
USENIX Association

Proceedings of the
XFree86 Technical Conference

Oakland, California, USA
November 8–9, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



XCB: An X ProtocolC Binding

BartMassey Jamey Sharp
Computer Science Department

Portland State University�
bart,jamey � @cs.pd x.e du

September19,2001

Abstract

ThestandardX Window Systembinding for theC
programminglanguage,Xlib, is a very successful
pieceof software acrossa wide rangeof applica-
tions. However, for many modernuses,Xlib is not
an ideal fit: its size, complexity, difficulty of ex-
tensionandsynchronousinterfaceareparticularly
problematic.

TheXCB “X ProtocolC Binding”, currentlyunder
development,is a responseto theseandothercon-
cerns. XCB is intendedto be a simplerandmore
direct binding of protocol objectsto C functions;
careful designof the XCB API and internal data
structuresandthoroughmodularizationprovidesa
solution that is size and time efficient, maintain-
able,easyto usebothby single-threadedandmulti-
threadedapplicationsandeasilyextensible. Some
featuresof Xlib have beensacrificedin achieving
thesegoals,notablyi18n supportandconvenience
buffering and cachingfeatures,but the cost will
likely be worth it for toolkit developersand for
thoselooking to write specializedapplicationslay-
eredatoptheXCB API.

1 Xlib

Perhapsthe oldestsoftware in modernX Window
System[SG86] distributions is Xlib [SG92]: the
oldest files in the current XFree861 distribution
have a 1985copyright. Xlib hasplayedan impor-
tantrole in thedevelopmentof theX Window Sys-
tem in several ways: asthe standardbinding of X

1http://xfree86.org

protocolrequestsandresponsesto anAPI for theC
programminglanguage[KR78]; as the repository
of a numberof performanceoptimizationsof theC
API, suchascachingandgroupingof requests;as
a basefor GUI toolkit implementations;and as a
focalpoint for convenienceroutinesandextensions
necessaryto build functional,internationalizedand
standards-conformingstandaloneprogramswithout
toolkit support.

Unfortunately, these roles have been somewhat
contradictory, andthe long history of Xlib hasnot
generallyworkedin its favor. ThecurrentXlib suf-
fersfrom a numberof outrightdefects.

1.1 Xlib Features

Xlib has a numberof notablefeatures,resulting
both from an excellent initial designand the ma-
turity attainedthrough15 yearsof large-scaleuse.
Perhapsthemostimportantis its completeness:the
XFree86Xlib releaseincludessupport for every
protocol requestprovided by X11R6 and libraries
for every protocolextensionrequestsupportedby
XFree86,aswell assupportfor a rich setof conve-
niencefeatures.Amongtheseconveniencefeatures
areautomaticmarshalingof multiple requests(for
example, combininga seriesof DrawPoint re-
questsinto a PolyPoint request),automaticde-
compositionof large requestsand tools for auto-
matic input canonicalizationand internationaliza-
tion (i18n)of bothinput andoutput.

The large-scaleusageof Xlib hasalso madeit a
thoroughlyuse-testedpieceof software.It hasbeen
carefullymaintained,andits reliability is currently
quite high. In particular, its codeembodiesmany



clever solutionsto subtleproblemsin X protocol
interaction.Sincetheprotocolhasco-evolvedwith
Xlib, bothhavebeenadjustedto workwell together.

The X protocol is bandwidthefficient. Requests,
repliesand eventsare parsimoniousin size. The
simple representationsof the protocolallow most
transactionsto be easily compressedby a general
purposemethodsuchasgzip [Gai93], furtherim-
proving performance.Xlib containsa numberof
optimizationsdesignedto improve this bandwidth
efficiency. Notableamongthesearebufferedout-
put of requests2 anda reasonableamountof local
cachingof server state.

Thechoiceof theC programminglanguageasthe
standardbindinglanguagefor X clientswasanatu-
ral one,giventheC server implementationandthe
efficiency andaccessibilityof the language.It has
sinceproven a fortuitous decision. Becausemost
otherprogramminglanguagesprovide an interface
to C sourceor binaries,Xlib hasbeenusedas a
binding by toolkits and programswritten in lan-
guagesrangingfrom C++ andJava to Schemeand
Prolog.

1.2 Xlib Ar easFor Impr ovement

While Xlib is highly successful,therearestill areas
that could useimprovement. Xlib is arcane:even
experiencedX programmersmust frequentlyrefer
to thedocumentationin orderto useit successfully.
This is dueto several factors:first, thedifficulty of
building a transparentAPI in C; second,accretion;
but third and especiallythe fact that Xlib tries to
be a generalpurposeinterfacesuitablefor writing
everythingfrom small toolkit componentsto large
applicationsdirectly.

Becauseof XLib’ sgeneralityandemphasisoncon-
veniencefunctions,thelibrary is complex andover-
sized;little of its codeis regularly usedby applica-
tions. Work by Jim Gettys3 hasrecentlyreduced

2Xlib containsasupportfor atimerthatperiodicallyflushes
theoutputstreamto reducelatency. While XCB takesthepo-
sitionthatthis is anactivity betterperformedby theAPI client,
whichmaybeableto doa betterjob with reducedcomplexity,
this mechanismin any casedoeshelpcontrolrequestlatency.

3Personalcommunication,June2001.

thisproblem,but ultimatelyit seemsdifficult to se-
riously shrink Xlib without significantlychanging
the API andexcising substantialpartsof its func-
tionality.

Becauseof the size, complexity and ubiquity of
Xlib, it is quite difficult to maintain,especiallyto
extend.Potentialauthorsof new X protocolexten-
sionsareoftendeterrednot by thedifficulty of the
server-sidework, but by thedifficulty of addingli-
brary supportfor the extension:thereis little sup-
port in Xlib for extensions,so a greatdealof new
codetypically needsto bewrittenontheclientside.
Thismaybeamajorfactorin thedearthof new ex-
tensionsover thelast10 yearsor so.4

Xlib canalsobedifficult to use.For example,many
X protocolitemsareXIDs, smallintegers.Unfortu-
nately, C providesno way to declareincompatible
typesisomorphicto small integers.This occasion-
ally leadsto type errorsin Xlib usagethat arenot
staticallydetected:passinga window ID wherea
font ID was required,for example. The useof C
structureandunion typesto “wrap” small integers
cansolve thisproblem,but in 1985afew C compil-
ersstill hadtroubletreatingstructuresin thelargely
first-classfashionrequiredby the standard:struc-
ture returnwasparticularlyproblematic,andsome
compilerseven hadproblemswith structurecopy-
ing.

As anotherexample,usermemorymanagementof
Xlib data is complicatedby a couple of factors.
First,becausetheXAlloc() andXFree() inter-
facesareusedinsteadof their normalmalloc()
and free() counterparts,traditionalmemoryal-
locationdebuggingandleak-detectiontoolsaredif-
ficult to useto detectanddiagnoseXlib usageer-
rors. This maybeoneof thereasonswhy X appli-
cationssocommonlyleakstorage.Anotheris that
Xlib routinesoccasionallyreturnallocatedstorage
containingpointersto otherunallocatedstorage:it
is theresponsibilityof theXlib userto freetheref-
erentsbeforefreeingthereferencingblock,by call-
ing the appropriatedestructorroutine5 ratherthan
XFree() . Needlessto say, this is error-prone,and

4Keith Packard,personalcommunication,August2001.
5Oftenthedestructor’snamecontains“destroy” ratherthan

“free”, addingto theconfusion.



theresultingerrorsaredifficult to detect.

The designgoalsof Xlib aresomewhat contradic-
tory. Modern toolkits suchasGtk andQt eschew
mostof thespecialfeaturesof Xlib, suchasits com-
plicatedinput modeland i18n semantics,anduse
just theprotocolbinding.This is notmerelywaste-
ful: interferencefrom Xlib alsomakes it difficult
to do certainstylesof toolkit optimization,suchas
latency hidingandtheuseof multiple threads.

While Xlib attemptsto bere-entrant,its complexity
and the “retrofitted” natureof the reentrancy sup-
port make exploiting this featuredifficult. In par-
ticular, theXlib API is not easilysuitedto thread-
baseduse.For example,it is difficult to obtainthe
sequencenumberof a requestin a multi-threaded
environment,as the sequencecountermay be ad-
vancedby a secondrequestbetweenthe time the
first requestis sentandthe counteris queried. In
addition,many Xlib callsthatretrieve information,
suchasGetNextEvent,comein two basicforms: a
blockingform thatlockscritical datastructuresand
a non-blockingform that is subjectto raceswith
otherthreads.

While Xlib and the protocol are bandwidth-
efficient, Xlib encouragesa style of programming
that tendsto have high latency. BecauseXlib re-
questsrequiringa reply aregenerallysynchronous,
blocking until the reply is available, Xlib often
blocksfor a full roundtrip time. This is not gen-
erally anissuewhentheX connectionis local, and
evenfor remoteconnectionsa roundtrip canoften
beavoideddueto XLib’ s extensive caching.How-
ever, Packard’s recentcritiqueof LBX [Pac01] has
shown that latency, rather than bandwidth,is the
majorcontributor to poorremoteperformanceof X
applications,and that Xlib is a real contributor to
thisexcesslatency.

2 XCB

Whenfacedwith multiple conflictingdesigngoals
andexcessive designcomplexity, onegooddesign
solution is often to modularizethe implementa-
tion, separatelyimplementingeachdesiredpiece
of functionality. Thedesignof XCB takesthis ap-

proach.XCB is intendedto bea simpleanddirect
binding of X protocol transactionsto C language
function calls, with the minimum amountof ma-
chinerynecessaryto achieve thisaim.

It is assumedthat the principle clients of XCB
will be of two types: toolkits intendedfor higher-
level programimplementationand small libraries
intendedto easethedirect useof XCB. Thus,cer-
tain constraintsof the Xlib designdisappear. Fea-
turessuchasi18nandmostcaching,thatcanbebet-
ter managedat a higher layer, may be eliminated.
Controlling the syntacticdetailsof the API inter-
facealsobecomesslightly lesscritical (althoughthe
currentdesignseemsratherpleasantin this regard).

2.1 XCB Structur e

Thebasicstructureof XCB is in two layers,asillus-
tratedin Figure1. A lower layer, XCB Connection,
supportsthe establishmentof an X server con-
nectionandhandlesbuffering andbatchingof re-
questsand responses. XCB Connectionexports
a simple API to the upper XCB Protocol layer.
XCB Protocol, in turn, provides a quite direct C
API for the core X Protocol. The ability for ex-
tensionclientcodeto sit atopXCB Connection,to-
getherwith theautomaticcodegenerationfeatures
discussedin Section2.3below, shouldmakeadding
extensionsupportquiteeasy.

A key featureof XCB is thethread-safetyof theen-
tire API. Thisis implementedvia thelockingmech-
anismsof POSIX Threads[NBF96]. Specifically,
eachconnectionis locked againstconcurrentac-
cesswith apthread mutex andblockingduring
API calls is supportedby pthread cond condi-
tion variables.

The XCB API allows (indeed,encourages)a style
of interactionin which onethreadmakesrequests
and handlesreplies and anotherthreadprocesses
events. The availability of locking mechanisms
for threadsafetywas difficult to ensure15 years
ago. Now that threadsare widely available to C
programmers,they should probablybe taken ad-
vantageof: the standardwindow systemsin the
Smalltalk and Java environments,amongothers,
have exploited this approachwith notable suc-



XCB Connection

XCB

Client

Threads

X Server

XCB Protocol

API Requests

Inter-LayerCommunication

X Protocol

API

Per-ConnectionDataStructures

Figure1: XCB structureandusage.

cess. The XCB API also permits a more tradi-
tional single-threaded“event loop” style: this en-
ablessingle-threadedusageof XCB, andshouldal-
low re-implementationof theXlib API atopXCB if
desired.

Centralto theXCB API is theuseof “reply cook-
ies” to permit latency hiding. Protocolrequestsre-
quiring a reply do not block. Insteadof returning
reply datathat is not yet available, the XCB non-
blockingrequestreturnsa reply cookie,thatcanbe
convertedinto the reply dataon demand,blocking
if it is not yet available. This mechanismeasesla-
tency hiding without greatlydistortingexpectedC
API callingconventions,easingtheX latency prob-
lemsdescribedin Section1.2.

2.2 XCB Data Structur es

XCB hasa reasonablysimplesetof datastructures
and interfacesthat interact to provide the desired
functionality. Figure2 givesan overview of these
datastructuresandtheir interaction;therestof this
sectionattemptsto describesomeof themoreinter-
estingdetails.

The fundamentalunit of interactionin XCB is the
server connection.For threadsafety, thereareno
global variablesin XCB: all statefor a connection

Connection
Lock

Output
Buffer

Atom
Cache

Sequence#

CurrentData

Stateand
Locking

ReplyRecord

Replylist

Figure2: XCB datastructures.

is storedin anopaque,lockedconnectionstructure.
Elementsof theconnectionstructureinclude

� Theconnectionmutex.

� Thesocket for theconnection.

� Thecurrentrequestsequencenumber.

� The requestqueue,a simple characterbuffer
for outgoingrequests.

� Thereply list, that tracksthestateof pending
requestsrequiringa reply.

� Theeventqueue,containingprocessedbut un-
consumedevents.

� A dictionaryto cacheinternedatoms.This is
currently the only non-mandatoryclient-side
cachingperformedby XCB: it avoids a com-
moncauseof high latency andbandwidth,and
is easyto add.(Connectionstartupdatais also
cached,but this is essentiallymandatory.)

For user compatibility with Xlib applications,a
coupleof its externalformatsaresupported,namely
the DISPLAY and XAUTHORITY environment
variablesand the .Xauthority file. Nonethe-
less,theXCB notionof a connectionis somewhat



differentthanthatof Xlib. In particular, thereis ex-
pectedto be just oneconnectionperdisplay: there
is no specialnotion of a “screen” in XCB outside
of therootwindow conceptsupportedby theproto-
col.6

ThecurrentXCB implementationsupportsTCP/IP
and UNIX-domain sockets: obtaininga socket is
treatedseparatelyfrom creatinga connection,so
othertypesof file descriptormay be usedaswell,
although some applicationsmay require sockets
with specific capabilities (such as non-blocking
I/O).

The requestqueueis, as noted above, a simple
characterFIFO usedto hold formattedrequestsfor
grouping into larger packets via a mechanismof
write batching.(This is necessaryfor XCB TCP/IP
sockets, since the Nagle mechanism[Nag84] is
turnedoff: a latency-reducingtechniqueborrowed
from Xlib.) Therearethreeconditionsunderwhich
thelower layerwill flushtherequestqueue:

1. The requestqueueis about to becomeover
full.

2. The user has requesteda flush via the
XCB ProtocolAPI.

3. The userhasrequestedthe reply to a request
enqueuedbut not yet delivered.

This third reasonis themostinteresting,reflecting
the fact that,unlike in Xlib, batchinga requestre-
quiringareplydoesnot requireflushingthecurrent
buffer.

Thereply list of anXCB connectionis a reflection
of XCB’s asynchronousreply delivery: repliesar-
rive in requestorder but may be accessedout-of-
order. Thereply list is asimplesingly-linkedlist of
malloc -ed reply records:this datastructuresuf-
fices since it is expectedthat a small numberof
replieswill normallybeoutstanding.A replyrecord
is createdandplacedin thereplylist whenarequest
requiringareply is enqueued.Thereplyrecordwill

6In fact, the screenportion of the DISPLAY environment
variableis reportedto theclient by theXCB conveniencerou-
tine,but is otherwiseignored.

remainon thelist until thereply is receivedandde-
liveredto theuser, atwhichpoint it will befreedby
the upperlayer of XCB. Thus,at mostonethread
canreceive thereply to a request(althoughit need
not be the threadfrom which the requestwas is-
sued).Replyrecordsthatareof no further interest
to theXCB usermay(andshould)bediscardedby
sequencenumbervia theXCB ProtocolAPI.

Eachreply recordcontainsjusta few piecesof crit-
ical information:

� Thesequencenumberof therequest.

� An indicationof therequest’sstatus.A request
in the list is either pendinga reply, pending
delivery of a reply to theXCB user, or both.

� A pointer that points to one of two quanti-
ties, dependingon whethera reply hasbeen
received.

– If a reply is pending,the referenceis to
ablockof request-specificdataallocated
by XCB Protocol and neededto con-
structtheresultdeliveredto theuser(for
example,the addressof a user-supplied
buffer into which a portion of the reply
is to bedelivered).

– Once the reply has beenreceived, this
pointer will be converted by the upper
layer to a pointer to the reply itself,
awaitingdelivery to theuser.

� A conditionvariableonwhichatmostoneuser
threadmayblockwhenrequestinga resultbe-
fore the reply has beenreceived. The user
threadwill thenbe awakenedwhenthe result
it desireshasbeengeneratedfrom a received
reply.

In addition to requiring careful managementof
replies, the asynchrony of reply and event deliv-
ery alsomandatesthe implementationof a simple
eventqueue.In orderto receive aspecificreplyde-
siredby theuser, the lower layermayhave to read
pasteventresponsessentby theserver betweenthe
time the requestwas received and the reply sent.
For a single-threadedXCB client, this presentsa



problem.XCB cannotblock until thereply is read
from the input stream:it may deadlockthe client.
However, asingle-threadedXCB clientcannotpro-
cessintervening eventsuntil control hasbeenre-
turnedto it. While it would bepossibleto have the
XCB reply-accessAPI returnan EWOULDBLOCK-
like value,this would complicateboththeAPI and
theclient. Instead,XCB enqueueseventsin a sim-
ple FIFO limited only by availablememory. For a
multi-threadedclient, eventswill be deliveredto a
waitingevent-handlingthreadratherthanbeingen-
queued.

Thereply cookiesdescribedin Section2.1 areim-
plementedas transparentstructurescontaining a
singleelement:the sequencenumberof the refer-
encedrequest.Thereis onesuchstructurefor each
expectedreply type, which helps solve the type-
compatibility problem describedin Section 1.2.
Becausethesequencenumberof arequestis visible
in the reply cookie,theapplicationcancorrelatea
server-sideerror with the requestthat producedit.
For this reason,aswell asfor uniformity, requests
not requiring a reply also return a reply cookie.
However, thiscookieis of astructuretypefor which
nofurtherprocessingis availablein theAPI. Hence
erroneouslyexpectinga reply to a requestthatwill
not produceoneis anerror thatshouldbedetected
atcompiletime.

One subtlety of the X protocol is that many re-
questsare “pseudo-synchronous”. Insteadof re-
turning a reply (and thus requiring a round trip)
with theserver-sideID of a newly createdresource
suchas a window or font, a numeric ID, known
asanXID, is createdon theclient sideandpassed
to theserver with the request.A carefulspecifica-
tion of theID spaceensuresthat theID is globally
uniquefor theserver. This latency-hidingoptimiza-
tion is concealedby Xlib, whereXID generationis
implicit andpseudo-synchronous andsynchronous
API requestsaresyntacticallyindistinguishable.

XIDs are explicitly requestedas part of the XCB
API: a createdXID is wrappedin a structureor
union andmustbe passedwith the correcttype to
theXCB requestAPI. An interestingtype-safetyis-
sueariseshere: someX protocol requestsaccept
“subtyped”requests.For example,someprotocol

typedef struct XCB_Pixmap {
int xid;

} XCB_Pixmap;

typedef struct XCB_Window {
int xid;

} XCB_Window;

typedef union XCB_Drawable {
int xid;
XCB_Pixmap pix;
XCB_Window win;

} XCB_Drawable;

Figure 3: Declarationof the pixmap , win , and
drawable datatypes.

requestsrequire the XID of a window, somethe
XID of a pixmap and somethe XID of a “draw-
able”, which will denoteeither a window or a
pixmap.7 Sincetheprotocolitself dealswith win-
dow and pixmap typesas XIDs, there is no type
issuefor the server, which correctly tracks types
at runtime. The static typing issueis a bit harder,
given the limitations of the C type system. XCB
implementsthedrawableXID typeasshown in Fig-
ure 3. The useris requiredto passeitherdraw-
able , drawable.win , or drawable.pix to
theXCB API asappropriate.This providesa stat-
ically type-safeinterface, without greatly incon-
veniencingthe XCB user. Note that the ANSI
C [ANS] union semanticsessentiallyguarantee
that the correspondencebetweenthe variousxid
fieldswill hold.

As a generalrule, XCB tries not to provide trans-
parentclient-sidecachingof server-side data: do-
ing so is normally difficult, expensive andof little
benefitto mostapplications.However, onedataset
thatis transparentlycachedby XCB is themapping
from stringsto interned“atoms”,a globally unique
server-sidemappingwhich is cooperatively setup
by clients. The atomcacheis very effective in re-
ducinglatency andhaslow overhead.In addition,
becauseit wasexplicitly designedto becachedon

7Similarly, thereis exactly oneX protocolrequestthatac-
ceptseithera font or a GC—a“fontable”.



the client side, the complexity of correctly main-
tainingaclientsidecacheof theinternedatomtable
is low.

2.3 The XCB API

TheXCB API consistsof severalkindsof calls:

� Creation functions for suchthingsasconnec-
tionsandXIDs. Thesefunctionsreturntyped
values.

� Non-blocking requests, for example

XCB_Void_Cookie
XCB_DrawPoint(

XCB_Connection c,
XCB_Drawable d,
int x, int y)

� Blocking requests, for example

XCB_Window_Cookie
XCB_GetInputFoc us (

XCB_Connection c)

� Extraction functions for retrieving and con-
vertingreplydata,for example

XCB_XID
XCB_GetWindowID (

XCB_Window_Cookie c)

� Response processing calls to support re-
trieving events and errors. The XCB
event-processinginterface is via a call to
XCBWait Event() : it will block until an
eventis availableandreturnit.

� A numberof miscellaneousprimitives. For
example, single-threadedX applicationsof-
tenneedto beableto call select() on the
socket for aprotocolconnectionin orderto be
ableto multiplex their inputscorrectly. XCB
thussupportsretrieving thesocket underlying
a connection,appropriatelymanipulatedto be
suitablefor select() .

Theconnectioncreationinterfaceto XCB consists
of several routines. First, conveniencefunctions
areprovided to obtaina file descriptorattachedto
a server via TCP/IPor UNIX-domain networking.
This file descriptor, or any otherfile descriptorof a
server connection,is thenpassedto a secondrou-
tine which takescareof initializing theconnection
datastructuresandperformingthe initial protocol
handshake. This approachis convenient for such
tricks asrunningX directly over a serial line, and
helpsto isolateXCB from long-termchangesin X
andnetworking environmentsandconventions.

A principle goal of XCB is to provide as
lightweighta layeratoptheprotocolasreasonably
possible.Simplymarshalingtheapproximately120
requestsof theX protocolandtheirunderlyingdata
structuresshouldbe a large enoughjob for a sin-
gle library. The bulk of the XCB implementation
consistsof requestandresponsemarshalingstubs.
Theapproachtakenby Xlib to thesestubsis atradi-
tional one: they areindividually hand-codedin C.
XCB takes a metalevel approach:a stub descrip-
tion processorimplementedusing the m4 [KR77]
macropreprocessortranslatescustomstubdescrip-
tionswrittenin aspecializedmacrolanguageinto C
codeautomatically. This approachhasseveral ad-
vantages:it helpsreducethelikelihoodof defectsin
thestubs,allowsautomaticgenerationof documen-
tation andis easierto readandunderstandthanC
code.Perhapsthemostimportantadvantage,how-
ever, is the reducedprogrammerburden: this ap-
proachhasbeenessentialto a timely implementa-
tion of XCB, andshouldmakeit mucheasierto im-
plementextensionlibrariesatopXCB Connection.

2.4 XCB In Action

It is interestingto tracetheflow of aaclientrequest
and responsethroughthe XCB machinery. Con-
siderthecaseof aclient requestto identify thewin-
dow with the currentinput focus. Figure 4 illus-
tratesthe flow of dataand control throughXCB.
Thechainsof arrows in thefigureshow theflow of
controlof asinglethread.

First, the client issuesan XCBGetInputFocus
API requestwith the target connectionasan argu-
ment. This API call returnsimmediately, deliver-



Requestis enqueued

Replyarrives

Resultis constructed,delivered

Requestis deliveredto server

Clientmakesrequest Client requestsresult ClientusesresultClient requestreturns

Replyrecordis constructed

Figure4: Flow of dataandcontrolthroughXCB.

ing a reply cookieof typeXCBWindow Cookie
to theclient. Theupperlayerof XCB deliversthis
cookieby askingthelower layerto allocatea reply
recordwith the currentsequencenumber. The re-
questis alsoencodedat this time andplacedin the
lowerlayer’soutputbuffer for eventualdelivery. Fi-
nally thecookiecontainingthesequencenumberis
returnedto theclient.

The pendingrequestis eventually shippedto the
X server, when the buffer is flushedas described
in Section2.2. By this time, the server may have
generatedandshippedseveralevents,whichareen-
queuedaheadof theserver-generatedreply. When
theusercallsXCB GetWindowID() with thereply
cookieasanargument,thelower layerusesthese-
quencenumberof thereply cookieto index there-
ply list, eventuallyfinding thereply record.It then
notesthat no reply hasyet beenreceived from the
server. Initiating a blockingreadfrom theserver to
obtainthedata,thelower layerenqueuestheevents
readfrom theconnection,thenreadsthereply. The
resultingreply buffer, togetherwith theconnection
socket, is passedup to theXCB upperlayer, which
assemblestherequestedwindow ID from thegiven
data. The result is placedin the reply cookieand
theblockedrequestreturnsto theupperlayer. The
upperlayerremovestherelevantreply from there-
ply record,freesthis recordandreturnsthewindow
requestedby theXCB GetWindowID() call.

Alternatively, the reply may be received before
the result is requested.In this case,the result is
nonethelessconstructedas the reply is received,
anddeliveredto theclient asrequested.The reply
recordtracksthecurrentstate,recordingwhethera
reply hasbeenreceived, andwhethera result has
beenrequested.

3 Xlib and XCB Compared

Having discussedbothXlib andXCB in somede-
tail, it is useful to summarizesomeof the com-
parisonsandcontrastsbetweenthe two. XCB in-
troducesseveralnovel features,borrows somenice
featuresfrom Xlib, andforegoessomeXlib func-
tionality.

Principalnew featuresof XCB includelatency hid-
ing throughreply cookies,amenabilityto useby
threadedclientsandbetterstatictypechecking.Be-
causeof its extensive use of structureand union
types,XCB interfacesarewell protectedagainstpa-
rametermismatches.In general,the syntacticand
semanticregularity of XCB, at leastin contrastto
Xlib, shouldgreatlyeaseits use.

A variety of good ideasfrom Xlib were incorpo-
rated into XCB. The buffering of output to form
largepacketsincreaseseffective bandwidthandre-
ducesnetwork load.Similarly, doinglargereadson
connectioninputwhenpossiblemaygreatlyreduce
syscalloverheadin the presenceof large numbers
of events.XLib’ s sequencenumbermanagementis
quite clever: in particular, the useof a dummyre-
questrequiringareplytobothskipasequencenum-
berandestablishasynchronizationpointis imitated
by XCB in sequencenumbermanagement.XLib’ s
proviso for direct select() accessto the con-
nectionfile-descriptorhasproven to be important
for single-threadedapplicationsand was included
in XCB for this reason.

Somefeaturesof Xlib, includingsomequiteuseful
ones,were droppedon the theory that they could
not carry their own weight in implementationsize
and complexity. Notably, XCB is a fairly direct
binding to the X protocol: it doesnot sendmulti-
ple requestsfor large inputs,directly marshalmul-
tiple results,or cacherequestor reply information



locally (with theexceptionof theatomcache).The
complicatedinput processingof Xlib is not pro-
vided,nor is any directsupportfor i18n features.

Perhapsthemostnotablefeatureof Xlib missingin
XCB is Xlib compatibility in theAPI: it would be
nice to be ableto achieve someof the XCB gains
by relinking existing applications. While, for the
reasonsdescribedimmediatelyabove this is not a
feasiblegoalfor XCB itself, it is believedthatwith
reasonableeffort a lightweight Xlib compatibility
layercouldbeplacedatopXCB.

4 Statusand Future Work

An XCB codebaseis currentlyunderdevelopment.
Simpleexampleswork, but muchwork remainsto
completetheimplementation.Oncetheimplemen-
tation of the coreprotocol is complete,work will
commenceon the implementationof many of the
X Consortiumand XFree86extensions. Finally,
the longer-term goal of layering font and render-
ing supportatopXCB shouldeventuallyleadto an
Xlib compatibility library, a redesignedC interface
for standaloneprogramsanda toolkit.

Availability

Whencomplete,the XCB implementationwill be
madefreely availableunderthe XFree86License.
More information should appearon the web at
http://xcb.cs.p dx .e du in thenearfuture.

Acknowledgments

Theauthorgratefullyacknowledgestheadviceand
assistanceof Keith Packardin theanalysis,design,
andimplementationof XCB.

References

[ANS] X3.159-1989.

[Gai93] Jean-loupGailly. Gzip: the data com-
pression program, 1.2.4 edition, July
1993.

[KR77] Brian W. Kerninghanand Dennis M.
Ritchie. The M4 Macro Processor.
AT&T Bell Laboratories,1977. Unix
Programmer’s Manual Volume 2, 7th
Edition.

[KR78] Brian W. Kerninghanand Dennis M.
Ritchie. The C Programming Language.
PrenticeHall, 1978.ISBN 0-13-110163-
3.

[Nag84] JohnNagle. RFC896: Congestioncon-
trol in IP/TCP internetworks. RFC
896, Ford Aerospaceand Communica-
tionsCorporation,1984.

[NBF96] Bradford Nichols, Dick Buttlar, and
JacquelineProulxFarrell. Pthreads Pro-
gramming, A POSIX Standard for Better
Multiprocessing. O’Reilly & Associates,
Inc., first edition,September1996.

[Pac01] Keith Packard. An LBX postmortem.
http://xfree86 .o rg/ ˜k ei th p/
talks/lbxpost , January2001.

[SG86] RobertW. ScheiflerandJim Gettys.The
X window system.ACM Transactions on
Graphics, 5(2):79–109,April 1986.

[SG92] RobertW. ScheiflerandJamesGettys.X
Window System. Digital Press,third edi-
tion, 1992.


