR) and enable Stage-2 address translation;

9. restore all guest GP registers; and

10. trap into either user or kernel mode.

e CPU will stay in the VM world until an event occurs, which triggers a trap into EL2.
Such an event can be caused by any of the traps mentioned above, a Stage-2 page fault, or a
hardware interrupt. Since the event requires services from the highvisor, either to emulate the
expected hardware behavior for the VM or to service a device interrupt, KVM/ARM must per-
form another world switch back into the highvisor and its host. is entails trapping first to the



7.6. KVM/ARM—AVMMBASEDONARMVIRTUALIZATIONEXTENSIONS 137

lowvisor before going to the highvisor. e world switch back to the host from a VM performs
the following actions:

1. store all VM GP registers;

2. disable Stage-2 translation;

3. configure EL2 to not trap any register access or instructions;

4. save all VM-specific configuration registers;

5. load the host’s configuration registers onto the hardware;

6. configure the timers for the host;

7. save VM-specific VGIC state;

8. restore all host GP registers; and

9. trap into kernel mode.

7.6.3 MEMORYVIRTUALIZATION
As discussed in §7.3, ARM provides Stage-2 page tables to translate guest to host physical ad-
dresses. KVM/ARMprovidesmemory virtualization by enabling Stage-2 translation for all mem-
ory accesses when running in a VM. Stage-2 translation can only be configured in EL2, and its use
is completely transparent to the VM. e highvisor manages the Stage-2 translation page tables
to only allow access to memory specifically allocated for a VM; other accesses will cause Stage-2
page faults which trap to the hypervisor. is mechanism ensures that a VM cannot access mem-
ory belonging to the hypervisor or other VMs, including any sensitive data. Stage-2 translation is
disabled when running in the highvisor and lowvisor because the highvisor has full control of the
complete system and directly manages the host physical addresses. When the hypervisor performs
a world switch to a VM, it enables Stage-2 translation and configures the Stage-2 page table base
register accordingly. Although both the highvisor and VMs share the same CPU modes, Stage-2
translations ensure that the highvisor is protected from any access by the VMs.

KVM/ARM uses split-mode virtualization to leverage existing kernel memory allocation,
page reference counting, and page table manipulation code. KVM/ARM handles Stage-2 page
faults by considering the gPA of the fault, and if that address belongs to normal memory in the
VM memory map, KVM/ARM allocates a page for the VM by simply calling an existing kernel
function, such as get_user_pages, and maps the allocated page to the VM in the Stage-2 page
tables. In comparison, a bare metal hypervisor would be forced to either statically allocate memory
to VMs or write an entire new memory allocation subsystem.



138 7. VIRTUALIZATIONSUPPORT INARMPROCESSORS

7.6.4 I/O VIRTUALIZATION
KVM/ARM leverages existing QEMU and Virtio [154] user space device emulation to provide
I/O virtualization. At a hardware level, all I/Omechanisms on the ARM architecture are based on
load/store operations to MMIO device regions. With the exception of devices directly assigned to
VMs, all hardware MMIO regions are inaccessible from VMs. KVM/ARM uses Stage-2 trans-
lations to ensure that physical devices cannot be accessed directly from VMs. Any access outside
of RAM regions allocated for the VM will trap to the hypervisor, which can route the access
to a specific emulated device in QEMU based on the fault address. is is somewhat different
from x86, which uses x86-specific hardware instructions such as inl and outl for port I/O op-
erations in addition to MMIO. Chapter 6 provides a more in-depth discussion regarding I/O
virtualization in general.

7.6.5 INTERRUPTVIRTUALIZATION
KVM/ARM leverages its tight integration with Linux to reuse existing device drivers and related
functionality, including handling interrupts. When running in a VM, KVM/ARM configures the
CPU to trap all hardware interrupts to EL2. On each interrupt, it performs a world switch to the
highvisor and the host handles the interrupt, so that the hypervisor remains in complete control
of hardware resources. When running in the host and the highvisor, interrupts trap directly to
kernel mode, avoiding the overhead of going through EL2. In both cases, all hardware interrupt
processing is done in the host by reusing Linux’s existing interrupt handling functionality.

However, VMs must receive notifications in the form of virtual interrupts from emulated
devices and multicore guest OSes must be able to send virtual IPIs from one virtual core to
another. KVM/ARMuses the VGIC to inject virtual interrupts into VMs to reduce the number of
traps to EL2. As described in §7.4, virtual interrupts are raised to virtual CPUs by programming
the list registers in the VGIC hypervisor CPU control interface. KVM/ARM configures the
Stage-2 page tables to prevent VMs from accessing the control interface and to allow access only
to the VGIC virtual CPU interface, ensuring that only the hypervisor can program the control
interface and that the VM can access the VGIC virtual CPU interface directly. However, guest
OSes will still attempt to access a GIC distributor to configure the GIC and to send IPIs from
one virtual core to another. Such accesses will trap to the hypervisor and the hypervisor must
emulate the distributor.

KVM/ARM introduces the virtual distributor, a software model of the GIC distributor as
part of the highvisor. e virtual distributor exposes an interface to user space, so emulated devices
in user space can raise virtual interrupts to the virtual distributor, and exposes an MMIO interface
to the VM identical to that of the physical GIC distributor. e virtual distributor keeps internal
software state about the state of each interrupt and uses this state whenever a VM is scheduled,
to program the list registers to inject virtual interrupts. For example, if virtual CPU0 sends an IPI
to virtual CPU1, the distributor will program the list registers for virtual CPU1 to raise a virtual
IPI interrupt the next time virtual CPU1 runs.



7.6. KVM/ARM—AVMMBASEDONARMVIRTUALIZATIONEXTENSIONS 139

Ideally, the virtual distributor only accesses the hardware list registers when necessary, since
device MMIO operations are typically significantly slower than cached memory accesses. A com-
plete context switch of the list registers is required when scheduling a different VM to run on a
physical core, but not necessarily required when simply switching between a VM and the hyper-
visor. For example, if there are no pending virtual interrupts, it is not necessary to access any of
the list registers. Note that once the hypervisor writes a virtual interrupt to a list register when
switching to a VM, it must also read the list register back when switching back to the hypervisor,
because the list register describes the state of the virtual interrupt and indicates, for example, if
the VM has ACKed the virtual interrupt. e initial unoptimized version of KVM/ARM uses a
simplified approach which completely context switches all VGIC state including the list registers
on each world switch.

7.6.6 TIMERVIRTUALIZATION
Reading counters and programming timers are frequent operations in many OSes for process
scheduling and to regularly poll device state. For example, Linux reads a counter to determine if a
process has expired its time slice, and programs timers to ensure that processes don’t exceed their
allowed time slices. Application workloads also often leverage timers for various reasons. Trapping
to the hypervisor for each such operation is likely to incur noticeable performance overheads, and
allowing a VM direct access to the time-keeping hardware typically implies giving up timing
control of the hardware resources as VMs can disable timers and control the CPU for extended
periods of time.

KVM/ARM leverages ARM’s hardware virtualization features of the generic timers to al-
low VMs direct access to reading counters and programming timers without trapping to EL2
while at the same time ensuring the hypervisor remains in control of the hardware. Since access
to the physical timers is controlled using EL2, any software controlling EL2 mode has access to
the physical timers. KVM/ARM maintains hardware control by using the physical timers in the
hypervisor and disallowing access to physical timers from the VM. e Linux kernel running as a
guest OS only accesses the virtual timer and can therefore directly access timer hardware without
trapping to the hypervisor.

Unfortunately, due to architectural limitations, the virtual timers cannot directly raise vir-
tual interrupts, but always raise hardware interrupts, which trap to the hypervisor. KVM/ARM
detects when a VM virtual timer expires, and injects a corresponding virtual interrupt to the VM,
performing all hardware ACK and EOI operations in the highvisor. e hardware only provides
a single virtual timer per physical CPU, and multiple virtual CPUs may be multiplexed across
this single hardware instance. To support virtual timers in this scenario, KVM/ARM detects
unexpired timers when a VM traps to the hypervisor and leverages existing OS functionality to
program a software timer at the time when the virtual timer would have otherwise fired, had the
VM been left running. When such a software timer fires, a callback function is executed, which
raises a virtual timer interrupt to the VM using the virtual distributor described above.



140 7. VIRTUALIZATIONSUPPORT INARMPROCESSORS

7.7 PERFORMANCEMEASUREMENTS
We present some experimental results that quantify the performance of ARM virtualization by
comparing the performance of both x86 and ARM implementations of KVM on multicore hard-
ware. ARM measurements were obtained using an Insignal Arndale board [97] with a dual core
1.7 GHz Cortex A-15 CPU on a Samsung Exynos 5250 SoC. is is the first and most widely
used commercially available development board based on the Cortex A-15, the first ARM CPU
with hardware virtualization support. Onboard 100 Mb Ethernet is provided via the USB bus
and an external 120 GB Samsung 840 series SSD drive was connected to the Arndale board via
eSATA. x86 measurements were obtained using both a low-power mobile laptop platform and
an industry standard server platform. e laptop platform was a 2011 MacBook Air with a dual
core 1.8 GHz Core i7-2677M CPU, an internal Samsung SM256C 256 GB SSD drive, and an
Apple 100 Mb USB Ethernet adapter. e server platform was a dedicated OVH SP 3 server
with a dual core 3.4 GHz Intel Xeon E3 1245v2 CPU, two physical SSD drives of which only
one was used, and 1 Gb Ethernet dropped down to connect to a 100 Mb network infrastructure.

To provide comparable measurements, the software environments across all hardware plat-
forms were kept the same as much as possible. Both the host and guest VMs on all platforms were
Ubuntu version 12.10. e mainline Linux 3.10 kernel was used for the experiments, with patches
for huge page support applied on top of the source tree. Since the experiments were performed
on a number of different platforms, the kernel configurations had to be slightly different, but
all common features were configured similarly across all platforms. In particular, Virtio drivers
were used in the guest VMs on both ARM and x86. QEMU version v1.5.0 was used for the
measurements. All systems were configured with a maximum of 1.5 GB of RAM available to the
respective guest VM or host being tested. Furthermore, all multicore measurements were done
using two physical cores and guest VMs with two virtual CPUs, and single-core measurements
were configured with SMP disabled in the kernel configuration of both the guest and host system;
hyperthreading was disabled on the x86 platforms. CPU frequency scaling was disabled to ensure
that native and virtualized performance was measured at the same clock rate on each platform.

Table 7.2 presents various micro-architectural costs of virtualization using KVM/ARM
on ARM and KVM x86 on x86. e measurements were obtained using custom small guest
OSes [57, 112] with some bugfix patches applied. Code for both KVM/ARM and KVM x86
was instrumented to read the cycle counter at specific points along critical paths to more accu-
rately determine where overhead time was spent. Measurements are shown in cycles instead of
time to provide a useful comparison across platforms with different CPU frequencies. We show
two numbers for the ARM platform where possible, with and without VGIC and virtual timers
support.

Hypercall is the cost of twoworld switches, going from theVM to the host and immediately
back again without doing any work in the host. KVM/ARM takes three to four times as many
cycles for this operation vs. KVM x86 due to two main factors. First, saving and restoring VGIC
state to use virtual interrupts is quite expensive on ARM. e ARM without VGIC/vtimers



7.7. PERFORMANCEMEASUREMENTS 141
Table 7.2: Micro-architectural cycle counts

Micro Test ARM ARM no VGIC/vtimers x86 Laptop x86 Server

Hypercall 5.326 2,270 1,336 1,638

Trap 27 27 632 821

IPI 14,366 32,951 17,138 21,177

EOI+ACK 427 13,726 2,043 2,305

measurement does not include the cost of saving and restoring VGIC state, showing that this
accounts for over half of the cost of a world switch on ARM. Second, x86 provides hardware
support to save and restore state on the world switch, which ismuch faster. ARM requires software
to explicitly save and restore state, which provides greater flexibility, but higher costs.

Trap is the cost of switching the hardware mode from the VM into the respective CPU
mode for running the hypervisor, EL2 on ARM and root mode on x86. ARM is much faster than
x86 because it only needs to manipulate two registers to perform this trap, whereas the cost of a
trap on x86 is roughly the same as the cost of a world switch because the same amount of state
is saved by the hardware in both cases. e trap cost on ARM is a very small part of the world
switch costs, indicating that the double trap incurred by split-mode virtualization on ARM does
not add much overhead.

at is not to say that the cost of split-mode virtualization is necessarily small, as the dou-
ble trap is a small part of the overall hypercall cost. ere are three other more substantial costs
involved. First, because the host OS and the VM both run in EL1 and ARM hardware does not
provide any features to distinguish between the host OS running in EL1 and the VM running in
EL1, software running in EL2 must context switch all the EL1 system register state between the
VM guest OS and the type-2 hypervisor host OS, incurring added cost of saving and restoring
EL1 register state. Second, because the host OS runs in EL1 and needs full access to the hard-
ware, the hypervisor must disable traps to EL2 and Stage-2 translation from EL2 while switching
from the VM to the hypervisor, and enable them when switching back to the VM again. ird,
because the type-2 hypervisor runs in EL1 but needs to access VM control register state such
as the VGIC state, which can only be accessed from EL2, there is additional overhead to read
and write the VM control register state in EL2. e type-2 hypervisor can either jump back and
forth between EL1 and EL2 to access the control register state when needed, or it can copy the
full register state to memory while it is still in EL2, return to the host OS in EL1 and read and
write the memory copy of the VM control state, and then finally copy the state from memory
back to the EL2 control registers when the hypervisor is running in EL2 again. Both methods
incur much overhead, but jumping back and forward between EL1 and EL2 makes the software
implementation complicated and difficult to maintain. erefore, the KVM/ARM implementa-



142 7. VIRTUALIZATIONSUPPORT INARMPROCESSORS

tion currently takes the second approach of reading and writing all VM control registers in EL2
during each transition between the VM and the hypervisor.

IPI is the cost of issuing an IPI to another virtual CPU core when both virtual cores are
running on separate physical cores and both are actively running inside the VM. IPI measures
time starting from sending an IPI until the other virtual core responds and completes the IPI.
It involves multiple world switches and sending and receiving a hardware IPI. Despite its higher
world switch cost, ARM is faster than x86 because the underlying hardware IPI on x86 is expen-
sive, x86 APIC MMIO operations require KVM x86 to perform instruction decoding not needed
on ARM, and completing an interrupt on x86 is more expensive. ARM without VGIC/vtimers is
significantly slower than with VGIC/vtimers even though it has lower world switch costs because
sending, EOIing and ACKing interrupts trap to the hypervisor and are handled by QEMU in
user space.

EOI+ACK is the cost of completing a virtual interrupt on both platforms. It includes both
interrupt acknowledgment and completion on ARM, but only completion on the x86 platform.
ARM requires an additional operation, the acknowledgment, to the interrupt controller to deter-
mine the source of the interrupt. x86 does not have the same requirement because the source is
directly indicated by the interrupt descriptor table entry at the time when the interrupt is raised.
However, the operation is roughly 5 times faster on ARM than x86 because there is no need
to trap to the hypervisor on ARM because of VGIC support for both operations. On x86, the
EOI operation must be emulated and therefore causes a trap to the hypervisor. is operation is
required for every virtual interrupt including both virtual IPIs and interrupts from virtual devices.

7.8 IMPLEMENTATIONCOMPLEXITY
We compare the code complexity of KVM/ARM to its KVM x86 counterpart in Linux 3.10
using cloc [61] to count lines of code (LOC). KVM/ARM is 5,812 LOC, counting just the
architecture-specific code added to Linux to implement it, of which the lowvisor is a mere 718
LOC. As a conservative comparison, KVM x86 is 25,367 LOC, excluding guest performance
monitoring support, not yet supported by KVM/ARM, and 3,311 LOC required for AMD
support. ese numbers do not include KVM’s architecture-generic code, 7,071 LOC, which
is shared by all systems. Table 7.3 shows a breakdown of the total hypervisor architecture-specific
code into its major components.

By inspecting the code we notice the striking additional complexity in the x86 implemen-
tation is mainly due to the five following reasons.

1. Since EPT was not supported in earlier hardware versions, KVM x86 must support shadow
page tables.

2. e hardware virtualization support has evolved over time, requiring software to condition-
ally check for support for a large number of features such as EPT.



7.9. ARCHITECTURE IMPROVEMENTS 143
Table 7.3: Code Complexity in Lines of Code (LOC)

Component KVM ARM KVM x86 (Intel)

Core CPU

Page Fault Handling

Interrupts

Timers

Other

2,493

738

1,057

180

1,344

16,177

3,410

1,978

573

1,288

Architecture-speci� c 5,812 25,367

3. A number of operations require software decoding of instructions on the x86 platform.
KVM/ARM’s out-of-tree MMIO instruction decode implementation was much simpler,
only 462 LOC.

4. e various paging modes on x86 requires more software logic to handle page faults.

5. x86 requires more software logic to support interrupts and timers than ARM, which pro-
vides VGIC/vtimers hardware support that reduces software complexity.

KVM/ARM’s LOC is less than partially complete bare-metal microvisors written for
EL2 [173], with the lowvisor LOC almost an order of magnitude smaller. Unlike standalone
hypervisors, KVM/ARM’s code complexity is so small because lots of functionality simply does
not have to be implemented as it is already provided by Linux. Table 7.3 does not include other
non-hypervisor architecture-specific Linux code, such as basic bootstrapping, which is signifi-
cantly more code. Porting a standalone hypervisor such as Xen from x86 to ARM is much more
complicated because all of the ARM code for basic system functionality needs to be written from
scratch. In contrast, since Linux is dominant on ARM, KVM/ARM just leverages existing Linux
ARM support to run on every platform supported by Linux.

7.9 ARCHITECTURE IMPROVEMENTS
Building on the experiences of the developers of KVM/ARM, a set of improvements have been
made to the ARM architecture to avoid the need for split-mode virtualization for type-2 hypervi-
sors such as KVM/ARM. ese improvements are the VirtualizationHost Extensions (VHE),
which are now part of a new revision of the ARM 64-bit architecture, ARMv8.1 [40]. VHE
allows running an OS designed to run in EL1 to run in EL2 without substantial modification
to the OS source code. We show how this allows KVM/ARM and its Linux host kernel to run
entirely in EL2 without substantial modifications to Linux.

VHE is provided through the addition of a new control bit, the E2H bit, which is set at
system boot when installing a type-2 hypervisor that uses VHE. If the bit is not set, ARMv8.1



144 7. VIRTUALIZATIONSUPPORT INARMPROCESSORS

behaves the same as ARMv8 in terms of hardware virtualization support, preserving backward
compatibility with existing hypervisors. When the bit is set, VHE enables three main features.

First, VHE expands EL2, adding additional physical register state to the CPU, such that
any register and functionality available in EL1 is also available in EL2. For example, EL1 has
two registers, TTBR0_EL1 and TTBR1_EL1, the first used to lookup the page tables for virtual
addresses (VAs) in the lower VA range, and the second in the upper VA range. is provides
a convenient and efficient method for splitting the VA space between userspace and the kernel.
However, without VHE, EL2 only has one page table base register, TTBR0_EL2, making it
problematic to support the split VA space of EL1 when running in EL2. With VHE, EL2 gets
a second page table base register, TTBR1_EL2, making it possible to support split VA space in
EL2 in the same way as provided in EL1. is enables a type-2 hypervisor integrated with a host
OS to support a split VA space in EL2, which is necessary to run the host OS in EL2 so it can
manage the VA space between userspace and the kernel.

Second, VHE provides a mechanism to access the extra EL2 register state transparently.
Simply providing extra EL2 registers is not sufficient to run unmodified OSes in EL2, be-
cause existing OSes are written to access EL1 registers. For example, Linux is written to use
TTBR1_EL1, which does not affect the translation system running in EL2. Providing the addi-
tional register TTBR1_EL2 would still require modifying Linux to use the TTBR1_EL2 instead
of the TTBR1_EL1 when running in EL2 vs. EL1, respectively. To avoid forcing OS vendors
to add this extra level of complexity to the software, VHE allows unmodified software to execute
in EL2 and transparently access EL2 registers using the EL1 register access function instruction
encodings. For example, current OS software reads the TTBR1_EL1 register with the instruc-
tion mrs x1, ttbr1_el1. With VHE, the software still executes the same instruction, but the
hardware actually accesses the TTBR1_EL2 register. As long as the E2H bit is set, accesses to
EL1 registers performed in EL2, actually access EL2 registers, thereby transparently rewriting
register accesses to EL2, as described above. A new set of special instructions are added to access
the EL1 registers in EL2, which the hypervisor can use to switch between VMs, which will run
in EL1. For example, if the hypervisor wishes to access the guest’s TTBR1_EL1, it will use the
instruction mrs x1, ttb1_el21.

ird, VHE expands the memory translation capabilities of EL2. In ARMv8, EL2 and
EL1 use different page table formats so that software written to run in EL1 must be modified to
run in EL2. In ARMv8.1, the EL2 page table format is now compatible with the EL1 format
when the E2H bit is set. As a result, an OS that was previously run in EL1 can now run in EL2
without being modified because it can use the same EL1 page table format.

Figure 7.4 shows how type-1 and type-2 hypervisors map to the architecture with VHE.
Type-1 hypervisors such as Xen, which can be designed explicitly to run in EL2 already without
any additional support, do not set the E2H bit introduced with VHE, and EL2 behaves exactly
as in ARMv8. Type-2 hypervisors such as KVM/ARM set the E2H bit when the system boots,
and the host OS kernel runs exclusively in EL2, and never in EL1. e type-2 hypervisor kernel



7.9. ARCHITECTURE IMPROVEMENTS 145

EL0 (User)

EL1 (Kernel)

EL2 (Hypervisor)

Type 1: E2H Bit Clear Type 2: E2H Bit Set

VM

Xen Hypervisor Host Kernel and KVM

VM

Apps

syscalls
and traps

Figure 7.4: Virtualization Host Extensions (VHE).

can run unmodified in EL2, because VHE provides an equivalent EL2 register for every EL1
register and transparently rewrites EL1 register accesses from EL2 to EL2 register accesses, and
because the page table formats between EL1 and EL2 are now compatible. Transitions from host
userspace to host kernel happen directly from EL0 to EL2, for example to handle a system call,
as indicated by the arrows in Figure 7.4. Transitions from the VM to the hypervisor now happen
without having to context switch EL1 state, because EL1 is not used by the hypervisor.

ARMv8.1 differs from the x86 approach in two key ways. First, ARMv8.1 introduces more
additional hardware state so that a VM running in EL1 does not need to save a substantial amount
of state before switching to running the hypervisor in EL2 because the EL2 state is separate and
backed by additional hardware registers. is minimizes the cost of VM to hypervisor transitions
because trapping from EL1 to EL2 does not require saving and restoring state beyond general
purpose registers to and from memory. In contrast, recall that the x86 approach adds CPU vir-
tualization support by adding root and non-root mode as orthogonal concepts from the CPU
privilege modes, but does not introduce additional hardware register state like ARM. As a result,
switching between root and non-root modes requires transferring state between hardware regis-
ters and memory. e cost of this is ameliorated by implementing the state transfer in hardware,
but while this avoids the need for additional instruction fetch and decode, accessing memory is
still expected to be more expensive than having extra hardware register state. Second, ARMv8.1
preserves the RISC-style approach of allowing software more fine-grained control over which
state needs to be switched for which purposes instead of fixing this in hardware, potentially mak-
ing it possible to build hypervisors with lower overhead, compared to x86.

A type-2 hypervisor originally designed for ARMv8 must be modified to benefit from
VHE. A patch set has been developed to add VHE support to KVM/ARM. is involves rewrit-
ing parts of the code to allow run-time adaptations of the hypervisor, such that the same kernel
binary can run on both legacy ARMv8 hardware and benefit fromVHE-enabled ARMv8.1 hard-
ware. It is unfortunate that the ARM hardware support for type-2 hypervisors was not included
in the original version of the virtualization extensions, because the KVM/ARM implementation
now has to support both legacy ARMv8 virtualization support using split-mode virtualization
and VHE in ARMv8.1 To make matters worse, this has to be a runtime decision, because the



146 7. VIRTUALIZATIONSUPPORT INARMPROCESSORS

same kernel binary must be able to run across both ARMv8 and ARMv8.1 server hardware, both
of which are in active production and development, and the code path is in the hot path of the hy-
pervisor.e code to support VHEhas been developed using ARM software models as ARMv8.1
hardware is not yet available, so it remains to be seen what performance gains will be achieved in
practice with VHE.

7.10 FURTHERREADING
Full-system virtualization of the ARM architecture is relatively new compared to x86. e earliest
study of ARM hardware virtualization support was based on a software simulator and a simple
hypervisor without SMP support, but due to the lack of hardware or a cycle-accurate simulator,
no real performance evaluation was possible [173]. KVM/ARM was the first full-system virtu-
alization ARM solution to use ARM hardware virtualization support and is described in further
detail in [60]. In addition to KVM/ARM, a newer version of Xen targeting servers [188] has been
developed using ARM hardware virtualization support. Because Xen is a bare metal hypervisor
that does not leverage kernel functionality, it can be architected to run entirely in EL2 rather
than using split-mode virtualization. At the same time, this requires a substantial commercial
engineering effort. Porting Xen from x86 to ARM is difficult in part because all ARM-related
code must be written from scratch. Even after getting Xen to work on one ARM platform, it
must be manually ported to each different ARM device that Xen wants to support.

Various other approaches have considered different hypervisor structures. Microkernel ap-
proaches for hypervisors [75, 161] have been used to reduce the hypervisor TCB and run other
hypervisor services in user mode. ese approaches differ both in design and rationale from split-
mode virtualization, which splits hypervisor functionality across privileged modes to leverage vir-
tualization hardware support.



147

C H A P T E R 8

Comparing ARM and x86
Virtualization Performance

is chapter presents a comparison of ARM and x86 virtualization performance on multicore
server hardware, including measurements of two popular open-source ARM and x86 hypervi-
sors, KVM and Xen. ese hypervisors are useful to compare given their popularity and their
different design choices. is work is based on a measurement study published in 2016 using
state-of-the-art hardware for that time [58]. §8.1 first provides background regarding the current
design of KVM and Xen. §8.2 describes the experimental setup used to measure ARM and x86
virtualization performance. §8.3 presents measurements of hypervisor performance based on run-
ning microbenchmarks to analyze low-level behavior. §8.4 presents measurements of hypervisor
performance based on running application workloads to quantify performance for real applica-
tions running in VMs. Finally, like all chapters, we close with pointers for further reading.

8.1 KVMANDXENOVERVIEW
To measure ARM and x86 virtualization performance, we used the widely used KVM and Xen
hypervisor implementations to provide a realistic measure of performance in real software. We
present a brief review of KVM and Xen based on their current implementations so the reader can
more easily understand the subsequent performance results. Both KVM and Xen now make use of
hardware virtualization support on bothARMand x86. Recall that Xen is a type-1 hypervisor that
is a separate standalone software component which runs directly on the hardware and provides a
virtual machine abstraction to VMs running on top of the hypervisor. KVM is a type-2 hypervisor
that runs an existing operating system on the hardware and run both VMs and applications on
top of the OS.

An advantage of type-2 hypervisors over type-1 hypervisors is the reuse of existingOS code,
specifically device drivers for a wide range of available hardware. Traditionally, a type-1 hypervisor
suffers from having to reimplement device drivers for all supported hardware. However, Xen
avoids this by only implementing aminimal amount of hardware support directly in the hypervisor
and running a special privileged VM, dom0, which runs an existing OS such as Linux, leveraging
all the existing device drivers for that OS. Xen then arbitrates I/O between normal VMs and
dom0 such that dom0 can perform I/O using existing device drivers on behalf of other VMs.

Transitions from a VM to the hypervisor occur whenever the hypervisor exercises system
control, such as processing interrupts or I/O. e hypervisor transitions back to the VM once it



148 8. COMPARINGARMANDX86 VIRTUALIZATIONPERFORMANCE

has completed its work managing the hardware, letting workloads in VMs continue executing.
e cost of such transitions is pure overhead and can add significant latency in communication
between the hypervisor and the VM. A primary goal in designing both hypervisor software and
hardware support for virtualization is to reduce the frequency and cost of transitions as much as
possible.

As discussed in Chapter 6, VMs can run guest OSes with standard device drivers for I/O,
but because they do not have direct access to hardware, the hypervisor would need to emulate
real I/O devices in software resulting in frequent transitions between the VM and the hypervisor,
making each interaction with the emulated device an order of magnitude slower than communi-
cating with real hardware. Alternatively, direct passthrough of I/O from a VM to the real I/O
devices can be done using device assignment, but this requires more expensive hardware sup-
port and complicates VM migration. Instead, the most common approach is paravirtual I/O in
which custom device drivers are used in VMs for virtual devices supported by the hypervisor,
and the interface between the VM device driver and the virtual device is specifically designed
to optimize interactions between the VM and the hypervisor and facilitate fast I/O. KVM uses
an implementation of the Virtio [154] protocol for disk and networking support, and Xen uses
its own implementation referred to simply as Xen PV. In KVM, the virtual device backend is
implemented in the host OS, while in Xen it is implemented in the dom0 kernel. A key poten-
tial performance advantage for KVM is that the virtual device implementation in the KVM host
kernel has full access to all of the machine’s hardware resources, including VM memory, while
the Xen virtual device implementation lives in a separate VM, dom0, which only has access to
memory and hardware resources specifically allocated to it by the Xen hypervisor. On the other
hand, Xen provides a stronger isolation between the virtual device implementation and the VM.

e differences between Xen and KVM affect how they use hardware virtualization support
on x86 vs. ARM. On x86, running Linux in root mode does not require any changes to Linux, so
both KVM and Xen map equally well to the x86 architecture by running the hypervisor in root
mode. Root mode does not limit nor change how CPU privilege levels are used. On ARM, while
KVM uses split-mode virtualization across EL1 and EL2 as discussed in Chapter 7, Xen as a
type-1 hypervisor design maps easily to the ARM architecture, running the entire hypervisor in
EL2 and running VM userspace and VM kernel in EL0 and EL1, respectively. KVM only runs
the minimal set of hypervisor functionality in EL2 to be able to switch between VMs and the
host and emulates all virtual devices in the host OS running in EL1 and EL0. When a KVM VM
performs I/O it involves trapping to EL2, switching to host EL1, and handling the I/O request in
the host. Xen only emulates the GIC in EL2 and offloads all other I/O handling to dom0, which,
like any other VM, runs its kernel in EL1. When a Xen VM performs I/O, it involves trapping
to the hypervisor, signaling dom0, scheduling dom0, and handling the I/O request in dom0.



8.2. EXPERIMENTALDESIGN 149

8.2 EXPERIMENTALDESIGN
To evaluate the performance of ARM and x86 virtualization, both microbenchmarks and real
application workloads were run on server hardware available as part of the Utah CloudLab [52].
ARMv8.1 hardware is not yet available at the time of this writing, so ARMv8 hardware was used.
ARM measurements were done using HP Moonshot m400 servers, each equipped with a 64-bit
ARMv8-A 2.4 GHz Applied Micro Atlas SoC with 8 physical CPU cores. Each m400 node in
the cloud infrastructure is equipped with 64 GB of RAM, a 120 GB SATA3 SSD for storage,
and a Dual-port Mellanox ConnectX-3 10GbE NIC. x86 measurements were done using Dell
PowerEdge r320 servers, each equipped with a 64-bit Xeon 2.1 GHz ES-2450 with 8 physical
CPU cores. Hyperthreading was disabled on the r320 nodes to provide a similar hardware config-
uration to the ARM servers. Each r320 node in the cloud infrastructure is equipped with 16 GB
of RAM, a 4x500 GB 7200 RPM SATA RAID5 HD for storage, and a Dual-port Mellanox
MX354A 10GbE NIC. All servers are connected via 10 GbE, and the interconnecting network
switch [87] easily handles multiple sets of nodes communicating with full 10 Gb bandwidth such
that experiments involving networking between two nodes can be considered isolated and unaf-
fected by other traffic in the system. Using 10 Gb Ethernet was important, as many benchmarks
were unaffected by virtualization when run over 1 Gb Ethernet, because the network itself became
the bottleneck.

To provide comparablemeasurements, software environments across all hardware platforms
and all hypervisors were kept the same as much as possible. KVM in Linux 4.0-rc4 with QEMU
2.2.0 and Xen 4.5.0 were used, which were the most recent stable versions of these hypervisors
available at the time of the measurements. KVM was configured with its standard VHOST net-
working feature, allowing data handling to occur in the kernel instead of userspace, and with
cache=none for its block storage devices. is is a commonly used I/O configuration for real
KVM deployments that allows the guest access to the disk write cache, but disallows further
memory caching that would sacrifice data persistence for additional performance gains. Xen was
configured with its in-kernel block and network backend drivers to provide best performance
and reflect the most commonly used I/O configuration for Xen deployments. All hosts and VMs
used Ubuntu 14.04 [121] with the same Linux 4.0-rc4 kernel and software configuration for all
machines. A few patches were applied to support the various hardware configurations, such as
adding support for the APM X-Gene PCI bus for the HP m400 servers. All VMs used paravir-
tualized I/O, typical of cloud infrastructure deployments such as Amazon EC2, instead of device
passthrough, due to the absence of an IOMMU in the test environment used.

Benchmarks were run both natively on the hosts and in VMs. Each physical or virtual
machine instance used for running benchmarks was configured as a 4-way SMP with 12 GB of
RAM to provide a common basis for comparison. is involved three configurations: (1) running
natively on Linux capped at 4 cores and 12 GB RAM; (2) running in a VM using KVM with
8 cores and 16 GB RAM with the VM capped at 4 virtual CPUs (VCPUs) and 12 GB RAM;
and (3) running in a VM using Xen with dom0, the privileged domain used by Xen with direct



150 8. COMPARINGARMANDX86 VIRTUALIZATIONPERFORMANCE

hardware access, capped at 4 cores and 4 GB RAM and the VM capped at 4 VCPUs and 12 GB
RAM. Because KVM configures the total hardware available while Xen configures the hardware
dedicated to dom0, the configuration parameters are different. e effect nevertheless is the same,
which is to leave the hypervisor with 4 cores and 4 GB RAM to use outside of what is used by the
VM. Multicore configurations were used to reflect real-world server deployments. e memory
limit was used to ensure a fair comparison across all hardware configurations given the RAM
available on the x86 servers and the need to also provide RAM for use by the hypervisor when
running VMs. For benchmarks that involve clients interfacing with the server, the clients were
run natively on Linux and configured to use the full hardware available.

To improve measurement precision and mimic recommended configuration best prac-
tices [187], each VCPU was pinned to a specific physical CPU (PCPU) and generally no other
work was scheduled on that PCPU. In KVM, all of the host’s device interrupts and processes were
assigned to run on a specific set of PCPUs and each VCPU was pinned to a dedicated PCPU
from a separate set of PCPUs. In Xen, dom0 was configured to run on a set of PCPUs while domU
was run on a separate set of PCPUs. Each VCPU of both dom0 and domU was pinned to its own
PCPU.

8.3 MICROBENCHMARKRESULTS
We present measurements for seven microbenchmarks that quantify various low-level aspects of
hypervisor performance, as listed in Table 8.1. Some of these measurements are similar to those
presented in Chapter 7, but are done with commercial 64-bit server hardware instead of devel-
opment boards, providing a more realistic comparison of server virtualization performance. A
primary performance cost in running in a VM is how much time must be spent outside the VM,
which is time not spent running the workload in the VM and therefore is virtualization over-
head compared to native execution. erefore, the microbenchmarks are designed to measure
time spent handling a trap from the VM to the hypervisor, including time spent on transition-
ing between the VM and the hypervisor, time spent processing interrupts, time spent switch-
ing between VMs, and latency added to I/O. Table 8.2 presents the results from running these
microbenchmarks on both ARM and x86 server hardware. Measurements are shown in cycles
instead of time to provide a useful comparison across server hardware with different CPU fre-
quencies. Measurements were obtained using cycle counters and ARM hardware timer counters
to ensure consistency across multiple CPUs, and instruction barriers were used before and after
taking timestamps to avoid out-of-order execution or pipelining from skewing ourmeasurements.

e Hypercall microbenchmark shows that transitioning from a VM to the hypervisor on
ARM can be significantly faster than x86, as shown by the Xen ARM measurement, which takes
less than a third of the cycles that Xen or KVM on x86 take. e ARM architecture provides
a separate CPU mode with its own register bank to run an isolated type-1 hypervisor like Xen.
Transitioning from a VM to a type-1 hypervisor requires little more than context switching the
general purpose registers as running the two separate execution contexts, VM and the hypervisor,



8.3. MICROBENCHMARKRESULTS 151
Table 8.1: Microbenchmarks

Name Description

Hypercall Transition from VM to hypervisor and return to VM without doing 

any work in the hypervisor. Measures bidirectional base transition 

cost of hypervisor operations.

Interrupt Controller Trap Trap from VM to emulated interrupt controller then return to VM. 

Measures a frequent operation for many device drivers and baseline 

for accessing I/O devices emulated in the hypervisor.

Virtual IPI Issue a virtual IPI from a VCPU to another VCPU running on a 

di� erent PCPU, both PCPUs executing VM code. Measures time 

between sending the virtual IPI until the receiving VCPU handles 

it, a frequent operation in multicore OSes that a� ects many work-

loads.

Virtual IRQ Completion VM acknowledging and completing a virtual interrupt. Measures a 

frequent operation that happens for every injected virtual interrupt.

VM Switch Switching from one VM to another on the same physical core.

Measures a central cost when oversubscribing physical CPUs.

I/O Latency Out Measures latency between a driver in the VM signaling the virtual 

I/O device in the hypervisor and the virtual I/O device receiving 

the signal. For KVM, this involves trapping to the host kernel. For 

Xen, this involves trapping to Xen then raising a virtual interrupt to 

Dom0.

I/O Latency In Measures latency between the virtual I/O device in the hypervisor

signaling the VM and the VM receiving the corresponding virtual 

interrupt. For KVM, this involves signaling the VCPU thread and 

injecting a virtual interrupt for the Virtio device. For Xen, this in-

volves trapping to Xen then raising a virtual interrupt to DomU.

is supported by the separate ARM hardware state for EL2. While ARM implements additional
register state to support the different execution context of the hypervisor, x86 transitions from a
VM to the hypervisor by switching from non-root to root mode which requires context switching
the entire CPU register state to the VMCS in memory, which is much more expensive even with
hardware support.

However, the Hypercall microbenchmark also shows that transitioning from a VM to the
hypervisor on ARM is more than an order of magnitude more expensive for type-2 hypervisors



152 8. COMPARINGARMANDX86 VIRTUALIZATIONPERFORMANCE
Table 8.2: Microbenchmark measurements (cycle counts)

Microbenchmark
ARM x86

KVM Xen KVM Xen

Hypercall 6,500 376 1,300 1,228

Interrupt Controller Trap 7,370 1,356 2,384 1,734

Virtual IPI 11,557 5,978 5,230 5,562

Virtual IRQ Completion 71 71 1,556 1,464

VM Switch 10,387 8,799 4,812 10,534

I/O Latency Out 6,024 16,491 560 11,262

I/O Latency In 13,872 15,650 18,923 10,050

like KVM than for type-1 hypervisors like Xen. is is because although all VM traps are handled
in EL2, a type-2 hypervisor is integrated with a host kernel and both run in EL1. is results in
four additional sources of overhead. First, transitioning from the VM to the hypervisor involves
not only trapping to EL2, but also returning to the host OS in EL1, incurring a double trap cost.
Second, because the host OS and the VM both run in EL1 and ARM hardware does not provide
any features to distinguish between the host OS running in EL1 and the VM running in EL1,
software running in EL2 must context switch all the EL1 system register state between the VM
guest OS and the type-2 hypervisor host OS, incurring added cost of saving and restoring EL1
register state. ird, because the host OS runs in EL1 and needs full access to the hardware, the
hypervisor must disable traps to EL2 and Stage-2 translation from EL2 while switching from the
VM to the hypervisor, and enable them when switching back to the VM again. Fourth, because
the type-2 hypervisor runs in EL1 but needs to access VM control register state such as the VGIC
state, which can only be accessed from EL2, there is additional overhead to read and write the
VM control register state in EL2. e type-2 hypervisor can either jump back and forth between
EL1 and EL2 to access the control register state when needed, or it can copy the full register
state to memory while it is still in EL2, return to the host OS in EL1 and read and write the
memory copy of the VM control state, and then finally copy the state from memory back to the
EL2 control registers when the hypervisor is running in EL2 again. Both methods incur much
overhead, but jumping back and forward between EL1 and EL2 makes the software implementa-
tion complicated and difficult to maintain. erefore, the KVM/ARM implementation currently
takes the second approach of reading and writing all VM control registers in EL2 during each
transition between the VM and the hypervisor.

While the cost of the trap betweenCPUmodes itself is not very high as shown inChapter 7,
these measurements show that there is a substantial cost associated with saving and restoring reg-
ister state to switch between EL2 and the host in EL1. Table 8.3 provides a breakdown of the cost
of context switching the relevant register state when performing the Hypercall microbenchmark



8.3. MICROBENCHMARKRESULTS 153
Table 8.3: KVM/ARM Hypercall analysis (cycle counts)

Register State Save Restore

GP Regs 152 184

FP Regs 282 310

EL1 System Regs 230 511

VGIC Regs 3,250 181

Timer Regs 104 106

EL2 Con� g Regs 92 107

EL2 Virtual Memory Regs 92 107

measurement on KVM/ARM. Context switching consists of saving register state to memory and
restoring the new context’s state from memory to registers. e cost of saving and restoring this
state accounts for almost all of the Hypercall time, indicating that context switching state is the
primary cost due to KVM/ARM’s design, not the cost of extra traps. Unlike Xen ARM which
only incurs the relatively small cost of saving and restoring the general-purpose (GP) registers,
KVM/ARM saves and restores muchmore register state at much higher cost. Note that for ARM,
the overall cost of saving register state, when transitioning from a VM to the hypervisor, is much
more expensive than restoring it, when returning back to the VM from the hypervisor, due to the
cost of reading the VGIC register state.

Unlike on ARM, both x86 hypervisors spend a similar amount of time transitioning from
the VM to the hypervisor. Since both KVM and Xen leverage the same x86 hardware mech-
anism for transitioning between VM and hypervisor, they have similar performance. Both x86
hypervisors run in root mode and run their VMs in non-root mode, and switching between the
two modes involves switching a substantial portion of the CPU register state to the VMCS in
memory. Switching this state to memory is fast on x86, because it is performed by hardware in
the context of a trap or as a result of executing a single instruction. In contrast, ARM provides
a separate CPU mode for the hypervisor with separate registers, and ARM only needs to switch
state to memory when running a different execution context in EL1. ARM can be much faster,
as in the case of Xen ARM which does its hypervisor work in EL2 and does not need to context
switch much register state, or it can be much slower, as in the case of KVM/ARM which context
switches more register state without the benefit of hardware support like x86.

e large difference between Xen ARM and KVM/ARM in the cost of transitioning be-
tween the VM and hypervisor, as shown by the Hypercall measurement, results in Xen ARM be-
ing significantly faster at handling interrupt related traps, because Xen ARM emulates the ARM
GIC interrupt controller directly in the hypervisor running in EL2. In contrast, KVM/ARM
emulates the GIC in the part of the hypervisor running in EL1. erefore, operations such as
accessing registers in the emulated GIC, sending virtual IPIs, and receiving virtual interrupts are



154 8. COMPARINGARMANDX86 VIRTUALIZATIONPERFORMANCE

much faster on Xen ARM than KVM/ARM. is is shown in Table 8.2 in the measurements
for the Interrupt Controller trap and Virtual IPI microbenchmarks, in which Xen ARM is faster
than KVM/ARM by roughly the same difference as for the Hypercall microbenchmark.

However, Table 8.2 shows that for the remaining microbenchmarks, Xen ARM does not
enjoy a large performance advantage over KVM/ARM and in fact does worse for some of the mi-
crobenchmarks. e reasons for this differ from one microbenchmark to another: For the Virtual
IRQ Completion microbenchmark, both KVM/ARM and Xen ARM are very fast because the
ARM hardware includes support for completing interrupts directly in the VM without trapping
to the hypervisor. e microbenchmark runs much faster on ARM than x86 because the latter
has to trap to the hypervisor. More recently, vAPIC support has been added to x86 with similar
functionality to avoid the need to trap to the hypervisor so that newer x86 hardware with vAPIC
support should perform more comparably to ARM [104].

For the VM Switch microbenchmark, Xen ARM is only slightly faster than KVM/ARM
because both hypervisor implementations have to context switch the state between the VM being
switched out and the one being switched in. Unlike the Hypercall microbenchmark where only
KVM/ARM needed to context switch EL1 state and per VM EL2 state, in this case both KVM
and Xen ARM need to do this, and Xen ARM therefore does not directly benefit from its faster
VM-to-hypervisor transition. Xen ARM is still slightly faster than KVM, however, because to
switch between VMs, Xen ARM simply traps to EL2 and performs a single context switch of
the EL1 state, while KVM/ARM must switch the EL1 state from the VM to the host OS and
then again from the host OS to the new VM. Finally, KVM/ARM also has to disable and enable
traps and Stage-2 translation on each transition, which Xen ARM does not have to do.

For the I/O Latency microbenchmarks, a surprising result is that Xen ARM is slower than
KVM/ARM in both directions. ese microbenchmarks measure the time from when a network
I/O event is initiated by a sender until the receiver is notified, not including additional time spent
transferring data. I/O latency is an especially important metric for real-time sensitive operations
and many networking applications. e key insight to understanding the results is to see that
Xen ARM does not benefit from its faster VM-to-hypervisor transition mechanism in this case
because Xen ARM must switch between two separate VMs, dom0 and a domU, to process network
I/O. Type-1 hypervisors only implement a limited set of functionality in the hypervisor directly,
namely scheduling, memory management, the interrupt controller, and timers for Xen ARM.
All other functionality, for example network and storage drivers are implemented in the special
privileged VM, dom0. erefore, a VM performing I/O has to communicate with dom0 and not
just the Xen hypervisor, which means not just trapping to EL2, but also going to EL1 to run
dom0.

I/O Latency Out is much worse on Xen ARM than KVM/ARM. When KVM/ARM
sends a network packet, it traps to the hypervisor, which involves context switching the EL1
state, and then the host OS instance directly sends the data on the physical network. Xen ARM,
on the other hand, must trap from the VM to the hypervisor, which then signals a different VM,



8.4. APPLICATIONBENCHMARKRESULTS 155

dom0, and dom0 then sends the data on the physical network. is signaling between VMs on
Xen is slow for two main reasons. First, because the VM and dom0 run on different physical
CPUs, Xen must send a physical IPI from the CPU running the VM to the CPU running dom0.
Second, Xen actually switches from dom0 to a special VM, called the idle domain, when dom0 is
idling and waiting for I/O. us, when Xen signals dom0 to perform I/O on behalf of a VM, it
must perform a VM switch from the idle domain to dom0. Changing the configuration of Xen
to pinning both the VM and dom0 to the same physical CPU or not specifying any pinning at
all resulted in similar or worse results than reported in Table 8.2, so the qualitative results are not
specific to this configuration.

It is interesting to note that KVM x86 is much faster than everything else on I/O Latency
Out. KVM on both ARM and x86 involve the same control path of transitioning from the VM
to the hypervisor. While the path is conceptually similar to half of the path for the Hypercall
microbenchmark, the result for the I/O Latency Out microbenchmark is not 50% of the Hy-
percall cost on either platform. e reason is that for KVM x86, transitioning from the VM to
the hypervisor accounts for around only 40% of the Hypercall cost, and transitioning from the
hypervisor to the VM accounts for most of the rest (a few cycles are spent handling the noop
hypercall in the hypervisor). On ARM, it is much more expensive to transition from the VM
to the hypervisor than from the hypervisor to the VM, because reading back the VGIC state is
expensive, as shown in Table 8.3.

I/O Latency In behaves more similarly between Xen ARM and KVM/ARM, because both
hypervisors perform similar low-level operations. Xen traps from dom0 running in EL1 to the
hypervisor running in EL2 and signals the receiving VM, the reverse of the procedure described
above, thereby sending a physical IPI and switching from the idle domain to the receiving VM
in EL1. For KVM/ARM, the Linux host OS receives the network packet and wakes up the
idle VM’s VCPU thread and signals the CPU running the VCPU thread, thereby sending a
physical IPI, and the VCPU thread then traps to EL2, switches the EL1 state from the host OS
to the VM, and switches to the VM in EL1. e end result is that the cost is similar across both
hypervisors, with KVM being slightly faster. While KVM/ARM is slower on I/O Latency In
than I/O Latency Out because it performs more work on the incoming path, Xen has similar
performance on both Latency I/O In and Latency I/O Out because it performs comparable low-
level operations for both microbenchmarks.

8.4 APPLICATIONBENCHMARKRESULTS
We next present measurements of a number of real application benchmark workloads to quantify
how well the ARM virtualization extensions support different hypervisor software designs in the
context of more realistic workloads. Table 8.4 lists the application workloads used, which include
a mix of widely-used CPU and I/O intensive benchmark workloads. For workloads involving a
client and a server, the client ran on a dedicated machine and the server ran on the configuration
being measured, ensuring that the client was never saturated during any of our experiments. ese



156 8. COMPARINGARMANDX86 VIRTUALIZATIONPERFORMANCE
Table 8.4: Application benchmarks

Benchmark Description

Kernbench Kernel compilation by compiling the Linux 3.17.0 kernel using the allnocon� g

for ARM using GCC 4.8.2.

Hackbench hackbench [132] using unix domain sockets and 100 process groups running

with 500 loops.

SPECjvm2008 SPECjvm2008 [160] 2008 benchmark running several real life applications 

and benchmarks speci� cally chosen to benchmark the performance of the Java 

Runtime Environment. 15.02 release of the Linaro AArch64 port of Open-

JDK was used run the benchmark.

Netperf netperf v2.6.0 starting netserver on the server and running with its default 

parameters on the client in three modes: TCP_STREAM, TCP_MAERTS, 

and TCP_RR, measuring throughput transferring data from client to server, 

throughput transferring data from server to client, and latency, respectively.

Apache Apache v2.4.7 Web server running ApacheBench v2.3 on the remote/local 

client, which measures the number of handled requests per second serving the 

index � le of the GCC 4.4 manual using 100 concurrent requests.

Memcached memcached v1.4.14 using the memtier benchmark v1.2.3 with its default

parameters.

MySql MySQL v14.14 (distrib 5.5.41) running the SysBench v.0.4.12 OLTP bench-

mark using the default con� guration with 200 parallel transactions.

workloads were run natively and on both KVM and Xen on both ARM and x86, the latter to
provide a baseline comparison. Table 8.5 shows the raw results for executing the workloads on
both ARM and x86 servers.

Given the differences in hardware platforms, we focus not on measuring absolute perfor-
mance, but rather the relative performance differences between virtualized and native execution
on each platform. Figure 8.1 shows the performance overhead of KVM and Xen on ARM and
x86 compared to native execution on the respective platform. All numbers are normalized to 1
for native performance, so that lower numbers represent better performance. Unfortunately, the
Apache benchmark could not run on Xen x86 because it caused a kernel panic in dom0. is
problem was reported to the Xen developer community and it apparently was due to a Mellanox
network driver bug exposed by Xen’s I/O model.

Figure 8.1 shows that the application performance onKVMandXen onARMand x86 does
not appear well correlated with their respective performance on the microbenchmarks shown in



8.4. APPLICATIONBENCHMARKRESULTS 157
Table 8.5: Application benchmark raw performance

Name CPU Native KVM Xen

Kernbench (s) ARM

x86

49.11

28.91

50.49

27.12

49.83

27.56

Hackbench (s) ARM

x86

15.65

6.04

17.38

6.66

16.55

6.57

SPECjvm2008 (ops/min) ARM

x86

62.43

140.76

61.69

140.64

61.91

141.80

TCP_RR (trans/s) ARM

x86

23,911

21,089

11.591

11,490

10,253

7,661

TCP_STREAM (Mb/s) ARM

x86

5,924

9,174

5,603

9,287

1,662

2,353

TCP_MAERTS (Mb/s) ARM

x86

6,051

9,148

6,059

8,817

3,778

5,948

Apache (trans/s) ARM

x86

6,526

10,585

4,846

9,170

3,539

N/A

Memcached (ops/s) ARM

x86

110,865

263,302

87,811

170,359

84,118

226,403

MySQL (s) ARM

x86

13.72

7.21

15.76

9.08

15.02

8.75

Table 8.2. Xen ARM has by far the lowest VM to hypervisor transition costs and the best perfor-
mance for most of the microbenchmarks, yet its performance lags behind KVM/ARM on many
of the application benchmarks. KVM ARM substantially outperforms Xen ARM on the vari-
ous netperf benchmarks, TCP_STREAM, TCP_MAERTS, and TCP_RR, as well as Apache
and Memcached, and performs only slightly worse on the rest of the application benchmarks.
Xen ARM also does generally worse than KVM x86. Clearly, the differences in microbenchmark
performance do not result in the same differences in real application performance.

Xen ARM achieves its biggest performance gain vs. KVM/ARM on Hackbench. Hack-
bench involves running lots of threads that are sleeping and waking up, requiring frequent IPIs
for rescheduling. Xen ARM performs virtual IPIs much faster than KVM/ARM, roughly a factor
of two. Despite this microbenchmark performance advantage on a workload performing frequent
virtual IPIs, the resulting difference in Hackbench performance overhead is small, only 5% of
native performance. Overall, across CPU-intensive workloads such as Kernbench, Hackbench,
and SPECjvm, the performance differences among the different hypervisors across different ar-
chitectures is small.



158 8. COMPARINGARMANDX86 VIRTUALIZATIONPERFORMANCE

2.00

1.80

1.60

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00

KVM ARM

KVM x86

Xen ARM

Xen x86

K
em

be
nc

h

H
ac

kb
en

ch

SPEC
jv

m
20

08

TC
P_S

TR
EA

M

TC
P_M

A
ERTS

TC
P_R

R

A
pa

ch
e

M
em

ca
ch

ed

M
yS

ql

3.56  3.90 2.06 2.33 2.75

Figure 8.1: Application benchmark performance normalized to native execution.

Figure 8.1 shows that the largest differences in performance are for the I/O-intensive work-
loads. We first take a closer look at the netperf results. Netperf TCP_RR is an I/O latency bench-
mark, which sends a 1 byte packet from a client to the Netperf server running in the VM, and
the Netperf server sends the packet back to the client, and the process is repeated for 10 s. For
the netperf TCP_RR benchmark, both hypervisors show high overhead compared to native per-
formance, but Xen is noticeably worse than KVM. Taking a closer look at KVM/ARM vs. Xen
ARM, there are two main reasons why Xen performs worse. First, Xen’s I/O latency is higher than
KVM’s as measured and explained by the I/O Latency In and Out microbenchmarks in §8.3. Sec-
ond, Xen does not support zero-copy I/O, but must map a shared page between dom0 and the
VM using Xen’s grant tables, a generic mechanism for memory sharing between domains. Xen
must copy data between the memory buffer used for DMA in dom0 and the granted memory
buffer from the VM. Each data copy incurs more than 3 �s of additional latency because of the
complexities of establishing and utilizing the shared page via the grant table mechanism across
VMs, even though only a single byte of data needs to be copied.



8.4. APPLICATIONBENCHMARKRESULTS 159

Although Xen ARM can transition between the VM and hypervisor more quickly than
KVM, Xen cannot utilize this advantage for the TCP_RR workload, because Xen must engage
dom0 to perform I/O on behalf of the VM, which results in several VM switches between idle
domains and dom0 or domU, and because Xen must perform expensive page mapping operations to
copy data between the VM and dom0. is is a direct consequence of Xen’s software architecture
and I/O model based on domains and a strict I/O isolation policy. Xen ends up spending so much
time communicating between the VM and dom0 that it completely dwarfs its low Hypercall cost
for the TCP_RR workload and ends up having more overhead than KVM/ARM, due to Xen’s
software architecture and I/O model in particular.

e hypervisor software architecture is also a dominant factor in other aspects of the netperf
results. For the netperf TCP_STREAM benchmark, KVM has almost no overhead for x86 and
ARM while Xen has more than 250% overhead. e reason for this large difference in perfor-
mance is again due to Xen’s lack of zero-copy I/O support, in this case particularly on the network
receive path. e netperf TCP_STREAM benchmark sends large quantities of data from a client
to the netperf server in the VM. Xen’s dom0, running Linux with the physical network device
driver, cannot configure the network device to DMA the data directly into guest buffers, because
dom0 does not have access to the VM’s memory. When Xen receives data, it must configure the
network device to DMA the data into a dom0 kernel memory buffer, signal the VM for incoming
data, let Xen configure a shared memory buffer, and finally copy the incoming data from the dom0
kernel buffer into the virtual device’s shared buffer. KVM, on the other hand, has full access to
the VM’s memory and maintains shared memory buffers in the Virtio rings [154], such that the
network device can DMA the data directly into a guest-visible buffer, resulting in significantly
less overhead.

Furthermore, previous work [156] and discussions with the Xen maintainers confirm that
supporting zero copy on x86 is problematic for Xen given its I/O model because doing so re-
quires signaling all physical CPUs to locally invalidate TLBs when removing grant table entries
for shared pages, which proved more expensive than simply copying the data [92]. As a result,
previous efforts to support zero copy on Xen x86 were abandoned. Xen ARM lacks the same zero
copy support because the dom0 network backend driver uses the same code as on x86. Whether
zero copy support for Xen can be implemented efficiently on ARM, which has hardware support
for broadcasted TLB invalidate requests across multiple PCPUs, remains to be investigated.

For the netperf TCP_MAERTS benchmark, Xen also has substantially higher overhead
than KVM. e benchmark measures the network transmit path from the VM, the converse of
the TCP_STREAM benchmark which measured the network receive path to the VM. It turns
out that the Xen performance problem is due to a regression in Linux introduced in Linux v4.0-
rc1 in an attempt to fight bufferbloat, and has not yet been fixed beyond manually tuning the
Linux TCP configuration in the guest OS [123]. Using an earlier version of Linux or tuning
the TCP configuration in the guest using sysfs significantly reduced the overhead of Xen on the
TCP_MAERTS benchmark.



160 8. COMPARINGARMANDX86 VIRTUALIZATIONPERFORMANCE

Other than the netperf workloads, the application workloads with the highest overhead
were Apache and Memcached. e performance bottleneck for KVM and Xen on ARM was due
to network interrupt processing and delivery of virtual interrupts. Delivery of virtual interrupts is
more expensive than handling physical IRQs on bare-metal, because it requires switching from
the VM to the hypervisor and injecting a virtual interrupt to the VM and switching back to
the VM. Additionally, Xen and KVM both handle all virtual interrupts using a single VCPU,
which, combined with the additional virtual interrupt delivery cost, fully utilizes the underlying
PCPU. If changes are made so that virtual interrupts are distributed across multiple VCPUs,
KVM performance overhead dropped from 35% to 14% on Apache and from 26% to 8% on
Memcached, while the Xen performance overhead dropped from 84% to 16% on Apache and
from 32% to 9% on Memcached.

In summary, while the VM-to-hypervisor transition cost for a type-1 hypervisor like Xen
is much lower on ARM than for a type-2 hypervisor like KVM, this difference is not easily ob-
served for the application workloads. e reason is that type-1 hypervisors typically only support
CPU, memory, and interrupt virtualization directly in the hypervisors. CPU and memory virtu-
alization has been highly optimized directly in hardware and, ignoring one-time page fault costs
at startup, is performed largely without the hypervisor’s involvement. at leaves only interrupt
virtualization, which is indeed much faster for type-1 hypervisor on ARM, confirmed by the In-
terrupt Controller Trap and Virtual IPI microbenchmarks shown in §8.3. While this contributes
to Xen’s slightly better Hackbench performance, the resulting application performance benefit
overall is modest.

However, when VMs perform I/O operations such as sending or receiving network data,
type-1 hypervisors like Xen typically offload such handling to separate VMs to avoid having to
re-implement all device drivers for the supported hardware and to avoid running a full driver and
emulation stack directly in the type-1 hypervisor, which would significantly increase the Trusted
Computing Base and increase the attack surface of the hypervisor. Switching to a different VM to
perform I/O on behalf of the VM has very similar costs on ARM compared to a type-2 hypervisor
approach of switching to the host on KVM. Additionally, KVM on ARM benefits from the hy-
pervisor having privileged access to all physical resources, including the VM’s memory, and from
being directly integrated with the host OS, allowing for optimized physical interrupt handling,
scheduling, and processing paths in some situations.

Despite the inability of both KVM and Xen to leverage the potential fast path of trapping
from a VM running in EL1 to the hypervisor in EL2 without the need to run additional hypervi-
sor functionality in EL1, our measurements show that both KVM and Xen on ARM can provide
virtualization overhead similar to, and in some cases better than, their respective x86 counterparts.
Furthermore, as discussed in Chapter 7, the introduction of ARM VHE could make it possible
for KVM to better leverage the fast path of trapping to EL2 only by running all of KVM in EL2,
resulting in further performance improvements for KVM on ARM.



8.5. FURTHERREADING 161

8.5 FURTHERREADING
Much work has been done on analyzing the performance of x86 virtualization. For example,
Heo and Taheri [86] analyze the performance of various latency-sensitive workloads on VMware
vSphere on x86, Buell et al. [41] investigate the performance of both complex computation-
intensive as well as latency-sensitive workloads on VMware vSphere on multicore systems, and
Bhargava et al. [35] finds that two-level TLB misses can be very expensive for any hypervisor
using either Intel’s or AMD’s hardware support for virtualization.

Relatively fewer studies have been done on the performance of ARM virtualization, with
most focused on ARMv7 development hardware [60, 79, 133, 149]. Since ARM virtualization
support is more recent, little work has been done comparing x86 and ARM virtualization perfor-
mance. e work reported here is based on the first in-depth measurement study of x86 vs. ARM
virtualization [58].





163

Bibliography
[1] Darren Abramson, Jeff Jackson, Sridhar Muthrasanallur, Gil Neiger, Greg Regnier, Ra-

jesh Sankaran, Ioannis Schoinas, Rich Uhlig, Balaji Vembu, and John Wiegert. Intel
virtualization technology for directed I/O. Intel Technology Journal, 10(3):179–192, 2006.
79

[2] ACM SIGOPS. SIGOPS hall of fame award. http://www.sigops.org/award-hof.
html 29, 51

[3] Keith Adams and Ole Agesen. A comparison of software and hardware techniques for
x86 virtualization. In Proc. of the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-XII), pages 2–13, 2006. DOI:
10.1145/1168857.1168860 43, 55, 61, 69

[4] Ole Agesen, Alex Garthwaite, Jeffrey Sheldon, and Pratap Subrahmanyam. e evolution
of an x86 virtual machine monitor. Operating Systems Review, 44(4):3–18, 2010. DOI:
10.1145/1899928.1899930 51, 77

[5] Ole Agesen, Jim Mattson, Radu Rugina, and Jeffrey Sheldon. Software techniques for
avoiding hardware virtualization exits. In Proc. of the USENIX Annual Technical Conference
(ATC), pages 373–385, 2012. https://www.usenix.org/conference/atc12/techni
cal-sessions/presentation/agesen 68, 75, 77

[6] Ole Agesen and Jeffrey Sheldon. Personal communication (VMware), 2015. 68

[7] Irfan Ahmad, Jennifer M. Anderson, Anne M. Holler, Rajit Kambo, and Vikram Makhija.
An analysis of disk performance in vmware esx server virtual machines. In IEEE Interna-
tional Workshop on Workload Characterization, pages 65–76, 2003. 46, 51

[8] Jeongseob Ahn, Seongwook Jin, and Jaehyuk Huh. Revisiting hardware-assisted page
walks for virtualized systems. In Proc. of the 39th International Symposium on Computer
Architecture (ISCA), pages 476–487, 2012. DOI: 10.1109/ISCA.2012.6237041 77

[9] Brian Aker. Memslap—load testing and benchmarking a server. http://docs.libmemc
ached.org/bin/memslap.html Accessed: August 2016. 113

[10] Altera Corporation. Arria 10 Avalon-ST interface with SR-IOV PCIe solutions: User
guide. https://www.altera.com/en_US/pdfs/literature/ug/ug_a10_pcie_sri
ov.pdf, May 2016. Accessed: August 2016. 109

http://www.sigops.org/award-hof.html
http://www.sigops.org/award-hof.html
http://dx.doi.org/10.1145/1168857.1168860
http://dx.doi.org/10.1145/1168857.1168860
http://dx.doi.org/10.1145/1899928.1899930
http://dx.doi.org/10.1145/1899928.1899930
https://www.usenix.org/conference/atc12/technical-sessions/presentation/agesen
https://www.usenix.org/conference/atc12/technical-sessions/presentation/agesen
http://dx.doi.org/10.1109/ISCA.2012.6237041
http://docs.libmemcached.org/bin/memslap.html
http://docs.libmemcached.org/bin/memslap.html
https://www.altera.com/en_US/pdfs/literature/ug/ug_a10_pcie_sriov.pdf
https://www.altera.com/en_US/pdfs/literature/ug/ug_a10_pcie_sriov.pdf
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1109%2FWWC.2003.1249058&citationId=p_90
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1109%2FWWC.2003.1249058&citationId=p_90
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F1899928.1899930&citationId=p_87
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1109%2FISCA.2012.6237041&citationId=p_91
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1109%2FISCA.2012.6237041&citationId=p_91
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1535%2Fitj.1003.02&citationId=p_84
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F1168857.1168860&citationId=p_86
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F1168857.1168860&citationId=p_86


164 BIBLIOGRAPHY

[11] AMD Corporation. AMD I/O virtualization technology (IOMMU) specification. Revi-
sion 2.62. http://support.amd.com/TechDocs/48882_IOMMU.pdf, 2015. Accessed:
August 2016. 102, 105

[12] Nadav Amit, Muli Ben-Yehuda, Dan Tsafrir, and Assaf Schuster. vIOMMU: Effi-
cient IOMMU emulation. In Proc. of the USENIX Annual Technical Conference (ATC),
2011. https://www.usenix.org/conference/usenixatc11/viommu-efficient-
iommu-emulation xvii, 105, 121

[13] Nadav Amit, Abel Gordon, Nadav Har’El, Muli Ben-Yehuda, Alex Landau, Assaf Schus-
ter, and Dan Tsafrir. Bare-metal performance for virtual machines with exitless interrupts.
Communications of the ACM, 59(1):108–116, 2016. DOI: 10.1145/2845648 xvii, 113, 115

[14] Nadav Amit, Dan Tsafrir, and Assaf Schuster. VSwapper: A memory swapper for virtu-
alized environments. In Proc. of the 19th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-XIX), pages 349–366, 2014.
DOI: 10.1145/2541940.2541969 xvii

[15] Nadav Amit, Dan Tsafrir, Assaf Schuster, Ahmad Ayoub, and Eran Shlomo. Virtual CPU
validation. In Proc. of the 25th ACM Symposium on Operating Systems Principles (SOSP),
pages 311–327, 2015. DOI: 10.1145/2815400.2815420 xvii, 66, 68

[16] Jeremy Andrus, Christoffer Dall, Alexander Van’t Hof, Oren Laadan, and Jason
Nieh. Cells: A virtual mobile smartphone architecture. In Proc. of the 23rd
ACM Symposium on Operating Systems Principles (SOSP), pages 173–187, 2011. DOI:
10.1145/2043556.2043574 xiv, xvi

[17] Apache HTTP Server Benchmarking Tool. https://httpd.apache.org/docs/2.2/
programs/ab.html. Accessed: August 2016. 113

[18] eApacheHTTP Server Project. http://httpd.apache.org. Accessed: August 2016.
113

[19] Andrea Arcangeli, Izik Eidus, and Chris Wright. Increasing memory density by using
KSM. In Proc. of the 2009 Ottawa Linux Symposium (OLS), pages 19–28, 2009. 75

[20] ARM Ltd. ARM architecture reference manual (ARM DDI 0100I), 2005. 25

[21] ARM Ltd. ARM generic interrupt controller architecture version 2.0 ARM IHI 0048B,
June 2011. 130

[22] ARM Ltd. ARM generic interrupt controller architecture version 3.0 and version 4.0
ARM IHI 0069C, July 2016. 131

http://support.amd.com/TechDocs/48882_IOMMU.pdf
https://www.usenix.org/conference/usenixatc11/viommu-efficient-iommu-emulation
https://www.usenix.org/conference/usenixatc11/viommu-efficient-iommu-emulation
http://dx.doi.org/10.1145/2845648
http://dx.doi.org/10.1145/2541940.2541969
http://dx.doi.org/10.1145/2815400.2815420
http://dx.doi.org/10.1145/2043556.2043574
http://dx.doi.org/10.1145/2043556.2043574
https://httpd.apache.org/docs/2.2/programs/ab.html
https://httpd.apache.org/docs/2.2/programs/ab.html
http://httpd.apache.org
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2541940.2541969&citationId=p_97
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2541940.2541969&citationId=p_97
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2043556.2043574&citationId=p_99
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2043556.2043574&citationId=p_99
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2845648&citationId=p_96
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2815400.2815420&citationId=p_98


BIBLIOGRAPHY 165

[23] ARM Ltd. ARM system memory management unit architecture specification SMMU
architecture version 2.0. http://infocenter.arm.com/help/topic/com.arm.doc.ih
i0062d.c/IHI0062D_c_system_mmu_architecture_specification.pdf, 2016. Ac-
cessed: August 2016. 102

[24] Gaurav Banga, Sergei Vorobiev, Deepak Khajura, Ian Pratt, Vikram Kapoor, and Simon
Crosby. Seamless management of untrusted data using virtual machines, September 29
2015. U.S. Patent 9,148,428. https://www.google.com/patents/US9148428 xvi

[25] Ricardo A. Baratto, Leonard N. Kim, and Jason Nieh. THINC: A virtual display architec-
ture for thin-client computing. In Proc. of the 20th ACM Symposium on Operating Systems
Principles (SOSP), pages 277–290, 2005. DOI: 10.1145/1095810.1095837 xvi

[26] Ricardo A. Baratto, Shaya Potter, Gong Su, and Jason Nieh. MobiDesk: Mobile virtual
desktop computing. In Proc. of the 10th Annual International Conference on Mobile Com-
puting and Networking (MobiCom), pages 1–15, 2004. DOI: 10.1145/1023720.1023722
xvi

[27] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Timothy L. Harris, Alex Ho,
Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In
Proc. of the 19th ACM Symposium on Operating Systems Principles (SOSP), pages 164–177,
2003. DOI: 10.1145/945445.945462 xiv, 7, 43, 44, 45, 46

[28] Kenneth C. Barr, Prashanth P. Bungale, Stephen Deasy, Viktor Gyuris, Perry Hung, Craig
Newell, Harvey Tuch, and Bruno Zoppis. e VMware mobile virtualization platform: Is
that a hypervisor in your pocket? Operating Systems Review, 44(4):124–135, 2010. DOI:
10.1145/1899928.1899945 48, 51, 123

[29] Adam Belay, Andrea Bittau, Ali José Mashtizadeh, David Terei, David Mazières, and
Christos Kozyrakis. Dune: Safe user-level access to privileged CPU features. In Proc.
of the 10th Symposium on Operating System Design and Implementation (OSDI), pages 335–
348, 2012. https://www.usenix.org/conference/osdi12/technical-sessions/p
resentation/belay xvi

[30] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis, and
Edouard Bugnion. IX: A protected dataplane operating system for high throughput and
low latency. In Proc. of the 11th Symposium on Operating System Design and Implementation
(OSDI), pages 49–65, 2014. https://www.usenix.org/conference/osdi14/techni
cal-sessions/presentation/belay xvi

[31] Adam Belay, George Prekas, Mia Primorac, Ana Klimovic, Samuel Grossman, Christos
Kozyrakis, and Edouard Bugnion. e IX operating system: Combining low latency, high
throughput, and efficiency in a protected dataplane. ACM Transactions on Computer Sys-
tems, 34(4):11:1–11:39, December 2016. DOI: 10.1145/2997641 xvi

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0062d.c/IHI0062D_c_system_mmu_architecture_specification.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0062d.c/IHI0062D_c_system_mmu_architecture_specification.pdf
https://www.google.com/patents/US9148428
http://dx.doi.org/10.1145/1095810.1095837
http://dx.doi.org/10.1145/1023720.1023722
http://dx.doi.org/10.1145/945445.945462
http://dx.doi.org/10.1145/1899928.1899945
http://dx.doi.org/10.1145/1899928.1899945
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
http://dx.doi.org/10.1145/2997641
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2997641&citationId=p_114
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2997641&citationId=p_114
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F1023720.1023722&citationId=p_109
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F1023720.1023722&citationId=p_109
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F1899928.1899945&citationId=p_111
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F1095810.1095837&citationId=p_108
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F1095810.1095837&citationId=p_108
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F945445.945462&citationId=p_110


166 BIBLIOGRAPHY

[32] Fabrice Bellard. QEMU, a fast and portable dynamic translator. In USENIX Annual
Technical Conference, FREENIX Track, pages 41–46, 2005. http://www.usenix.org/e
vents/usenix05/tech/freenix/bellard.html 6, 62, 63

[33] Muli Ben-Yehuda, Michael D. Day, Zvi Dubitzky, Michael Factor, Nadav Har’El, Abel
Gordon, Anthony Liguori, Orit Wasserman, and Ben-Ami Yassour. e turtles project:
Design and implementation of nested virtualization. In Proc. of the 9th Symposium on
Operating System Design and Implementation (OSDI), pages 423–436, 2010.
http://www.usenix.org/events/osdi10/tech/full_papers/Ben-Yehuda.pdf
xvi, 22, 60, 72

[34] Muli Ben-Yehuda, Michael Factor, Eran Rom, Avishay Traeger, Eran Borovik, and Ben-
Ami Yassour. Adding advanced storage controller functionality via low-overhead virtual-
ization. In Proc. of the 10th USENIX Conference on File and Storage Technologie (FAST),
page 15, 2012. https://www.usenix.org/conference/fast12/adding-advanced-
storage-controller-functionality-low-overhead-virtualization 121

[35] Ravi Bhargava, Ben Serebrin, Francesco Spadini, and Srilatha Manne. Accelerating two-
dimensional page walks for virtualized systems. In Proc. of the 13th International Conference
on Architectural Support for ProgrammingLanguages andOperating Systems (ASPLOS-XIII),
pages 26–35, 2008. DOI: 10.1145/1346281.1346286 71, 75, 77, 161

[36] Nathan L. Binkert, Bradford M. Beckmann, Gabriel Black, Steven K. Reinhardt, Ali G.
Saidi, Arkaprava Basu, Joel Hestness, Derek Hower, Tushar Krishna, Somayeh Sardashti,
Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A.
Wood. e gem5 simulator. SIGARCH Computer Architecture News, 39(2):1–7, 2011.
DOI: 10.1145/2024716.2024718 5

[37] Paolo Bonzini. e security state of KVM. https://lwn.net/Articles/619332/,
2014. 69

[38] David Brash. ARMv8-A architecture—2016 additions. https://community.arm.com/
groups/processors/blog/2016/10/27/armv8-a-architecture-2016-additions
127

[39] David Brash. Recent additions to the ARMv7-A architecture. In Proc. of
the 28th International IEEE Conference on Computer Design (ICCD), 2010. DOI:
10.1109/ICCD.2010.5647549 28, 123

[40] David Brash. e ARMv8-A architecture and its ongoing development, December
2014. http://community.arm.com/groups/processors/blog/2014/12/02/the-
armv8-a-architecture-and-its-ongoing-development 143

http://www.usenix.org/events/usenix05/tech/freenix/bellard.html
http://www.usenix.org/events/usenix05/tech/freenix/bellard.html
http://www.usenix.org/events/osdi10/tech/full_papers/Ben-Yehuda.pdf
https://www.usenix.org/conference/fast12/adding-advanced-storage-controller-functionality-low-overhead-virtualization
https://www.usenix.org/conference/fast12/adding-advanced-storage-controller-functionality-low-overhead-virtualization
http://dx.doi.org/10.1145/1346281.1346286
http://dx.doi.org/10.1145/2024716.2024718
https://lwn.net/Articles/619332/
https://community.arm.com/groups/processors/blog/2016/10/27/armv8-a-architecture-2016-additions
https://community.arm.com/groups/processors/blog/2016/10/27/armv8-a-architecture-2016-additions
http://dx.doi.org/10.1109/ICCD.2010.5647549
http://dx.doi.org/10.1109/ICCD.2010.5647549
http://community.arm.com/groups/processors/blog/2014/12/02/the-armv8-a-architecture-and-its-ongoing-development
http://community.arm.com/groups/processors/blog/2014/12/02/the-armv8-a-architecture-and-its-ongoing-development
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F1346281.1346286&citationId=p_118
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F1346281.1346286&citationId=p_118
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1109%2FICCD.2010.5647549&citationId=p_122
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1109%2FICCD.2010.5647549&citationId=p_122
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2024716.2024718&citationId=p_119


BIBLIOGRAPHY 167

[41] Jeffrey Buell, Daniel Hecht, Jin Heo, Kalyan Saladi, and H. Reza Taheri. Methodology for
performance analysis of VMware vSphere under Tier-1 applications. VMware Technical
Journal, 2(1), June 2013. 161

[42] Davidlohr Bueso. KVM: virtual x86 MMU setup. http://blog.stgolabs.net/2012/
03/kvm-virtual-x86-mmu-setup.html, 2012. 72

[43] Edouard Bugnion, Vitaly Chipounov, and George Candea. Lightweight snapshots and
system-level backtracking. In Proc. of e 14th Workshop on Hot Topics in Operating Systems
(HotOS-XIV), 2013. https://www.usenix.org/conference/hotos13/session/bu
gnion xvi

[44] Edouard Bugnion, Scott Devine, Kinshuk Govil, and Mendel Rosenblum. Disco: Run-
ning commodity operating systems on scalable multiprocessors. ACM Transactions on
Computer Systems, 15(4):412–447, 1997. DOI: 10.1145/265924.265930 xiii, 29, 32, 34

[45] Edouard Bugnion, Scott Devine, Mendel Rosenblum, Jeremy Sugerman, and Ed-
ward Y. Wang. Bringing virtualization to the x86 architecture with the original
VMware workstation. ACM Transactions on Computer Systems, 30(4):12, 2012. DOI:
10.1145/2382553.2382554 xiv, 7, 10, 34, 39, 40, 44, 51, 54, 66

[46] Edouard Bugnion, Scott W. Devine, and Mendel Rosenblum. System and method for
virtualizing computer systems, September 1998. U.S. Patent 6,496,847. http://www.go
ogle.com/patents?vid=6496847 34, 40

[47] John Chapin, Mendel Rosenblum, Scott Devine, Tirthankar Lahiri, Dan Teodosiu, and
Anoop Gupta. Hive: Fault containment for shared-memory multiprocessors. In Proc.
of the 15th ACM Symposium on Operating Systems Principles (SOSP), pages 12–25, 1995.
DOI: 10.1145/224056.224059 30

[48] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz, and David A. Pat-
terson. RAID: High-performance, reliable secondary storage. ACM Computer Surveys,
26(2):145–185, 1994. DOI: 10.1145/176979.176981 2

[49] Peter M. Chen and Brian D. Noble. When virtual is better than real. In Proc. of the 8th
Workshop on Hot Topics in Operating Systems (HotOS-VIII), pages 133–138, 2001. DOI:
10.1109/HOTOS.2001.990073 13

[50] David Chisnall. e Definitive Guide to the Xen Hypervisor. Prentice-Hall, 2007. 51, 69

[51] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Christian
Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual machines. In Proc. of
the 2nd Symposium on Networked Systems Design and Implementation (NSDI), 2005. http:
//www.usenix.org/events/nsdi05/tech/clark.html xiv, 68, 80

http://blog.stgolabs.net/2012/03/kvm-virtual-x86-mmu-setup.html
http://blog.stgolabs.net/2012/03/kvm-virtual-x86-mmu-setup.html
https://www.usenix.org/conference/hotos13/session/bugnion
https://www.usenix.org/conference/hotos13/session/bugnion
http://dx.doi.org/10.1145/265924.265930
http://dx.doi.org/10.1145/2382553.2382554
http://dx.doi.org/10.1145/2382553.2382554
http://www.google.com/patents?vid=6496847
http://www.google.com/patents?vid=6496847
http://dx.doi.org/10.1145/224056.224059
http://dx.doi.org/10.1145/176979.176981
http://dx.doi.org/10.1109/HOTOS.2001.990073
http://dx.doi.org/10.1109/HOTOS.2001.990073
http://www.usenix.org/events/nsdi05/tech/clark.html
http://www.usenix.org/events/nsdi05/tech/clark.html
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F224056.224059&citationId=p_130
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F224056.224059&citationId=p_130
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1109%2FHOTOS.2001.990073&citationId=p_132
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1109%2FHOTOS.2001.990073&citationId=p_132
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F265924.265930&citationId=p_127
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F265924.265930&citationId=p_127
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F176979.176981&citationId=p_131
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2382553.2382554&citationId=p_128


168 BIBLIOGRAPHY

[52] CloudLab. http://www.cloudlab.us 149

[53] Robert F. Cmelik and David Keppel. Shade: A fast instruction-set simulator for
execution profiling. In Proc. of the 1994 ACM SIGMETRICS International Confer-
ence on Measurement and Modeling of Computer Systems, pages 128–137, 1994. DOI:
10.1145/183018.183032 38

[54] R. J. Creasy. e origin of the VM/370 time-sharing system. IBM Journal of Research and
Development, 25(5):483–490, 1981. xvi

[55] Steve Dahl and Garry Meier. Disco demolition night. http://en.wikipedia.org/wik
i/Disco_Demolition_Night, 1979. xvi

[56] Christoffer Dall, Jeremy Andrus, Alexander Van’t Hof, Oren Laadan, and Jason Nieh. e
design, implementation, and evaluation of cells: A virtual smartphone architecture. ACM
Transactions on Computer Systems, 30(3):9, 2012. DOI: 10.1145/2324876.2324877 xvi

[57] Christoffer Dall and Andrew Jones. KVM/ARM unit tests. https://github.com/col
umbia/kvm-unit-tests 140

[58] Christoffer Dall, Shih-Wei Li, Jintack Lim, Jason Nieh, and Georgios Koloventzos. ARM
virtualization: Performance and architectural implications. In Proc. of the 43rd International
Symposium on Computer Architecture (ISCA), June 2016. xvi, 147, 161

[59] Christoffer Dall and Jason Nieh. KVM for ARM. In Proc. of the 12th Annual Linux
Symposium, Ottawa, Canada, July 2010. 26, 28, 47, 48, 51, 123

[60] Christoffer Dall and Jason Nieh. KVM/ARM: e design and implementation of the
linux ARM hypervisor. In Proc. of the 19th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-XIX), pages 333–348, 2014.
DOI: 10.1145/2541940.2541946 xvi, 123, 132, 146, 161

[61] Al Danial. cloc. https://github.com/AlDanial/cloc 142

[62] David Brash. Architecture program manager, ARM Ltd. Personal Communication,
November 2012. 126

[63] Harvey M. Deitel. An Introduction to Operating Systems. Addison-Wesley, 1984. 82

[64] Peter J. Denning. e locality principle. Communications of the ACM, 48(7):19–24, 2005.
DOI: 10.1145/1070838.1070856 76

[65] Scott W. Devine, Edouard Bugnion, and Mendel Rosenblum. Virtualization system in-
cluding a virtual machine monitor for a computer with a segmented architecture, October
1998. U.S. Patent 6,397,242. http://www.google.com/patents?vid=6397242 34, 36

http://www.cloudlab.us
http://dx.doi.org/10.1145/183018.183032
http://dx.doi.org/10.1145/183018.183032
http://en.wikipedia.org/wiki/Disco_Demolition_Night
http://en.wikipedia.org/wiki/Disco_Demolition_Night
http://dx.doi.org/10.1145/2324876.2324877
https://github.com/columbia/kvm-unit-tests
https://github.com/columbia/kvm-unit-tests
http://dx.doi.org/10.1145/2541940.2541946
https://github.com/AlDanial/cloc
http://dx.doi.org/10.1145/1070838.1070856
http://www.google.com/patents?vid=6397242
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1147%2Frd.255.0483&citationId=p_137
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1147%2Frd.255.0483&citationId=p_137
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2324876.2324877&citationId=p_139
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2324876.2324877&citationId=p_139
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2541940.2541946&citationId=p_143
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2541940.2541946&citationId=p_143
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F183018.183032&citationId=p_136
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F183018.183032&citationId=p_136
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F1070838.1070856&citationId=p_147


BIBLIOGRAPHY 169

[66] Micah Dowty and Jeremy Sugerman. GPU virtualization on VMware’s hosted I/O archi-
tecture. Operating Systems Review, 43(3):73–82, 2009. DOI: 10.1145/1618525.1618534
51

[67] Ulrich Drepper. e cost of virtualization. ACM Queue, 6(1):28–35, 2008. DOI:
10.1145/1348583.1348591 75

[68] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M. Chen.
ReVirt: Enabling intrusion analysis through virtual-machine logging and replay. In Proc.
of the 5th Symposium on Operating System Design and Implementation (OSDI), 2002. http:
//www.usenix.org/events/osdi02/tech/dunlap.html 13

[69] Roy T. Fielding and Gail E. Kaiser. e apache HTTP server project. IEEE Internet
Computing, 1(4):88–90, 1997. DOI: 10.1109/4236.612229 113

[70] Brad Fitzpatrick. Distributed caching with memcached. Linux Journal, (124):5, Aug 2004.
http://dl.acm.org/citation.cfm?id=1012889.1012894 113

[71] Bryan Ford and Russ Cox. Vx32: Lightweight user-level sandboxing on the x86. In
Proc. of the USENIX Annual Technical Conference (ATC), pages 293–306, 2008. http:
//www.usenix.org/events/usenix08/tech/full_papers/ford/ford.pdf 4, 29

[72] Jayneel Gandhi, Arkaprava Basu, Mark D. Hill, and Michael M. Swift. Efficient memory
virtualization: Reducing dimensionality of nested page walks. In Proc. of the 47th An-
nual IEEE/ACM International Symposium onMicroarchitecture (MICRO), pages 178–189,
2014. DOI: 10.1109/MICRO.2014.37 77

[73] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh. Terra: A virtual
machine-based platform for trusted computing. In Proc. of the 19th ACM Symposium on
Operating Systems Principles (SOSP), pages 193–206, 2003. DOI: 10.1145/945445.945464
xiv, 13

[74] Pat Gelsinger. Personal Communication (Intel Corp. CTO), 1998. 25, 34

[75] General Dynamics. OKL4 Microvisor, February 2013. http://www.ok-labs.com/pro
ducts/okl4-microvisor 146

[76] G. Benton Gibbs and Margo Pulles. Advanced POWER virtualization on IBM eServer
p5 servers: Architecture and performance considerations. IBM, International Technical
Support Organization, 2005. xv

[77] Robert P. Goldberg. Architectural Principles for Virtual Computer Systems. Ph.D. thesis,
Harvard University, Cambridge, MA, 1972. http://www.dtic.mil/cgi-bin/GetTRD
oc?AD=AD772809&Location=U2&doc=GetTRDoc.pdf 7

http://dx.doi.org/10.1145/1618525.1618534
http://dx.doi.org/10.1145/1348583.1348591
http://dx.doi.org/10.1145/1348583.1348591
http://www.usenix.org/events/osdi02/tech/dunlap.html
http://www.usenix.org/events/osdi02/tech/dunlap.html
http://dx.doi.org/10.1109/4236.612229
http://dl.acm.org/citation.cfm?id=1012889.1012894
http://www.usenix.org/events/usenix08/tech/full_papers/ford/ford.pdf
http://www.usenix.org/events/usenix08/tech/full_papers/ford/ford.pdf
http://dx.doi.org/10.1109/MICRO.2014.37
http://dx.doi.org/10.1145/945445.945464
http://www.ok-labs.com/products/okl4-microvisor
http://www.ok-labs.com/products/okl4-microvisor
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=AD772809&Location=U2&doc=GetTRDoc.pdf
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=AD772809&Location=U2&doc=GetTRDoc.pdf
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1109%2FMICRO.2014.37&citationId=p_155
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1109%2FMICRO.2014.37&citationId=p_155
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F1348583.1348591&citationId=p_150
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1109%2F4236.612229&citationId=p_152
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1109%2F4236.612229&citationId=p_152
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F945445.945464&citationId=p_156
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F945445.945464&citationId=p_156
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F1618525.1618534&citationId=p_149
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F1060289.1060309&citationId=p_151
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F1060289.1060309&citationId=p_151


170 BIBLIOGRAPHY

[78] Robert P. Goldberg. Survey of virtual machine research. IEEE Computer Magazine,
7(6):34–45, Jun 1974. xiii, xvi, 79

[79] Xiaoli Gong, Qi Du, Xu Li, Jin Zhang, and Ye Lu. Performance overhead of Xen on
Linux 3.13 on ARM Cortex-A7. In Proc. of the 9th International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing (3PGCIC), pages 453–456, 2014. DOI:
10.1109/3PGCIC.2014.92 161

[80] Abel Gordon, Nadav Amit, Nadav Har’El, Muli Ben-Yehuda, Alex Landau, Assaf Schus-
ter, and Dan Tsafrir. ELI: Bare-metal performance for I/O virtualization. In Proc. of the
17th International Conference on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS-XVII), pages 411–422, 2012. DOI: 10.1145/2150976.2151020
xvii, 113, 114, 115

[81] KinshukGovil, DanTeodosiu, YongqiangHuang, andMendel Rosenblum. Cellular disco:
Resource management using virtual clusters on shared-memory multiprocessors. In Proc.
of the 17th ACM Symposium on Operating Systems Principles (SOSP), pages 154–169, 1999.
DOI: 10.1145/319151.319162 29, 30

[82] Ajay Gulati, Irfan Ahmad, and Carl A. Waldspurger. PARDA: Proportional allocation
of resources for distributed storage access. In Proc. of the 7th USENIX Conference on File
and Storage Technologie (FAST), pages 85–98, 2009. http://www.usenix.org/events/
fast09/tech/full_papers/gulati/gulati.pdf 51

[83] NadavHar’El, Abel Gordon, Alex Landau,Muli Ben-Yehuda, Avishay Traeger, and Razya
Ladelsky. Efficient and scalable paravirtual I/O system. In Proc. of the USENIX Annual
Technical Conference (ATC), pages 231–242, 2013. https://www.usenix.org/confere
nce/atc13/technical-sessions/presentation/har%E2%80%99el 121

[84] Kim M. Hazelwood. Dynamic Binary Modification: Tools, Techniques, and Applications.
Synthesis Lectures on Computer Architecture. Morgan & Claypool Publishers, San
Rafael, CA, 2011. 38

[85] John L. Hennessy, Norman P. Jouppi, Steven A. Przybylski, Christopher Rowen,
omas R. Gross, Forest Baskett, and John Gill. MIPS: A microprocessor architecture.
In Proc. of the 15th Annual IEEE/ACM International Symposium onMicroarchitecture (MI-
CRO), pages 17–22, 1982. http://dl.acm.org/citation.cfm?id=800930 29

[86] Jin Heo and Reza Taheri. Virtualizing latency-sensitive applications: Where does the
overhead come from? VMware Technical Journal, 2(2), December 2013. 161

[87] Hewlett-Packard. http://www8.hp.com/us/en/products/moonshot-systems/prod
uct-detail.html?oid=7398915, March 2015. 149

http://dx.doi.org/10.1109/3PGCIC.2014.92
http://dx.doi.org/10.1109/3PGCIC.2014.92
http://dx.doi.org/10.1145/2150976.2151020
http://dx.doi.org/10.1145/319151.319162
http://www.usenix.org/events/fast09/tech/full_papers/gulati/gulati.pdf
http://www.usenix.org/events/fast09/tech/full_papers/gulati/gulati.pdf
https://www.usenix.org/conference/atc13/technical-sessions/presentation/har%E2%80%99el
https://www.usenix.org/conference/atc13/technical-sessions/presentation/har%E2%80%99el
http://dl.acm.org/citation.cfm?id=800930
http://www8.hp.com/us/en/products/moonshot-systems/product-detail.html?oid=7398915
http://www8.hp.com/us/en/products/moonshot-systems/product-detail.html?oid=7398915
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1109%2F3PGCIC.2014.92&citationId=p_162
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1109%2F3PGCIC.2014.92&citationId=p_162
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F319151.319162&citationId=p_164
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F319151.319162&citationId=p_164
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1109%2FMC.1974.6323581&citationId=p_161
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2150976.2151020&citationId=p_163
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2150976.2151020&citationId=p_163
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2150976.2151020&citationId=p_163


BIBLIOGRAPHY 171

[88] Owen S. Hofmann, Sangman Kim, Alan M. Dunn, Michael Z. Lee, and Emmett
Witchel. InkTag: Secure applications on an untrusted operating system. In Proc. of the
18th International Conference on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS-XVIII), pages 265–278, 2013. DOI: 10.1145/2451116.2451146
xvi

[89] e HSA Foundation. http://www.hsafoundation.com/ 120

[90] e HSA Foundation. HSA-Drivers-Linux-AMD. https://github.com/HSAFounda
tion/HSA-Drivers-Linux-AMD. Accessed: May 2016. 120

[91] J. Y. Hwang, S. B. Suh, S. K. Heo, C. J. Park, J. M. Ryu, S. Y. Park, and C. R. Kim. Xen on
ARM: System virtualization using Xen hypervisor for ARM-based secure mobile phones.
In Proc. of the 5th Consumer Communications and Newtork Conference, January 2008. 51,
123

[92] Ian Campbell. Personal Communication, April 2015. 159

[93] IBM Corporation. PowerLinux servers—64-bit DMA concepts. http://pic.dhe.ib
m.com/infocenter/lnxinfo/v3r0m0/topic/liabm/liabmconcepts.htm. Accessed:
August 2016. 102

[94] IBM Corporation. Taking advantage of 64-bit DMA capability on PowerLinux.
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wi
ki/W51a7ffcf4dfd_4b40_9d82_446ebc23c550/page/Taking%20Advantage%20of%
2064-bit%20DMA%20capability%20on%20PowerLinux. Accessed: August 2016. 102

[95] IDC. Server virtualization hits inflection point as number of virtual machines to exceed
physical systems (press release). http://www.idc.com/about/viewpressrelease.jsp
?containerId=prUK21840309, 2009. xiv, 13

[96] VMware Infrastructure. Resource management with vmware drs. VMware Whitepaper,
2006. 13

[97] InSignal Co. ArndaleBoard.org. http://arndaleboard.org 140

[98] Intel Corporation. DPDK: Data plane development kit. http://dpdk.org. Accessed:
May 2016. 105

[99] Intel Corporation. Intel ethernet drivers and utilities. https://sourceforge.net/pr
ojects/e1000/. Accessed: August 2016. 93, 94

[100] Intel Corporation. Intel 82540EM gigabit ethernet controller. http://ark.intel.com/
products/1285/Intel-82540EM-Gigabit-Ethernet-Controller, 2002. Accessed:
August 2016. 93

http://dx.doi.org/10.1145/2451116.2451146
http://www.hsafoundation.com/
https://github.com/HSAFoundation/HSA-Drivers-Linux-AMD
https://github.com/HSAFoundation/HSA-Drivers-Linux-AMD
http://pic.dhe.ibm.com/infocenter/lnxinfo/v3r0m0/topic/liabm/liabmconcepts.htm
http://pic.dhe.ibm.com/infocenter/lnxinfo/v3r0m0/topic/liabm/liabmconcepts.htm
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W51a7ffcf4dfd_4b40_9d82_446ebc23c550/page/Taking%20Advantage%20of%2064-bit%20DMA%20capability%20on%20PowerLinux
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W51a7ffcf4dfd_4b40_9d82_446ebc23c550/page/Taking%20Advantage%20of%2064-bit%20DMA%20capability%20on%20PowerLinux
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W51a7ffcf4dfd_4b40_9d82_446ebc23c550/page/Taking%20Advantage%20of%2064-bit%20DMA%20capability%20on%20PowerLinux
http://www.idc.com/about/viewpressrelease.jsp?containerId=prUK21840309
http://www.idc.com/about/viewpressrelease.jsp?containerId=prUK21840309
http://arndaleboard.org
http://dpdk.org
https://sourceforge.net/projects/e1000/
https://sourceforge.net/projects/e1000/
http://ark.intel.com/products/1285/Intel-82540EM-Gigabit-Ethernet-Controller
http://ark.intel.com/products/1285/Intel-82540EM-Gigabit-Ethernet-Controller
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2451116.2451146&citationId=p_171
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2451116.2451146&citationId=p_171
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2451116.2451146&citationId=p_171
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1109%2Fccnc08.2007.64&citationId=p_174


172 BIBLIOGRAPHY

[101] Intel Corporation. PCI/PCI-X family of gigabit ethernet controllers software developer’s
manual. Revision 4.0. http://www.intel.com/content/dam/doc/manual/pci-pci-
x-family-gbe-controllers-software-dev-manual.pdf, March 2009. Accessed:
August 2016. 93, 94

[102] Intel Corporation. Intel64 and IA-32 architectures software developer’s manual. vol. 2
(2A and 2B). 2010. 38

[103] Intel Corporation. Intel64 and IA-32 architectures software developer’s manual. vol. 3B:
System programming guide, (part 2). 2010. 64

[104] Intel Corporation. Intel 64 and IA-32 architectures software developer’s manual, 325462-
044US, August 2012. 131, 154

[105] Intel Corporation. Intel ethernet controller XL710. http://www.intel.com/cont
ent/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-
datasheet.pdf, 2016. Accessed: August 2016. 107

[106] Intel Corporation. Intel virtualization technology for directed I/O—architecture specifi-
cation. Revision 2.4. http://www.intel.com/content/dam/www/public/us/en/doc
uments/product-specifications/vt-directed-io-spec.pdf, June 2016. 79, 102,
103, 105, 116

[107] Intel Corporation. Intel64 and IA-32 architectures software developer’s manual. vol. 3A:
System programming guide, (part 1). Accessed: August 2016. 116, 118

[108] Rick A. Jones. Netperf: A network performance benchmark. Revision 2.0. http://www.
netperf.org/netperf/training/Netperf.html, 1995. Accessed: August 2016. 97

[109] Asim Kadav, Matthew J. Renzelmann, and Michael M. Swift. Tolerating hardware device
failures in software. In Proc. of the 22nd ACM Symposium on Operating Systems Principles
(SOSP), pages 59–72, 2009. DOI: 10.1145/1629575.1629582 105

[110] Poul-Henning Kamp and Robert N. M. Watson. Jails: Confining the omnipotent root.
In Proc. of the 2nd International SANE Conference, vol. 43, page 116, 2000. 4

[111] Adrian King. Inside Windows 95. Microsoft Press, 1995. 36

[112] Avi Kivity. KVM unit tests. https://git.kernel.org/cgit/virt/kvm/kvm-unit-
tests.git 140

[113] Avi Kivity. KVM: e linux virtual machine monitor. In Proc. of the 2007 Ottawa Linux
Symposium (OLS), pages 225–230, July 2007. http://www.linuxsymposium.org/arc
hives/OLS/Reprints-2007/kivity-Reprint.pdf xiv, 7, 62, 66, 67, 132

http://www.intel.com/content/dam/doc/manual/pci-pci-x-family-gbe-controllers-software-dev-manual.pdf
http://www.intel.com/content/dam/doc/manual/pci-pci-x-family-gbe-controllers-software-dev-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
http://www.netperf.org/netperf/training/Netperf.html
http://www.netperf.org/netperf/training/Netperf.html
http://dx.doi.org/10.1145/1629575.1629582
https://git.kernel.org/cgit/virt/kvm/kvm-unit-tests.git
https://git.kernel.org/cgit/virt/kvm/kvm-unit-tests.git
http://www.linuxsymposium.org/archives/OLS/Reprints-2007/kivity-Reprint.pdf
http://www.linuxsymposium.org/archives/OLS/Reprints-2007/kivity-Reprint.pdf
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F1629575.1629582&citationId=p_192
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F1629575.1629582&citationId=p_192


BIBLIOGRAPHY 173

[114] Teemu Koponen, Keith Amidon, Peter Balland, Martín Casado, Anupam Chanda, Bryan
Fulton, Igor Ganichev, Jesse Gross, Paul Ingram, Ethan J. Jackson, Andrew Lambeth,
Romain Lenglet, Shih-Hao Li, Amar Padmanabhan, Justin Pettit, Ben Pfaff, Rajiv Ra-
manathan, Scott Shenker, Alan Shieh, Jeremy Stribling, Pankaj akkar, Dan Wendlandt,
Alexander Yip, and Ronghua Zhang. Network virtualization in multi-tenant datacenters.
In Proc. of the 11th Symposium on Networked Systems Design and Implementation (NSDI),
pages 203–216, 2014. https://www.usenix.org/conference/nsdi14/technical-
sessions/presentation/koponen 13

[115] Michael Kozuch and Mahadev Satyanarayanan. Internet suspend/resume. In Proc. of the
4th IEEE Workshop on Mobile Computing Systems and Applications, page 40, 2002. DOI:
10.1109/MCSA.2002.1017484 80

[116] Yossi Kuperman, Eyal Moscovici, Joel Nider, Razya Ladelsky, Abel Gordon, and Dan
Tsafrir. Paravirtual remote I/O. In Proc. of the 21st International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-XXI), pages 49–65,
2016. DOI: 10.1145/2872362.2872378 xvii, 121

[117] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni, Kourosh
Gharachorloo, John Chapin, David Nakahira, Joel Baxter, Mark Horowitz, Anoop Gupta,
Mendel Rosenblum, and John L.Hennessy. e Stanford FLASHmultiprocessor. In Proc.
of the 21st International Symposium on Computer Architecture (ISCA), pages 302–313, 1994.
DOI: 10.1109/ISCA.1994.288140 29

[118] e Linux kvm Project Homepage. http://www.linux-kvm.org 69

[119] George Kyriazis. Heterogeneous system architecture: A technical review. Technical report,
AMD Inc., Aug 2012. Revision 1.0. http://amd-dev.wpengine.netdna-cdn.com/wo
rdpress/media/2012/10/hsa10.pdf. Accessed: May 2016. 120

[120] Ilya Lesokhin, Haggai Eran, Shachar Raindel, Guy Shapiro, Sagi Grimberg, Liran Liss,
Muli Ben-Yehuda, Nadav Amit, and Dan Tsafrir. Page fault support for network con-
trollers. In ACM International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2017. (to appear). xvii, 120

[121] Linaro Ubunty Trusty Images. https://releases.linaro.org/14.07/ubuntu/tru
sty-images/server, July 2014. 149

[122] Linux kernel 4.7 source code, drivers/iommu/intel-iommu.c (line 518). http://lxr.
free-electrons.com/source/drivers/iommu/intel-iommu.c?v=4.7#L518. Ac-
cessed: August 2016. 105

https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/koponen
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/koponen
http://dx.doi.org/10.1109/MCSA.2002.1017484
http://dx.doi.org/10.1109/MCSA.2002.1017484
http://dx.doi.org/10.1145/2872362.2872378
http://dx.doi.org/10.1109/ISCA.1994.288140
http://www.linux-kvm.org
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/hsa10.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/hsa10.pdf
https://releases.linaro.org/14.07/ubuntu/trusty-images/server
https://releases.linaro.org/14.07/ubuntu/trusty-images/server
http://lxr.free-electrons.com/source/drivers/iommu/intel-iommu.c?v=4.7#L518
http://lxr.free-electrons.com/source/drivers/iommu/intel-iommu.c?v=4.7#L518
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1109%2FMCSA.2002.1017484&citationId=p_198
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1109%2FMCSA.2002.1017484&citationId=p_198
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F3037697.3037710&citationId=p_203
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F3037697.3037710&citationId=p_203
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1109%2FISCA.1994.288140&citationId=p_200
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1109%2FISCA.1994.288140&citationId=p_200
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2872362.2872378&citationId=p_199
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2872362.2872378&citationId=p_199


174 BIBLIOGRAPHY

[123] Linux ARM Kernel Mailing List. “tcp: Refine TSO autosizing” causes performance re-
gression on Xen, April 2015. http://lists.infradead.org/pipermail/linux-arm-
kernel/2015-April/336497.html 159

[124] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gus-
tav Hållberg, Johan Högberg, Fredrik Larsson, Andreas Moestedt, and Bengt Werner.
Simics: A full system simulation platform. IEEE Computer, 35(2):50–58, 2002. DOI:
10.1109/2.982916 5, 6

[125] Moshe Malka, Nadav Amit, Muli Ben-Yehuda, and Dan Tsafrir. rIOMMU: Efficient
IOMMU for I/O devices that employ ring buffers. In Proc. of the 20th International Confer-
ence on Architectural Support for Programming Languages and Operating Systems (ASPLOS-
XX), pages 355–368, 2015. DOI: 10.1145/2694344.2694355 104

[126] Moshe Malka, Nadav Amit, and Dan Tsafrir. Efficient intra-operating system protection
against harmful DMAs. In Proc. of the 13th USENIX Conference on File and Storage Tech-
nologie (FAST), pages 29–44, 2015. https://www.usenix.org/conference/fast15/
technical-sessions/presentation/malka xvii

[127] Alex Markuze, Adam Morrison, and Dan Tsafrir. True IOMMU protection from DMA
attacks: When copy is faster than zero copy. In Proc. of the 21st International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS-XXI),
pages 249–262, 2016. DOI: 10.1145/2872362.2872379 xvii

[128] Mellanox Technologies. Mellanox ConnectX-5 VPI adapter. http://www.mellanox.c
om/related-docs/user_manuals/ConnectX-5_VPI_Card.pdf, 2016. Accessed: Au-
gust 2016. 107

[129] Dirk Merkel. Docker: Lightweight linux containers for consistent development and de-
ployment. Linux Journal, (239):2, 2014. xvi, 4

[130] Microsoft Corporation. Virtual server 2005 R2 and hardware virtualization.
https://blogs.msdn.microsoft.com/virtual_pc_guy/2006/05/01/virtual-
server-2005-r2-and-%20hardware-virtualization/, 2006. xiv

[131] David S. Miller, Richard Henderson, and Jakub Jelinek. Dynamic DMA mapping guide.
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt. Linux kernel
documentation. Accessed: August 2016. 105

[132] Ingo Molnar. Hackbench. http://people.redhat.com/mingo/cfs-scheduler/to
ols/hackbench.c

[133] Antonios Motakis, Alexander Spyridakis, and Daniel Raho. Introduction on performance
analysis and profiling methodologies for kvm on arm virtualization. VLSI Circuits and
Systems VI, March 2013. 161

http://lists.infradead.org/pipermail/linux-arm-kernel/2015-April/336497.html
http://lists.infradead.org/pipermail/linux-arm-kernel/2015-April/336497.html
http://dx.doi.org/10.1109/2.982916
http://dx.doi.org/10.1109/2.982916
http://dx.doi.org/10.1145/2694344.2694355
https://www.usenix.org/conference/fast15/technical-sessions/presentation/malka
https://www.usenix.org/conference/fast15/technical-sessions/presentation/malka
http://dx.doi.org/10.1145/2872362.2872379
http://www.mellanox.com/related-docs/user_manuals/ConnectX-5_VPI_Card.pdf
http://www.mellanox.com/related-docs/user_manuals/ConnectX-5_VPI_Card.pdf
https://blogs.msdn.microsoft.com/virtual_pc_guy/2006/05/01/virtual-server-2005-r2-and-%20hardware-virtualization/
https://blogs.msdn.microsoft.com/virtual_pc_guy/2006/05/01/virtual-server-2005-r2-and-%20hardware-virtualization/
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2694344.2694355&citationId=p_208
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2694344.2694355&citationId=p_208
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2694344.2694355&citationId=p_208
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2872362.2872379&citationId=p_210
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2872362.2872379&citationId=p_210
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1109%2F2.982916&citationId=p_207


BIBLIOGRAPHY 175

[134] Bhyrav Mutnury, Frank Paglia, James Mobley, Girish K. Singh, and Ron Bellomio.
QuickPath interconnect (QPI) design and analysis in high speed servers. In Topical Meet-
ing on Electrical Performance of Electronic Packaging and Systems, pages 265–268, 2010.
http://dx.doi.org/10.1109/EPEPS.2010.5642789 82

[135] Michael Nelson, Beng-Hong Lim, and Greg Hutchins. Fast transparent migration for
virtual machines. In USENIX Annual Technical Conference, pages 391–394, 2005. http:
//www.usenix.org/events/usenix05/tech/general/nelson.html xiv, 51, 68, 80

[136] Jason Nieh and Ozgur Can Leonard. Examining VMware. Dr. Dobb’s Journal, 315:70–76,
August 2000. xvi

[137] JasonNieh and Chris Vaill. Experiences teaching operating systems using virtual platforms
and linux. In Proc. of the 36th SIGCSE Technical Symposium on Computer Science Education
(SIGCSE), pages 520–524, 2005. DOI: 10.1145/1047344.1047508 xvi

[138] Steven Osman, Dinesh Subhraveti, Gong Su, and Jason Nieh. e design and im-
plementation of zap: A system for migrating computing environments. In Proc. of the
5th Symposium on Operating System Design and Implementation (OSDI), 2002. http:
//www.usenix.org/events/osdi02/tech/osman.html xvi

[139] PCI-SIG. Alternative routing-id interpretation (ARI). https://pcisig.com/sit
es/default/files/specification_documents/ECN-alt-rid-interpretation-
070604.pdf, 2007. Accessed: August 2016. 108

[140] PCI-SIG. Address translation services. Revision 1.1. http://www.pcisig.com/speci
fications/iov/ats/, 2009. 120

[141] PCI-SIG. PCI express base specification. Revision 3.0. https://pcisig.com/specifi
cations, 2010. Accessed: August 2016. 82, 86

[142] Omer Peleg, Adam Morrison, Benjamin Serebrin, and Dan Tsafrir. Utilizing the
IOMMU scalably. In Proc. of the USENIX Annual Technical Conference (ATC), pages 549–
562, 2015. https://www.usenix.org/conference/atc15/technical-session/pr
esentation/peleg xvii, 104

[143] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtualizable third
generation architectures. Communications of the ACM, 17(7):412–421, 1974. DOI:
10.1145/361011.361073 xv, 6, 15, 18, 22, 25, 26, 27, 37, 56, 79, 128

[144] Shaya Potter and Jason Nieh. Apiary: Easy-to-use desktop application fault contain-
ment on commodity operating systems. In Proc. of the USENIX Annual Technical Confer-
ence (ATC), 2010. https://www.usenix.org/conference/usenix-atc-10/apiary-
easy-use-desktop-application-fault-containment-commodity-operating xvi

http://dx.doi.org/10.1109/EPEPS.2010.5642789
http://www.usenix.org/events/usenix05/tech/general/nelson.html
http://www.usenix.org/events/usenix05/tech/general/nelson.html
http://dx.doi.org/10.1145/1047344.1047508
http://www.usenix.org/events/osdi02/tech/osman.html
http://www.usenix.org/events/osdi02/tech/osman.html
https://pcisig.com/sites/default/files/specification_documents/ECN-alt-rid-interpretation-070604.pdf
https://pcisig.com/sites/default/files/specification_documents/ECN-alt-rid-interpretation-070604.pdf
https://pcisig.com/sites/default/files/specification_documents/ECN-alt-rid-interpretation-070604.pdf
http://www.pcisig.com/specifications/iov/ats/
http://www.pcisig.com/specifications/iov/ats/
https://pcisig.com/specifications
https://pcisig.com/specifications
https://www.usenix.org/conference/atc15/technical-session/presentation/peleg
https://www.usenix.org/conference/atc15/technical-session/presentation/peleg
http://dx.doi.org/10.1145/361011.361073
http://dx.doi.org/10.1145/361011.361073
https://www.usenix.org/conference/usenix-atc-10/apiary-easy-use-desktop-application-fault-containment-commodity-operating
https://www.usenix.org/conference/usenix-atc-10/apiary-easy-use-desktop-application-fault-containment-commodity-operating
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1109%2FEPEPS.2010.5642789&citationId=p_217
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1109%2FEPEPS.2010.5642789&citationId=p_217
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F361011.361073&citationId=p_226
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F1060289.1060323&citationId=p_221
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F1060289.1060323&citationId=p_221
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F1047344.1047508&citationId=p_220
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F1047344.1047508&citationId=p_220


176 BIBLIOGRAPHY

[145] Shaya Potter and Jason Nieh. Improving virtual appliance management through virtual
layered file systems. In Proc. of the 25th Large Installation System Administration Con-
ference (LISA), 2011. https://www.usenix.org/conference/lisa11/improving-
virtual-appliance-management-through-virtual-layered-file-systems xvi

[146] Ian Pratt, Keir Fraser, Steven Hand, Christian Limpach, Andrew Warfield, Dan Magen-
heimer, Jun Nakajima, and Asit Mallick. Xen 3.0 and the art of virtualization. In Proc. of
the 2005 Ottawa Linux Symposium (OLS), 2005. http://www.linuxsymposium.org/a
rchives/OLS/Reprints-2005/pratt-Reprint.pdf 7, 51, 69

[147] George Prekas, Mia Primorac, Adam Belay, Christos Kozyrakis, and Edouard Bugnion.
Energy proportionality and workload consolidation for latency-critical applications. In
Proc. of the 2015 ACM Symposium on Cloud Computing (SOCC), pages 342–355, 2015.
DOI: 10.1145/2806777.2806848 xvi

[148] QEMU Networking Documentation. http://wiki.qemu.org/Documentation/Netw
orking. Accessed: August 2016. 99

[149] Lars Rasmusson and Diarmuid Corcoran. Performance overhead of KVM on Linux 3.9 on
ARM cortex-a15. SIGBEDReview, 11(2):32–38, 2014. DOI: 10.1145/2668138.2668143
161

[150] Realtek Semiconductor Corp. RTL8139C(L)+—Advanced PCI/Mini-PCI/Cardbus
3.3V single-chip 10/100M fast ethernet controller. http://www.realtek.com.tw/pro
ducts/productsView.aspx?Langid=1&PFid=6&Level=5&Conn=4&ProdID=17. Ac-
cessed: August 2016. 99

[151] John Scott Robin and Cynthia E. Irvine. Analysis of the intel pentium’s ability to sup-
port a secure virtual machine monitor. In Proc. of the 9th USENIX Security Symposium,
2000. https://www.usenix.org/conference/9th-usenix-security-symposium/
analysis-intel-pentiums-ability-support-secure-virtual 25, 27, 34, 44, 46,
54

[152] Phil Rogers. Heterogeneous system architecture (HSA): Overview and imple-
mentation. 2013. HC25. http://www.hotchips.org/wp-content/upload
s/hc_archives/hc25/HC25.0T1-Hetero-epub/HC25.25.100-Intro-Rogers-
HSA%20Intro%20HotChips2013_Final.pdf. Accessed: May 2016. 120

[153] Mendel Rosenblum, Edouard Bugnion, Scott Devine, and Stephen Alan Herrod. Using
the SimOS machine simulator to study complex computer systems. ACM Transactions on
Modeling and Computer Simulation, 7(1):78–103, 1997. DOI: 10.1145/244804.244807 5,
6, 36

https://www.usenix.org/conference/lisa11/improving-virtual-appliance-management-through-virtual-layered-file-systems
https://www.usenix.org/conference/lisa11/improving-virtual-appliance-management-through-virtual-layered-file-systems
http://www.linuxsymposium.org/archives/OLS/Reprints-2005/pratt-Reprint.pdf
http://www.linuxsymposium.org/archives/OLS/Reprints-2005/pratt-Reprint.pdf
http://dx.doi.org/10.1145/2806777.2806848
http://wiki.qemu.org/Documentation/Networking
http://wiki.qemu.org/Documentation/Networking
http://dx.doi.org/10.1145/2668138.2668143
http://www.realtek.com.tw/products/productsView.aspx?Langid=1&PFid=6&Level=5&Conn=4&ProdID=17
http://www.realtek.com.tw/products/productsView.aspx?Langid=1&PFid=6&Level=5&Conn=4&ProdID=17
https://www.usenix.org/conference/9th-usenix-security-symposium/analysis-intel-pentiums-ability-support-secure-virtual
https://www.usenix.org/conference/9th-usenix-security-symposium/analysis-intel-pentiums-ability-support-secure-virtual
http://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.0T1-Hetero-epub/HC25.25.100-Intro-Rogers-HSA%20Intro%20HotChips2013_Final.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.0T1-Hetero-epub/HC25.25.100-Intro-Rogers-HSA%20Intro%20HotChips2013_Final.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.0T1-Hetero-epub/HC25.25.100-Intro-Rogers-HSA%20Intro%20HotChips2013_Final.pdf
http://dx.doi.org/10.1145/244804.244807
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2806777.2806848&citationId=p_230
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2668138.2668143&citationId=p_232
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F244804.244807&citationId=p_236
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F244804.244807&citationId=p_236


BIBLIOGRAPHY 177

[154] Rusty Russell. Virtio: Towards a de-facto standard for virtual I/O devices. Operating
Systems Review, 42(5):95–103, 2008. DOI: 10.1145/1400097.1400108 96, 138, 148, 159

[155] Jerome H. Saltzer and M. Frans Kaashoek. Principles of Computer Systems: An Introduction.
Morgan Kaufman, 2009. 14

[156] Jose Renato Santos, Yoshio Turner, G. John Janakiraman, and Ian Pratt. Bridging the
gap between software and hardware techniques for I/O virtualization. In Proc. of the 2008
USENIX Annual Technical Conference, pages 29–42, 2008. 159

[157] Constantine P. Sapuntzakis, David Brumley, Ramesh Chandra, Nickolai Zeldovich, Jim
Chow, Monica S. Lam, and Mendel Rosenblum. Virtual appliances for deploying and
maintaining software. In Proc. of the 17th Large Installation System Administration Confer-
ence (LISA), pages 181–194, 2003. http://www.usenix.org/publications/librar
y/proceedings/lisa03/tech/sapuntzakis.html 13

[158] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. SecVisor: A tiny hypervi-
sor to provide lifetime kernel code integrity for commodity OSes. In Proc. of the 21st
ACM Symposium on Operating Systems Principles (SOSP), pages 335–350, 2007. DOI:
10.1145/1294261.1294294 xvi

[159] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel. GPUfs: Integrating a file
system with GPUs. In Proc. of the 18th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-XVIII), pages 485–498, 2013.
DOI: 10.1145/2451116.2451169 121

[160] Standard Performance Evaluation Corporation. https://www.spec.org/jvm2008,
March 2015.

[161] Udo Steinberg and Bernhard Kauer. NOVA: A microhypervisor-based secure virtu-
alization architecture. In Proc. of the EuroSys Conference, pages 209–222, 2010. DOI:
10.1145/1755913.1755935 146

[162] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong Lim. Virtualizing I/O devices
on VMware workstation’s hosted virtual machine monitor. In USENIX Annual Technical
Conference, pages 1–14, 2001. http://www.usenix.org/publications/library/pr
oceedings/usenix01/sugerman.html xiv, 34, 40, 51

[163] Sun Microsystems. Beginner’s guide to LDOMs: Understanding and deploying logical
domains, 2007. xv

[164] Sun microsystems, Inc. UltraSPARC T2 supplement to the UltraSPARC architecture
2007 (draft D1.4.3). http://www.oracle.com/technetwork/systems/opensparc/t
2-14-ust2-uasuppl-draft-hp-ext-1537761.html, 2007. Accessed: August 2016.
102

http://dx.doi.org/10.1145/1400097.1400108
http://www.usenix.org/publications/library/proceedings/lisa03/tech/sapuntzakis.html
http://www.usenix.org/publications/library/proceedings/lisa03/tech/sapuntzakis.html
http://dx.doi.org/10.1145/1294261.1294294
http://dx.doi.org/10.1145/1294261.1294294
http://dx.doi.org/10.1145/2451116.2451169
https://www.spec.org/jvm2008
http://dx.doi.org/10.1145/1755913.1755935
http://dx.doi.org/10.1145/1755913.1755935
http://www.usenix.org/publications/library/proceedings/usenix01/sugerman.html
http://www.usenix.org/publications/library/proceedings/usenix01/sugerman.html
http://www.oracle.com/technetwork/systems/opensparc/t2-14-ust2-uasuppl-draft-hp-ext-1537761.html
http://www.oracle.com/technetwork/systems/opensparc/t2-14-ust2-uasuppl-draft-hp-ext-1537761.html
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2451116.2451169&citationId=p_242
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2451116.2451169&citationId=p_242
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F1755913.1755935&citationId=p_244
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F1400097.1400108&citationId=p_237
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F1400097.1400108&citationId=p_237
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F1294261.1294294&citationId=p_241
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F1294261.1294294&citationId=p_241


178 BIBLIOGRAPHY

[165] Andrew S. Tanenbaum andHerbert Bos. ModernOperating Systems, 4th ed. Prentice-Hall,
2014. 14

[166] Michael S. Tsirkin. Vhost_net: A kernel-level virtio server. https://lwn.net/Articl
es/346267/, August 2009. Accessed: August 2016. 97

[167] Michael S. Tsirkin. Vhost-net and virtio-net: Need for speed. In KVM Forum,
2010. http://www.linux-kvm.org/images/8/82/Vhost_virtio_net_need_for_
speed_2.odp 100

[168] Michael S. Tsirkin, Cornelia Huck, Pawel Moll, and Rusty Russell. Virtual I/O device
(virtio) version 1.0—committee specification 04. http://docs.oasis-open.org/virti
o/virtio/v1.0/cs04/virtio-v1.0-cs04.html,March 2016. Accessed: August 2016.
96

[169] UEFI Forum. Advanced configuration and power interface specification version 6.1, Jan-
uary 2016. http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pd
f 82

[170] UEFI Forum. Unified extensible firmware interface specification version 2.6, Jan-
uary 2016. http://www.uefi.org/sites/default/files/resources/UEFI%20Spe
c%202_6.pdf 82

[171] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L. Santoni, Fernando C. M. Martins,
Andrew V. Anderson, Steven M. Bennett, Alain Kägi, Felix H. Leung, and Larry
Smith. Intel virtualization technology. IEEE Computer, 38(5):48–56, 2005. DOI:
10.1109/MC.2005.163 15, 27, 53, 57, 79

[172] Ronald C. Unrau, Orran Krieger, Benjamin Gamsa, and Michael Stumm. Hierarchical
clustering: A structure for scalable multiprocessor operating system design. Journal of Su-
percomputing, 9(1/2):105–134, 1995. http://www.springerlink.com/content/v25n
5q66384n4384/fulltext.pdf 30

[173] Prashant Varanasi and Gernot Heiser. Hardware-supported virtualization on ARM.
In Proc. of the Asia-Pacific Workshop on Systems (APSys), page 11, 2011. DOI:
10.1145/2103799.2103813 143, 146

[174] VDE—Virtual Distributed Ethernet. http://vde.sourceforge.net/. Accessed: Au-
gust 2016. 99

[175] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosenblum. Operating system
support for improving data locality on CC-NUMA compute servers. In Proc. of the 7th
International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-VII), pages 279–289, 1996. DOI: 10.1145/237090.237205 30

https://lwn.net/Articles/346267/
https://lwn.net/Articles/346267/
http://www.linux-kvm.org/images/8/82/Vhost_virtio_net_need_for_speed_2.odp
http://www.linux-kvm.org/images/8/82/Vhost_virtio_net_need_for_speed_2.odp
http://docs.oasis-open.org/virtio/virtio/v1.0/cs04/virtio-v1.0-cs04.html
http://docs.oasis-open.org/virtio/virtio/v1.0/cs04/virtio-v1.0-cs04.html
http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf
http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf
http://www.uefi.org/sites/default/files/resources/UEFI%20Spec%202_6.pdf
http://www.uefi.org/sites/default/files/resources/UEFI%20Spec%202_6.pdf
http://dx.doi.org/10.1109/MC.2005.163
http://dx.doi.org/10.1109/MC.2005.163
http://www.springerlink.com/content/v25n5q66384n4384/fulltext.pdf
http://www.springerlink.com/content/v25n5q66384n4384/fulltext.pdf
http://dx.doi.org/10.1145/2103799.2103813
http://dx.doi.org/10.1145/2103799.2103813
http://vde.sourceforge.net/
http://dx.doi.org/10.1145/237090.237205
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2103799.2103813&citationId=p_256
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F237090.237205&citationId=p_258
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F237090.237205&citationId=p_258
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F237090.237205&citationId=p_258
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1007%2FBF01245400&citationId=p_255
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1007%2FBF01245400&citationId=p_255
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1109%2FMC.2005.163&citationId=p_254


BIBLIOGRAPHY 179

[176] VMware, Inc. VMware KB article 1021095: Transparent page sharing (TPS) in hardware
MMU systems. http://kb.vmware.com/kb/1021095, 2014. 77

[177] Carl A. Waldspurger. Memory resource management in VMware ESX server. In Proc. of
the 5th Symposium on Operating System Design and Implementation (OSDI), 2002. http:
//www.usenix.org/events/osdi02/tech/waldspurger.html xiv, 7, 33, 46, 51, 75,
77

[178] Carl A. Waldspurger and Mendel Rosenblum. I/O virtualization. Communications of the
ACM, 55(1):66–73, 2012. DOI: 10.1145/2063176.2063194 80, 99

[179] Jon Watson. Virtualbox: Bits and bytes masquerading as machines. Linux Journal, (166):1,
2008. 7

[180] Jon Watson. Virtualbox: Bits and bytes masquerading as machines. Linux Journal, (166),
February 2008. http://dl.acm.org/citation.cfm?id=1344209.1344210 66

[181] omas F. Wenisch, Roland E. Wunderlich, Michael Ferdman, Anastassia Ailamaki,
Babak Falsafi, and James C. Hoe. SimFlex: Statistical sampling of computer system sim-
ulation. IEEEMicro, 26(4):18–31, 2006. DOI: 10.1109/MM.2006.79 5

[182] Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. Scale and performance in
the denali isolation kernel. In Proc. of the 5th Symposium on Operating System Design and
Implementation (OSDI), 2002. http://www.usenix.org/events/osdi02/tech/whita
ker.html xiv, 4, 12, 44

[183] Paul Willmann, Scott Rixner, and Alan L. Cox. Protection strategies for direct access
to virtualized I/O devices. In Proc. of the USENIX Annual Technical Conference (ATC),
pages 15–28, 2008. http://www.usenix.org/events/usenix08/tech/fullpapers/
willman/willman.pdf 105

[184] Emmett Witchel and Mendel Rosenblum. Embra: Fast and flexible machine simulation.
In Proc. of the ACM SIGMETRICS International Conference onMeasurement andModeling
of Computer Systems, pages 68–79, 1996. DOI: 10.1145/233013.233025 6, 38

[185] Rafal Wojtczuk and Joanna Rutkowska. Following the white rabbit: Software attacks
against Intel VT-d technology. http://invisiblethingslab.com/resources/2011/
Software%20Attacks%20on%20Intel%20VT-d.pdf, April 2011. Accessed: August
2016. 105

[186] David Woodhouse. Patchwork [1/7] iommu/vt-d: Introduce intel_iommu=pasid28, and
pasid_enabled() macro. https://patchwork.kernel.org/patch/7357051/, October
2015. Accessed: August 2016. 105

http://kb.vmware.com/kb/1021095
http://www.usenix.org/events/osdi02/tech/waldspurger.html
http://www.usenix.org/events/osdi02/tech/waldspurger.html
http://dx.doi.org/10.1145/2063176.2063194
http://dl.acm.org/citation.cfm?id=1344209.1344210
http://dx.doi.org/10.1109/MM.2006.79
http://www.usenix.org/events/osdi02/tech/whitaker.html
http://www.usenix.org/events/osdi02/tech/whitaker.html
http://www.usenix.org/events/usenix08/tech/fullpapers/willman/willman.pdf
http://www.usenix.org/events/usenix08/tech/fullpapers/willman/willman.pdf
http://dx.doi.org/10.1145/233013.233025
http://invisiblethingslab.com/resources/2011/Software%20Attacks%20on%20Intel%20VT-d.pdf
http://invisiblethingslab.com/resources/2011/Software%20Attacks%20on%20Intel%20VT-d.pdf
https://patchwork.kernel.org/patch/7357051/
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F1060289.1060308&citationId=p_265
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F1060289.1060308&citationId=p_265
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F233013.233025&citationId=p_267
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F233013.233025&citationId=p_267
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F1060289.1060307&citationId=p_260
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F1060289.1060307&citationId=p_260
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1109%2FMM.2006.79&citationId=p_264
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2063176.2063194&citationId=p_261
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2063176.2063194&citationId=p_261


180 BIBLIOGRAPHY

[187] Xen Project. http://wiki.xenproject.org/wiki/Tuning_Xen_for_Performance,
November 2015. 150

[188] Xen.org. Xen ARM. http://xen.org/products/xen_arm.html 132, 146

[189] Idan Yaniv and Dan Tsafrir. Hash, don’t cache (the page table). In Proc. of the ACM
SIGMETRICS International Conference onMeasurement andModeling of Computer Systems,
pages 337–350, 2016. DOI: 10.1145/2896377.2901456 77

[190] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis Ormandy,
Shiki Okasaka, Neha Narula, and Nicholas Fullagar. Native client: A sandbox for portable,
untrusted x86 native code. In IEEE Symposium on Security and Privacy, pages 79–93, 2009.
DOI: 10.1109/SP.2009.25 4, 29

[191] Fengzhe Zhang, Jin Chen, Haibo Chen, and Binyu Zang. CloudVisor: Retrofitting pro-
tection of virtual machines in multi-tenant cloud with nested virtualization. In Proc. of
the 23rd ACM Symposium on Operating Systems Principles (SOSP), pages 203–216, 2011.
DOI: 10.1145/2043556.2043576 22, 60

http://wiki.xenproject.org/wiki/Tuning_Xen_for_Performance
http://xen.org/products/xen_arm.html
http://dx.doi.org/10.1145/2896377.2901456
http://dx.doi.org/10.1109/SP.2009.25
http://dx.doi.org/10.1145/2043556.2043576
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2896377.2901456&citationId=p_272
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2896377.2901456&citationId=p_272
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2043556.2043576&citationId=p_274
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1145%2F2043556.2043576&citationId=p_274
http://www.morganclaypool.com/action/showLinks?doi=10.2200%2FS00754ED1V01Y201701CAC038&crossref=10.1109%2FSP.2009.25&citationId=p_273


181

Authors’ Biographies

EDOUARDBUGNION
Edouard Bugnion is a Professor in the School of Computer and Communication Sciences at
EPFL in Lausanne, Switzerland. His areas of interest include operating systems, datacenter in-
frastructure (systems and networking), and computer architecture.

Before joining EPFL, Edouard spent 18 years in the U.S., where he studied at Stanford
and co-founded two startups: VMware and Nuova Systems (acquired by Cisco). At VMware
from 1998–2005, he played many roles including CTO. At Nuova/Cisco from 2005–2011, he
helped build the core engineering team and became the VP/CTO of Cisco’s Server, Access, and
Virtualization TechnologyGroup, a group that brought tomarket theUnifiedComputing System
(UCS) platform for virtualized datacenters.

Together with his colleagues, Bugnion received the ACM Software System Award for
VMware 1.0 in 2009. His paper on Disco received a Best Paper Award at SOSP ’97 and was
entered into the ACM SIGOPS Hall of Fame Award. At EPFL, he received the OSDI 2014
Best Paper Award for his work on the IX dataplane operating system. Bugnion has a Dipl.Eng.
degree from ETH Zurich, an M.Sc. and a Ph.D. from Stanford University, all in computer sci-
ence.

JASONNIEH
Jason Nieh is a Professor of Computer Science at Columbia University. He has made research
contributions in software systems across a broad range of areas, including operating systems, vir-
tualization, thin-client computing, cloud computing, mobile computing, multimedia, web tech-
nologies, and performance evaluation. Technologies he developed are now widely used in An-
droid, Linux, and other major operating system platforms. Honors for his research work include
the SigmaXi Young Investigator Award, awarded once every two years in the physical sciences and
engineering, a National Science Foundation CAREER Award, a Department of Energy Early
Career Award, five IBM Faculty Awards and two IBM Shared University Research Awards,
six Google Research Awards, and various best paper awards, including those from MobiCom,
SIGCSE, SIGMETRICS, and SOSP. A dedicated teacher, he received the Distinguished Fac-
ulty Teaching Award from the Columbia Engineering School Alumni Association for his innova-
tions in teaching operating systems and for introducing virtualization as a pedagogical tool. Nieh
earned his B.S. from MIT and his M.S. and Ph.D. from Stanford University, all in electrical
engineering.



182 AUTHORS’ BIOGRAPHIES

DANTSAFRIR
Dan Tsafrir is an Associate Professor at the Technion—Israel Institute of Technology. His re-
search interests are focused on practical aspects of operating systems, hardware-software inter-
actions, virtualization, security, and performance evaluation. Some of his research contributions
were deployed in Linux and KVM. His work was featured in the Communications of the ACM
research highlights section. He received the USENIX FAST best paper award, the IBM Pat
Goldberg memorial best paper award (twice), the HiPEAC paper award (twice), the Klein re-
search prize, the Henri Gutwirth award for outstanding research, and research/faculty awards
from Google, IBM, Intel, Mellanox, and VMware. Tsafrir earned his B.Sc., M.Sc., and Ph.D.
from the Hebrew University of Jerusalem, all in computing science (B.Sc. also in math). Before
joining the Technion, he was a postdoctoral researcher at the IBM T.J. Watson Research Cen-
ter, New York, in the the Advanced Operating Systems Group (K42) and the BlueGene System
Software Group.



183

Index

#vmexit, 58
vmcall, 59
vmresume, 58

access to hidden state, 54
ACPI, 82
adaptive binary translation, 39, 61
address space compression, 54
advanced routing-ID interpretation, 107
aggregation, 3
AMD-Vi, 102
APICv, 116
ARI, 107
ARM, 25

back-end, 99
back-end emulation, 10, 11
banked registers, 26
BAR, 88
base address register, 88
BDF, 87
behavior-sensitive instruction, 18
BIOS, 82
bus-device-function, 87

configuration space, 88
consolidation, 80
control-sensitive instruction, 18
control-sensitive violations, 23
conventional third-generation architecture,

15

coprocessor access instructions, 49
coprocessor interface, 49
Current Program Status Register, 26

DBT, 38
Denali, 44
device assignment, 101
direct access to physical memory, 23
direct device assignment, 101
direct execution, 5, 8, 12, 29, 36
Direct Memory Access, 84
DMA, 83
DMA descriptor, 84
DMA direction, 85
DMA page faults, 103
DMA remapping engine, 102
DMA target buffer, 84
DMAR, 102
dynamic binary translation, 36, 38

e1000, 93
EL2, 124
emulation, 4, 109
enforced modularity, 2
EOI, 84
equivalence criteria, 6, 17
exception level, 125
exception levels, 26
extended page tables, 71

flat memory model, 38



184 INDEX

front-end, 99
front-end device, 10, 11
full software virtualization, 12
full virtualization, 95

guest operating system, 5
guest-physical memory, 12, 71

hardware virtualization, 69
hardware virtualization (HVM), 12
head register, 85
hidden page faults, 43
highvisor, 133
host bridge, 82
host operating system, 8, 40
host-physical memory, 12, 71
HVM, 69
hybrid virtual machines, 22, 37
HYP, 124
hypercall, 31
hypercalls, 44
hypervisor, 1, 5, 6

I/O interposition, 79
I/O memory management unit, 101, 102
I/O page table, 102
I/O thread, 91
I/O virtual address, 102
IDT, 84, 110
IDTR, 84, 110
innocuous instruction, 18
instruction set architecture (ISA), 15
Intel 8086, 25
Intermediate Physical Addresses, 129
interposition, 79
interrupt remapping engine, 102
interrupt virtualization, 54
interrupts, 84
IOAPIC, 89

IOMMU, 101, 102
IOTLB, 103
IOVA, 102
IPI, 84
IR, 102
IRR, 84
ISR, 84

kernel mode, 23
KVM, 62, 91
KVM/QEMU, 91

language-based virtual machines, 4
LAPIC, 84, 112
layering, 2
lightweight paravirtualization, 47
lightweight virtual machines, 4, 29, 44
linear address, 11
live migration, 79, 80
location-sensitive, 24
location-sensitive instructions, 23
lowvisor, 133

machine memory, 12
machine simulator, 5
memory tracing, 42
message signaled interrupts, 89
MIPS, 23
MMIO, 83
monitor mode, 124
MSI, 89
MSI-X, 89
MSR, 112
multiplexing, 3

nested page tables, 71
Netperf, 97, 109
NIC, 84
non-faulting access to privileged state, 54
non-root mode, 55



INDEX 185

page walk cache, 77
paravirtual I/O, 95
paravirtual I/O device, 95
paravirtualization, 12, 44, 95, 109
PCI Express, 86
PCI-SIG, 86
PCIe, 82, 86
PCIe bridge, 86
PCIe bus, 86
PCIe endpoint, 86
PCIe function, 86
PCIe lane, 86
PCIe switch, 86
Pentium 17, 54
performance criteria, 6, 17
PF, 107
physical address space, 11
physical I/O, 79
physical memory, 11
PIO, 83
Popek and Goldberg criteria, 6
primary PCIe bus, 88
privileged instruction, 18
privileged modes, 25
processor status word (PSW), 16
protected mode, 25

QEMU, 62, 91
QPI, 82

RC, 86
real mode, 25
recursive virtualization, 21
resume, 79
ring aliasing and compression, 54
ring buffer, 84
ring buffers, 84
root complex, 86
root mode, 55

root-mode privileged, 58
Rx ring, 85

safety criteria, 6, 17
Saved Program Status Register, 26
secondary PCIe bus, 88
segment truncation, 35, 38, 45
shadow paging, 71
single-root I/O virtualization, 101, 107
split-mode virtualization, 133
SRIOV, 101, 107
SRIOV physical function, 107
SRIOV virtual function, 107
SSD, 84
Stage-2 page tables, 129
Stanford FLASH multiprocessor, 29
subordinate PCIe bus, 88
supervisor mode, 23
suspend, 79
system management mode, 25
system-level virtual machines, 5

tail register, 85
TLB miss handler, 32
translation regime, 127
trap-and-emulate, 5, 9, 29, 79
TrustZone, 124
Tx ring, 85
type-1, 7
type-2, 7

UEFI, 82
unnecessary impact of guest transitions, 54
unpredictable, 26
user mode, 23, 25
user-sensitive, 22
user-sensitive instructions, 37

v8086 mode, 25
VCPU, 91



186 INDEX

VF, 107
vhost-net, 96
virtio, 96
virtqueue, 96
virtual address, 11
virtual APIC, 116
virtual I/O, 79
virtual I/O device, 90
virtual machine, 1, 4
Virtual Machine Control Structure, 58
virtual machine monitor, 1
virtual memory, 11
virtualization, 1

Virtualization Host Extensions, 143
VMCS, 58
VMM, 1
VMware VMM, 35
VT-d, 102

world switch, 35, 41

X2APIC, 112
x2APIC, 84
x86-32, 25
Xen, 44
Xen PV, 148


	Preface
	Acknowledgments
	Definitions
	Virtualization
	Virtual Machines
	Hypervisors
	Type-1 and Type-2 Hypervisors
	A Sketch Hypervisor: Multiplexing and Emulation
	Names for Memory
	Approaches to Virtualization and Paravirtualization
	Benefits of Using Virtual Machines
	Further Reading

	The Popek/Goldberg Theorem
	The Model
	The Theorem
	Recursive Virtualization and Hybrid Virtual Machines
	Discussion: Replacing Segmentation with Paging
	Well-known Violations
	MIPS
	x86-32
	ARM

	Further Reading

	Virtualization without Architectural Support
	Disco
	Hypercalls
	The L2TLB
	Virtualizing Physical Memory

	VMware Workstation—Full Virtualization on x86-32
	x86-32 Fundamentals
	Virtualizing the x86-32 CPU
	The VMware VMM and its Binary Translator
	The Role of the Host Operating System
	Virtualizing Memory

	Xen—The Paravirtualization Alternative
	Designs Options for Type-1 Hypervisors
	Lightweight Paravirtualization on ARM
	Further Reading

	x86-64: CPU Virtualization with VT-x
	Design Requirements
	The VT-x Architecture
	VT-x and the Popek/Goldberg Theorem
	Transitions between Root and Non-root Modes
	A Cautionary Tale—Virtualizing the CPU and Ignoring the MMU

	KVM—A Hypervisor for VT-x
	Challenges in Leveraging VT-x
	The KVM Kernel Module
	The Role of the Host Operating System

	Performance Considerations
	Further Reading

	x86-64: MMU Virtualization with Extended Page Tables
	Extended Paging
	Virtualizing Memory in KVM
	Performance Considerations
	Further Reading

	x86-64: I/O Virtualization
	Benefits of I/O Interposition
	Physical I/O
	Discovering and Interacting with I/O Devices
	Driving Devices through Ring Buffers
	PCIe

	Virtual I/O without Hardware Support
	I/O Emulation (Full Virtualization)
	I/O Paravirtualization
	Front-Ends and Back-Ends

	Virtual I/O with Hardware Support
	IOMMU
	SRIOV
	Exitless Interrupts
	Posted Interrupts

	Advanced Topics and Further Reading

	Virtualization Support in ARM Processors
	Design Principles of Virtualization Support on ARM
	CPU Virtualization
	Virtualization Extensions and the Popek/Goldberg Theorem

	Memory Virtualization
	Interrupt Virtualization
	Timer Virtualization
	KVM/ARM—A VMM based on ARM Virtualization Extensions
	Split-mode Virtualization
	CPU Virtualization
	Memory Virtualization
	I/O Virtualization
	Interrupt Virtualization
	Timer Virtualization

	Performance Measurements
	Implementation Complexity
	Architecture Improvements
	Further Reading

	Comparing ARM and x86 Virtualization Performance
	KVM and Xen Overview
	Experimental Design
	Microbenchmark Results
	Application Benchmark Results
	Further Reading

	Bibliography
	Authors' Biographies
	Index



