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Abstract. This paper presents Xoodoo, a 48-byte cryptographic permutation with
excellent propagation properties. Its design approach is inspired by Keccak-p, while
it is dimensioned like Gimli for efficiency on low-end processors. The structure consists
of three planes of 128 bits each, which interact per 3-bit columns through mixing and
nonlinear operations, and which otherwise move as three independent rigid objects.
We analyze its differential and linear propagation properties and, in particular, prove
lower bounds on the weight of trails using the tree search-based technique of Mella et
al. (ToSC 2017). Xoodoo’s primary target application is in the Farfalle construction
that we instantiate for the doubly-extendable cryptographic keyed (or deck) function
Xoofff. Combining a relatively narrow permutation with the parallelism of Farfalle
results in very efficient schemes on a wide range of platforms, from low-end devices
to high-end processors with vector instructions.
Keywords: permutation-based cryptography · Farfalle · deck function · differential
cryptanalysis · linear cryptanalysis

1 Introduction
Designing a symmetric cryptographic primitive involves careful trade-offs between per-
formance and security. For the former, an interesting challenge is to yield excellent
performance on a wide range of targets, in particular from the low-end processors as used
for embedded devices to the high-end server processors. This is especially useful if such
a mixture of devices have to interact together. For the latter, while the security of a
primitive cannot be measured and relies on public scrutiny by skilled cryptanalysts, a good
design typically starts with a round function that mixes bits and frustrates the propagation
of differences and linear correlations as quickly as possible.

A way to achieve performance on a wide range of targets consists in combining a
high level of parallelism with a relatively small building block. On a low-end target, the
computation is done serially with a small footprint, and the high-end processor can fully
exploit its capabilities with the evaluation of multiple instances of the building block in
parallel. As a concrete example, the Farfalle construction is a mode of use based on a
permutation that allows a very high level of parallelism [BDH+17]. Instantiated with a
permutation of relatively small size, it offers thus such a potential.

In [BDH+17], the authors define Kravatte by instantiating Farfalle with the 200-byte
wide permutation Keccak-p[1600] with 6 rounds. In general, Kravatte is very fast on
a wide range of platforms, but there are some exceptions due to the large width of the
permutation. First, on low-end processors the computation is slowed down by swapping
the permutation state in and out of registers. This effect plays independently of the input
and output lengths. Second, Kravatte with short input and output has a relatively large
overhead per byte, and the cost of computing, say, a MAC over a message of 20 bytes
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2 The design of Xoodoo and Xoofff

is the same as for a MAC over a 199-byte message. It therefore makes sense to consider
instantiating Farfalle with a narrower permutation.

The width of the permutation, denoted b, is lower bounded by generic attacks on the
Farfalle construction. Exhaustive key search on any mask can be done with a computational
complexity of 2b Farfalle executions, and generating inputs that collide in the internal
state can be done with data complexity 2b/2 Farfalle executions. If the target security
strength is an overall 128-bit level, both in data and computation, this lower bounds b
to 256 bits. Actually taking b = 256 then implies a hermetic approach: the differential
properties of the permutation used in the compression phase should not allow collision
attacks better than generic ones. This condition can be relaxed by increasing b.

It therefore makes sense to consider instantiating Farfalle with a narrow permutation, yet
larger than 256 bits. The Keccak-p[800] permutation is well-suited for 32-bit processors,
but its width of 100 bytes makes it still rather large. Next, taking Keccak-p[400] is
problematic as it is defined in terms of operations on 16-bit lanes. Alternatively, the
Gimli permutation [BKL+17] has the interesting and inspiring feature that its state of 384
bits and its round function lend themselves nicely to low-end 32-bit processors, but also
vectorization and dedicated hardware. Unfortunately, its propagation properties are less
than what could be expected. For constructing a Farfalle instance with 128-bit security,
one would have to take a relatively high number of rounds. We therefore took the initiative
to design a permutation with the same width and objectives as Gimli, but with more
favorable propagation properties. We called the result Xoodoo, and it can be seen as a
porting of the Keccak-p design approach to a Gimli-shaped state.

1.1 Farfalle and deck functions
Although Xoodoo could be used in other permutation-based modes, in this paper we
focus on the Farfalle construction as its primary target application of. This construction
instantiates a pseudorandom function (PRF) and allows building all types of (authenticated)
encryption and MAC functions, while exploiting arbitrary degrees of parallelism [BDH+17].

A Farfalle instance takes a sequence of strings as input and outputs an arbitrary number
of bits. We denote a sequence of m strings X(0) to X(m−1) as X(m−1) ◦· · ·◦X(1) ◦X(0). Its
output is extendable, since the caller can request for more output bits at a low incremental
cost. Similarly, the input enjoys a specific extension property: computing F (Y ◦X) costs
only the processing of Y if F (X) was previously computed.

Clearly, Farfalle is not the only way to build functions with such properties. In order
to decouple the external behavior of the function (PRF with extension properties) from an
implementation (here, Farfalle), we propose to call them Doubly-Extendable Cryptographic
Keyed functions or deck functions for short.

Definition 1. A deck function takes as input a secret key K and a sequence of an arbitrary
number of strings X(m−1) ◦ · · · ◦X(0) ∈ (Z∗2)+, produces a potentially infinite string of bits
and takes from it the range starting from a specified offset q ∈ N and for a specified length
n ∈ N. We denote this as

Z = 0n + FK

(
X(m−1) ◦ · · · ◦X(0)

)
� q .

A deck function should allow efficient incremental computing. In particular, by keeping
state after computing an output for input sequence X = X(m−1) ◦ · · · ◦X(0), computing
an output for Y (n−1) ◦ · · · ◦ Y (0) ◦X should have a cost independent of X.

1.2 Contributions
Our main contributions are (1) the permutation Xoodoo, with strong bounds on trail
weights, and (2) the deck function Xoofff, an instance of Farfalle on top of it. Furthermore,
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we provide (3) an improved attack strategy for generating accumulator collisions in Farfalle.
Xoodoo is an iterated permutation that is inspired by Keccak-p and Gimli [BKL+17,

BDPA11b], with a novel structure consisting of three planes of 4× 32 bits each. The three
planes interact per 3-bit columns through a column parity mixer [SD18] and a degree-2
nonlinear operation, while they move as three independent rigid objects for dispersion.

We show that Xoodoo scores very well with respect to avalanche metrics and has
excellent differential propagation and correlation properties. In particular, we prove lower
bounds on the weight of trails using the tree search-based technique of Mella et al. [MDA17],
although using finer-grained units than what was proposed for Keccak-p. The increased
symmetry, the two dispersion layers and the involutive nature of the nonlinear layer make
Xoodoo easier to analyze than Keccak-p. In particular, it allows us obtain better trail
bounds.

Finally, this paper analyzes Xoofff, its rolling functions and the properties of Xoodoo
in the light of what is needed for Xoofff to be secure. From a user perspective, Xoofff
is an efficient deck function that can be used for building stream ciphers, MAC functions
and full-featured authenticated encryption schemes, as proposed in [BDH+17]. We provide
benchmarks on some low-end and high-end processors.

1.3 Design philosophy
In this section, we discuss the design philosophy underlying Xoofff, in the more general
context of building cryptographic schemes in a modular way.

Typically, one specifies a cryptographic scheme as a mode on top of a primitive, where
one can prove the scheme secure on the condition that the primitive is secure (or ideal,
or random, . . . ). We define a primitive as a cryptographic object that cannot be proved
secure, but rather one that has the objective of being secure. This objective is expressed
as a security claim, and this claim can be used by cryptanalysts to challenge the primitive.
In the security proof of the mode, the statements in the security claim are assumed to be
true, and so the security of the scheme is conditional on the validity of these statements.

In the case of this paper, what is the mode that is provably secure assuming the
primitive is secure, and what is the primitive that must be cryptanalyzed? Here, the
primitive is Xoofff and provably secure modes are modes on top of Xoofff, such as
those defined in [DHAK18a].

Xoofff is a primitive but, like many other primitives, it has been built in a modular
way. It makes use of the Farfalle construction and uses as building blocks the Xoodoo
permutation and two rolling functions, see Figure 1. The idea behind Farfalle is not to
build a secure function assuming the underlying building blocks are secure (or ideal or
random). Instead, the idea is to use building blocks we know how to design in order
to build an efficient cryptographic function that is useful for encryption, authentication
and authenticated encryption. Of course, the propagation and algebraic properties of the
underlying components are relevant and interesting, but the object to be cryptanalyzed is
Xoofff and there is no security claim on the building blocks. In particular, there is no
security claim on Xoodoo.

One can compare it with the way block ciphers, MAC functions or stream ciphers have
been built. Here are some examples.

• Key-alternating block ciphers repeat a round function interleaved with round key
addition [DR02]. The round keys are generated in a key schedule that takes the
cipher key as input. No security claims are made on the round function nor the key
schedule.

• Tweakable block ciphers can be built using the tweakey framework [JNP14]. Also
here, there is no security reduction to underlying parts, e.g., the so-called tweakey
schedule or the round function.
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Figure 1: The Farfalle construction.

• The MAC function Pelican-MAC, an application of the Alred framework, is built
from AES and a building block similar to Xoodoo: the permutation that consists
of 4 unkeyed rounds of AES [DR10, DR14]. This permutation has many structural
properties (e.g., symmetry, impossible differentials) not present in a random permu-
tation, but there is no security claim on this building block, only on the function
Pelican-MAC itself.

• The Salsa stream cipher can be seen as a permutation, the so-called Salsa core,
in a certain mode [Ber08b]. The Salsa core has structural properties due to a
very symmetric round function and the absence of round constants. But there is
no security claim on this permutation: the construction prevents exploiting the
symmetry properties, and the assumed security and target of cryptanalysis is in the
Salsa stream cipher as a whole.

1.4 Outline
In Section 2, we define the Xoodoo permutation and in Section 3 the Xoofff deck
function. Optimization techniques and benchmarks are presented in Section 4. The design
rationale of the permutation is given in Section 5, while that of the deck function can be
found in Section 6. We detail the techniques for searching differential and linear trails in
Section 7. Finally, we conclude in Section 8.

2 Xoodoo specification
Xoodoo is a family of permutations parameterized by its number of rounds nr and denoted
Xoodoo[nr].

Xoodoo has a classical iterated structure: It iteratively applies a round function to
a state. The state consists of 3 equally sized horizontal planes, each one consisting of 4
parallel 32-bit lanes. Similarly, the state can be seen as a set of 128 columns of 3 bits,
arranged in a 4× 32 array. The planes are indexed by y, with plane y = 0 at the bottom
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and plane y = 2 at the top. Within a lane, we index bits with z. The lanes within a
plane are indexed by x, so the position of a lane in the state is determined by the two
coordinates (x, y). The bits of the state are indexed by (x, y, z) and the columns by (x, z).
Sheets are the arrays of three lanes on top of each other and they are indexed by x. The
Xoodoo state is illustrated in Figure 2.

The permutation consists of the iteration of a round function Ri that has 5 steps: a
mixing layer θ, a plane shifting ρwest, the addition of round constants ι, a non-linear layer
χ and another plane shifting ρeast.

We specify Xoodoo in Algorithm 1, completely in terms of operations on planes
and use thereby the notational conventions we specify in Table 1. We illustrate the step
mappings in a series of figures: the χ operation in Figure 3, the θ operation in Figure 4,
the ρeast and ρwest operations in Figure 5.

The round constants Ci are planes with a single non-zero lane at x = 0, denoted as ci.
We specify the value of this lane for indices −11 to 0 in Table 2 and refer to Appendix A
for the specification of the round constants for any index.

Finally, in many applications the state must be specified as a 384-bit string s with
the bits indexed by i. The mapping from the three-dimensional indexing (x, y, z) and i is
given by i = z + 32(x+ 4y).

3 Xoofff specification and security claim
Xoofff is a deck function obtained by applying the Farfalle construction on Xoodoo[6]
and two rolling functions: rollXc for rolling the input masks and rollXe for rolling the state.
We specify them with operations on the lanes of the state, following the conventions of
Table 1 and Table 3.
The input mask rolling function rollXc updates a state A in the following way:

A0,0 ← A0,0 + (A0,0 � 13) + (A1,0 ≪ 3)
B ← A0 ≪ (3, 0)
A0 ← A1

A1 ← A2

A2 ← B

The state rolling function rollXe updates a state A in the following way:

A0,0 ← A1,0 ·A2,0 + (A0,0 ≪ 5) + (A1,0 ≪ 13) + 0x00000007

B ← A0 ≪ (3, 0)
A0 ← A1

A1 ← A2

A2 ← B

Definition 2 (Xoofff). Xoofff is Farfalle[pb, pc, pd, pe, rollc, rolle] with the following
parameters:

• pb = pc = pd = pe = Xoodoo[6],

• rollc = rollXc and

• rolle = rollXe.
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Figure 2: Toy version of the Xoodoo state, with lanes reduced to 8 bits, and different
parts of the state highlighted.

Table 1: Notational conventions
Ay Plane y of state A
Ay ≪ (t, v) Cyclic shift of Ay moving bit in (x, z) to position (x+ t, z + v)
Ay Bitwise complement of plane Ay
Ay +Ay′ Bitwise sum (XOR) of planes Ay and Ay′
Ay ·Ay′ Bitwise product (AND) of planes Ay and Ay′

Algorithm 1 Definition of Xoodoo[nr] with nr the number of rounds
Parameters: Number of rounds nr
for Round index i from 1− nr to 0 do
A = Ri(A)

Here Ri is specified by the following sequence of steps:
θ :

P ← A0 +A1 +A2
E ← P ≪ (1, 5) + P ≪ (1, 14)
Ay ← Ay + E for y ∈ {0, 1, 2}

ρwest :
A1 ← A1 ≪ (1, 0)
A2 ← A2 ≪ (0, 11)

ι :
A0 ← A0 + Ci

χ :
B0 ← A1 ·A2
B1 ← A2 ·A0
B2 ← A0 ·A1
Ay ← Ay +By for y ∈ {0, 1, 2}

ρeast :
A1 ← A1 ≪ (0, 1)
A2 ← A2 ≪ (2, 8)

Table 2: The round constants ci with −11 ≤ i ≤ 0, in hexadecimal notation (the least
significant bit is at z = 0).

i ci i ci i ci i ci
−11 0x00000058 −8 0x000000D0 −5 0x00000060 −2 0x000000F0
−10 0x00000038 −7 0x00000120 −4 0x0000002C −1 0x000001A0
−9 0x000003C0 −6 0x00000014 −3 0x00000380 0 0x00000012
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Table 3: Notational conventions for specification of the rolling functions
Ay,x Lane x of plane Ay
B An auxiliary variable that has the shape of a plane
Ay,x ≪ v Cyclic shift of lane Ay,x moving bit from x to x+ v
Ay,x � v Shift of lane Ay,x moving bit from x to x+ v, setting bits x < v to 0
Ay,x +Ay′,x′ Bitwise sum (XOR) of lanes Ay,x and Ay′,x′
Ay,x ·Ay′,x′ Bitwise product (AND) of lanes Ay,x and Ay′,x′
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We make the following security claim on Xoofff.

Claim 1. Let K = (K0, . . . ,Ku−1) be an array of u secret keys, each uniformly and
independently chosen from Zκ2 with κ < 384. Then, the advantage of distinguishing the
array of functions XoofffKi(·) with i ∈ Zu from an array of random oracles RO(i, ·), is
at most

uN +
(
u
2
)

2κ + N

2192 + M

2128 +
√
uN ′

2κ/2−1 + N ′

295 . (1)

Here,

• N is the computational complexity expressed in the (computationally equivalent)
number of executions of Xoodoo[6],

• N ′ is the quantum computational complexity expressed in the (equivalent) number
of quantum oracle accesses to Xoodoo[6], and

• M is the online or data complexity expressed in the total number of input and output
blocks processed by XoofffKi(·).

In (1), the first term accounts for the effort to find one of the u secret keys by exhaustive
search, and for the probability that two keys are equal. The second term expresses that
the complexity of recovering the accumulator or any rolling state inside Xoofff must be
as hard as recovering 192 secret bits. The third term expresses the effort to find a collision
in the accumulator.

The fourth and fifth terms only apply if the adversary has access to a quantum computer.
The fourth term accounts for a quantum search (or quantum amplification algorithm) to
find one of the u keys [Gro96, BHMT02]. The probability of success after N ′ iterations is
sin2 ((2N ′ + 1) θ) with θ = arcsin

√
u/2κ. We upper bound this as 2N ′

√
u/2κ. The fifth

term similarly accounts for a quantum search of a 192-bit secret.
Note that we assume that Xoofff is implemented on a classical computer. In other

words, we do not make claims w.r.t. adversaries who would make quantum superpositions
of queries to the device implementing Xoofff and holding its secret key(s).

We restrict keys to the uniform distribution to keep our claim simple and to avoid
pathological cases that would not offer good security. In the multi-user setting, we require
the keys to be independently drawn. If an adversary can manipulate Ki, such as in so-called
unique keys that consist of a long-term key with a counter appended, we recommend
hashing the key and the counter with a proper hash function.

We do support the use of variable-length keys in the multi-user setting, where we
assume that a key of given length is selected uniformly of the strings with that length.
The claimed distinguishing bound then becomes slightly more complex and is given in
Equation (2):

∑
κ∈L

uκN +
(
uκ
2
)

2κ + N

2192 + M

2128 +
∑
κ∈L

√
uκN

′

2κ/2−1 + N ′

295 , (2)

with L the array of the distinct key lengths in use and ul the number of keys of length l.

4 Implementation aspects
In this section, we first report on some possible optimizations, then we give benchmarks
for Xoofff.
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Table 4: Performance of a round of different permutations on Cortex-M3 and -M0
width cycles/byte per round

ARM
bytes Cortex M3 Cortex M0

Keccak-p[1600] 200 2.44 3.64
ChaCha [Ber08a] 64 0.69 2.00
Gimli 48 0.91 2.04
Xoodoo 48 1.10 3.76

4.1 Optimizations
Naturally, the lanes of Xoodoo coincide with words on 32-bit processors. All the operations
in Algorithm 1 can be implemented using bitwise logical operations and rotations. The χ
and θ steps can be implemented in a way that minimizes temporary storage.

The step χ is specified by a number of parallel computations but can be serialized
to allow in place processing with no computational penalty. In particular, the following
sequence of operations performs χ:

A0 ← A0 +A1 ·A2

A1 ← A1 +A2 ·A0

A2 ← A2 +A0 ·A1

For the step θ, one can exploit the fact that the θ-effect E added to a sheet x depends
only on the parity of the sheet at x− 1. One can proceed as follows. First, one computes
the lane x = 1 of the θ-effect E (denoted E1) from the parity of the sheet at x = 0 and
stores it in a temporary 32-bit register R. Then, one adds R = E1 to the sheet at x = 1.
To compute E2 from the parity of the sheet at x = 1, we notice that the sheet at x = 1
does not have its original value anymore, but all the lanes got E1 added to it. Hence, one
can reuse the register R = E1 and add the three lanes of the sheet at x = 1 so that E1
cancels out and R correctly gets the parity before θ. One proceeds similarly to compute
E3 then E0, each time re-using the register that contained the previous lane of the θ-effect.

4.2 Benchmarks
We implemented Xoodoo and Xoofff, and we benchmarked them on different processors:
the 32-bit processors ARM Cortex-M0 and M3 and two mainstream desktop Intel processors,
with the Skylake and SkylakeX architectures. The difference between these last two
processors is that Skylake supports 256-bit vector instructions (AVX2), while SkylakeX
offers 512-bit vector instructions (AVX-512).

On the Cortex-M3, we fit the state in 12 registers and use 2 registers for temporary
variables. Furthermore, we can use the free rotations that this platform provides so that
no explicit rotation instruction needs to be used. The state gets globally rotated, and this
can be corrected at the end, as done by Schwabe et al. [SYY12]. With this technique, one
round takes 49 cycles, so about 1.02 cycles/byte per round, plus 12 cycles for the global
correction at the end. In Table 4, we assume that this global correction and the function
call overhead are amortized on 18 rounds, as this can be done in the expansion phase of
Xoofff.

The Cortex-M0 limits bitwise logical operations to the first 8 registers and does not
support free rotations. This translates into more transfers between the first and the last
registers, as well as explicit rotations. This trend is visible in Table 4, where we display the
computational effort for one round of Xoodoo, as well as the round of other permutations.
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Table 5: Performance of Xoofff on different platforms. The AES figures on Cortex-M0
and -M3 come from [Log, SS]. Skylake refers to an IntelR© CoreTM i5-6500 processor at
3.2GHz and SkylakeX to an IntelR© CoreTM i7-7800X processor at 3.5GHz. In both cases,
the benchmark was performed with the Turbo Boost feature disabled.

ARM Cortex Intel
use case M0 M3 Skylake SkylakeX

Xoofff, 47-byte input and 48-byte output
mask derivation only 1985 781 168 74 cycles

full deck function 5658 2568 504 358 cycles
Xoofff MAC

512-byte input 18232 6846 1301 712 cycles
long input 26.0 8.8 0.90 0.40 c/byte

Xoofff Stream cipher
512-byte output 17799 6510 1185 770 cycles

long output 25.1 8.1 0.94 0.51 c/byte
AES-128 counter mode 121.4 33.2 0.65 0.65 c/byte

Xoodoo’s internal parallelism can be exploited with vector instructions, where one
plane fits in a 128-bit register and several operations can be done plane-wise. Naturally,
vector instructions are particularly well-suited to the parallelism provided by Xoofff’s
Farfalle construction. Here the size of the vector instruction determines the maximum
number of Xoodoo instances that can be computed in parallel: 8 for Skylake (AVX2)
and 16 for SkylakeX (AVX-512). In addition, the AVX-512 instruction set allows arbitrary
three-input bitwise logical operations in one instruction, as well as rotations. The former is
used to implement χ and the parity computation in θ, and the latter speeds up θ, ρeast and
ρwest. This explains why Xoodoo and Xoofff are faster on SkylakeX than on Skylake
even at the same level of parallelism. We present benchmarks of Xoofff in Table 5 with
simple use-cases.

5 Design rationale of Xoodoo
Xoodoo is an iterated permutation that is strongly inspired by Keccak-p: it is bit-
oriented and its round function uses similar operations, see Section 5.1. It prevents
high-probability differential trails and high-correlation linear trails by adopting the wide
trail strategy, see Section 5.2. We discuss in Section 5.3 that Xoodoo enjoys the benefits
of weak alignment like Keccak-p does. These benefits include negligible trail clustering
of trails in differentials or correlations and the inapplicability of classes of attack such as
truncated differentials [BDPA11a]. Moreover, the Xoodoo avalanche characteristics we
report in Section 5.4 show that the combination of wide trail with weak alignment results
in very fast diffusion. We discuss the high degree of symmetry of the round function in
Section 5.5 and the choice of round constants that remove that symmetry in Section 5.6.
Finally, in Section 5.7 we explain how we gravitated to the Xoodoo round function
structure starting from that of Keccak-p and Section 5.8 reports on how we arrived at
the choices of the rotation constants.

5.1 The Xoodoo round function in a nutshell
The Xoodoo round function uses the five step mappings θ, ρwest, ι, χ and ρeast. Four of
them are very symmetric, as they operate on bits of the state in the same way, independently
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of their position. More formally, we say that a given step α is translation-invariant over a
direction (x, y, z) if it commutes with a translation by (x, y, z), i.e., if α◦τ(x,y,z) = τ(x,y,z)◦α,
where τ(x,y,z) is a (cyclic) translation of the state by (x, y, z).

The nonlinear layer χ is an instance of the transformation χ that was already described
and analyzed in [Dae95]. In Xoodoo it operates in parallel on 3-bit columns and as
such forms a layer of 4× 32 3-bit S-boxes. In general, χ has algebraic degree two [Dae95,
Section 6.9], with interesting consequences for the analysis (see Section 5.2.3). For 3-bit
units, χ is involutive and hence this also holds for its inverse. Consequently, r rounds of
Xoodoo or its inverse cannot have an algebraic degree higher than 2r. The χ layer is
translation-invariant in all directions.

The mixing layer θ is a column parity mixer [SD18] that operates as follows. It builds
the parity plane by adding the three planes and computes from this the θ-effect plane by
cloning it, shifting these two copies and adding them. Then it adds the θ-effect to each of
the three planes. The θ layer is invertible, has order 32 and its inverse is dense. Similar to
χ it is translation-invariant in all directions.

The dispersion layer in Xoodoo consists of two steps. As in both the parity plane
computation in θ and in χ the state bits interact only within columns, there is a need
for dislocating the bits of the columns between every application of θ and of χ. For that
reason, after each χ layer, we have the so-called Eastern shift ρeast and after each θ layer
the Western shift ρwest. Both shift the planes, treating them as rigid objects. Clearly, ρeast
and ρwest are translation-invariant in all directions with y = 0, so all horizontal directions.
Their breaking up of the columns results in weak alignment [BDPA11a].

The translation-invariance in horizontal directions of the step mappings results in high
symmetry. We destroy this symmetry by the classical addition of round constants in the
step ι. In trail search the round constants can be ignored and we can take advantage of
this high amount of symmetry.

The round function is defined as ρeast ◦ χ ◦ ι ◦ ρwest ◦ θ. For the study of propagation,
we often rephase the rounds as starting with ρeast and ending in χ and group the sequence
of linear mappings in λ = ρwest ◦ θ ◦ρeast, so the re-phased round function becomes χ◦ ι◦λ.
We call λ the linear layer. When studying propagation through the rounds, we denote the
input to λ of the first round by a0, its output b0, the output of χ by a1 and so on. One
can think of b as before χ and a as after χ. The values of a and b with the same index i
are connected through λ.

The rounds numbering starts from negative numbers with the last round having index 0.
The reason for this is to avoid slide-like attacks when Xoodoo instances are used with
different numbers of rounds in a single construction.

5.2 Difference and correlation propagation
In this section, we report on the difference and correlation propagation in Xoodoo. For a
detailed description of the trail search we refer to Section 7.

5.2.1 Differential probability and trails

In many use cases we are interested in the differential propagation probabilities (DP) of a
cryptographic primitive. In the case of Xoodoo specifically this is essential for the security
of the compression phase of Xoofff. In particular, we would like to characterize the
distribution of DP(∆in,∆out) values over all input differences ∆in and output differences
∆out of our permutation, where DP(∆in,∆out) is the fraction of input pairs with difference
∆in that results in a difference ∆out after the primitive. For iterated cryptographic
permutations and block ciphers, this is a hard problem. However, we can gain understanding
by studying differential trails, as the DP of a differential is the sum over the DP values of
its trails.



12 The design of Xoodoo and Xoofff

An n-round differential trail is the concatenation of n round differentials (ai, ai+1) and
is fully specified by the sequence (a0, a1, . . . , an). We say a pair (α, β) follows a trail when
its initial difference is a0 and the difference after round i is ai for all i ≤ n. We apply the
rephasing introduced in Section 5.1 and use a redundant representation of trails, where we
also include the differences after the linear layer: (a0, b0, a1, b1 . . . , bn−1, an).

Clearly bi = λ(ai) and each differential (bi−1, ai) over χ imposes a number of conditions
on the members of the pair (α, β). We call this number the restriction weight wr. It
follows that the restriction weight of a trail is the sum of the restriction weights of its
round differentials. The restriction weight allows approximating the DP of a trail: If the
conditions are independent, the DP of the trail is 2−wr . We report on the distribution of
trail weights for 3 rounds in Table 6 at the end of this section.

Even in the absence of low-weight trails, one may have differentials (∆in,∆out) with
high DP if there are very many differential trails from ∆in to ∆out, or if there are differential
trails where the DP is much higher than 2−wr due to dependencies between the round
differential conditions. The study of these two aspects is closely related to that of alignment
that we treat in Section 5.3.

A differential over χ is only possible if bi and ai+1 have the same column activity
pattern, i.e., the set of active columns must be the same. As shown in Section 5.2.3 below,
the restriction weight equals twice the number of active columns in bi, or equivalently, in
ai+1. It follows that the restriction weight of an n-round trail (a0, b0, a1, b1, . . . , bn−1, an)
is fully determined by the sequence b1, . . . , bn−1 and is given by wr(a1) +

∑
1≤i<n wr(bi).

We call such a sequence a differential trail core, as in [DA12]:

Q = a1
λ−→ b1

χ−→ a2
λ−→ b2

χ−→ a3
λ−→ . . . an−1

λ−→ bn−1 .

A trail core can be extended to an n-round differential trail by pre-pending a couple a0, b0
with b0 compatible through χ with a1 and appending a value an compatible through χ
with bn−1. It follows that a trail core Q represents in total 2wr(a1) × 2wr(bn−1) trails, all
with the same weight. In our analysis, we bound the weight of trail cores. In the sequel,
we use w(·) as a shortcut notation for wr(·) when clear from the context.

5.2.2 Correlation and linear trail cores

Similarly to differential probability, we are interested in the input-output correlation
properties of a cryptographic primitive f . In particular, we would like to characterize
the distribution of C(u>outf(x), u>inx), i.e., the correlation between linear combinations of
output bits u>outf(x) and linear combination of input bits u>inx over all values of output
(linear) mask uout and input (linear) mask uin. For iterated cryptographic permutations
and block ciphers, this is a hard problem. Here too, we can gain understanding by studying
linear trails, as a correlation C(u>outf(x), u>inx) is the sum over the (signed) correlation
contributions of its trails. In the sequel we will for readability slightly abuse terminology
by speaking about correlations between masks.

An n-round linear trail is the concatenation of n single-round correlations. A correlation
over round i is defined by a mask ai at its output and a mask ai+1 at its input and we
denote its correlation value C(ai, ai+1).

As for differential trails, we use a redundant representation by including the masks
after the linear layer. To make notation consistent with differential trails, we rephase the
rounds as starting with χ and ending with λ. However, as linear propagation is studied
naturally from the output to the input, the trail first encounters λ and then χ of each
round. A mask ai at the output of λ maps to a mask bi = λ>(ai) before λ. In this way ai
fully determines bi via the linear layer λ. Our trails look like (a0, b0, a1, b1 . . . , bn−1, an),
where a0 is the mask after the last round and an the mask before the first round. Note
that the transposition denotes the following operation of a linear mapping: When the
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linear mapping µ is expressed as the multiplication by the matrix M , the transpose
of µ, or µ>, is a linear mapping given by the multiplication by M>. It follows that
λ> = ρ>east ◦ θ> ◦ ρ>west = ρ−1

east ◦ θ> ◦ ρ−1
west since the inverse of a bit transposition matrix is

its transpose.
The correlation contribution of a linear trail is the product of its round correlations.

Similarly to differential trails, we define a correlation weight for a round correlation
wc(bi, ai+1), as C2(bi, ai+1) = 2−wc(bi,ai+1), and we define the weight of a trail as the
sum of the weights of its round correlations. Also here we may have large input-output
correlations (uout, uin) even in the absence of low-weight trails if there are very many linear
trails from uout to uin and their signed correlation contributions combine constructively.
This is again covered by our treatment of alignment in Section 5.3.

The correlation weight of a round correlation (ai, ai+1) is determined by the correlation
weight of the mask couple (bi, ai+1) over χ. This correlation is only non-zero if bi and
ai+1 have the same column activity pattern and, as shown in Section 5.2.3 below, the
correlation weight equals twice the number of active columns in bi, or equivalently, in ai+1.
It follows that the correlation weight of an n-round trail (a0, b0, a1, b1, . . . , bn−1, an) is fully
determined by the sequence b1, . . . , bn−1 and is given by wra1 +

∑
1≤i<n wrbi. This is a

linear trail core.

Q = a1
λ>−→ b1

χ−→ a2
λ>−→ b2

χ−→ a3
λ>−→ . . . an−1

λ>−→ bn−1 .

We also use w(·) as shortcut notation for wc(·) when clear from the context that we are
dealing with a linear trail.

5.2.3 Properties of χ

χ can be defined generically, operating on n bits arranged in a circle. The differential and
correlation propagation properties of this generic χ are non-trivial and have been described
in [Dae95, Section 6.9]. Thanks to the fact that in Xoodoo χ operates on 3-bit circle,
formed by the columns, propagation of differences and masks through it can be specified
very compactly. We do this in Proposition 1.

Proposition 1. At column-level, a non-zero difference b = (b0, b1, b2) at the input and a
non-zero difference a = (a0, a1, a2) at the output of χ are compatible if a · b has odd parity,
or equivalently a0b0 + a1b1 + a2b2 = 1. Likewise, a non-zero mask b = (b0, b1, b2) at the
output and a non-zero mask a = (a0, a1, a2) at the input of χ are compatible if a · b has
odd parity.

We do not give a proof for this proposition as it can easily be checked exhaustively.
Proposition 1 has several corollaries:

Corollary 1. For fixed (difference or mask) a, the compatible (difference or mask) b values
form an affine space of dimension 2 and vice versa.

Corollary 2. The restriction weight of a differential over χ is equal to two times the
number of active columns in b, or equivalently in a.

Corollary 3. The correlation weight of a differential over χ is equal to two times the
number of active columns in b, or equivalently in a.

These three corollaries simplify trail analysis in comparison with that of Keccak-p.
Thanks to the first one both forward and backward extension can make use of linear
algebra. Thanks to the last two corollaries we can replace the weight and the minimum
reverse weight (see [DA12]) by the number of active columns.
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5.2.4 Trail weight distributions

As we will detail in Section 7, we have determined all 3-round trails up to weight 50, both
for linear and differential trails and we list them in Table 6. The minimum weight for both
types of trail is 36. The trails of weight 36 and 38 are simply due to the 3-plane structure
of Xoodoo and are described in Section 7.6. Apart from them, there are no 3-round trails
below weight 44.

Table 6: The 3-round trail cores. The number of trail cores is up to translations along x
and z, see Section 5.5.

Weight # differential # linear
36 4 4
38 3 3
44 3 5
46 24 24
48 31 29
50 55 56

When extending the 3-round trails to 6 rounds, none were found. This results in a
lower bound on the weight of 6-round trails is 2T3 + 4 = 104, for both differential and
linear trails. The lower bounds on trail weights are summarized in Table 7.

5.3 Alignment
In [BDPA11a], Bertoni et al. investigated an aspect of round functions called alignment.
Alignment is related to the propagation of activity patterns through the linear layer of a
round function. We summarize what alignment means in the context of round functions
that have an S-box layer as non-linear layer. The s-bit S-boxes partition the bits of the
state in subsets that are processed by the same S-box, and we call those boxes. When
applying a difference ∆, a mask u or in general any state-sized binary pattern, we can
define its corresponding (box) activity pattern. The activity pattern corresponding to a
concrete pattern specifies for each box whether it contains only zero bits or at least one
bit with value 1. In the former case we call the box passive, in the latter we call it active.
Given an activity pattern a with n active boxes, there are (2s − 1)n concrete patterns a
compliant with a. We will treat activity patterns as sets of concrete patterns and we say
a ∈ a. Clearly, an invertible S-box layer preserves (box) activity patterns of differences
and of linear masks (and those of most other propagating structures). This is not true in
general for a linear layer.

If the linear layer maps the elements of a to many different activity patterns, we say it
has weak alignment. Otherwise, if it maps large fractions of the elements of a to a small set
of activity patterns, we speak of strong alignment. This can be applied to different types
of patterns but the most important are differences and (linear) masks. Their propagation
through the linear layer is governed by different laws but they behave in very similar ways
(see Sections 5.2.1 and 5.2.2). We denote by λ(a) the set of states b with b = λ(a) and
a ∈ a.

Table 7: The weight of the best differential and linear trails (or lower bounds) as a function
of the number of rounds.

# rounds 1 2 3 4 5 6
differential 2 8 36 ≥ 54 ≥ 56 ≥ 104
linear 2 8 36 ≥ 54 ≥ 56 ≥ 104
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Let us illustrate strong and weak alignment by applying the simplest difference ac-
tivity patterns to two of the best known cryptographic primitives: Rijndael [DR02] and
Keccak-p [BDPA11b]. The simplest activity pattern is that with a single active box:

• In Rijndael, boxes are bytes and the linear layer is MixColumns ◦ ShiftRows. Shift-
Rows is a transposition of boxes and therefore moves inputs with equal activity
patterns to outputs with equal activity patterns. This allows us to ignore it and
focus on MixColumns. If we apply an input to the MixColumns matrix with a single
active byte, all 4 output bytes will be active. This is a consequence of the fact that
the MixColumns matrix has branch number 5. So the Rijndael linear layer maps all
28 − 1 = 255 patterns with a single active byte at some position to the same 4-byte
activity pattern, and this is the case for all 16 byte positions of the active byte at
the input.

• In Keccak-p[400], boxes are 5-bit rows and the linear layer λ = π ◦ ρ ◦ θ maps
the 31 single-row patterns to 31 different activity patterns, and this for all row
positions [BDPA11a].

Clearly, for this simple case Rijndael has the strongest possible alignment and Kec-
cak-p[400] the weakest possible. If we consider input activity patterns with multiple active
boxes the distinction is less extreme but the trend is similar.

Strength of alignment manifests itself in the number of trail cores in truncated differen-
tials [Knu94]. A truncated differential is defined by a couple of activity patterns (∆in,∆out)
and is the set of all differentials with input difference in ∆in and output difference in ∆out.
A trail is in (∆in,∆out) if its initial difference is in ∆in and its final difference is in ∆out.
Let us now consider a truncated differential (∆in,∆out) over χ ◦ λ ◦χ. The number of trail
cores in this truncated differential is the number of elements in λ(∆in) ∩∆out. In the case
of weak alignment the elements of λ(∆in) will per definition have many different activity
patterns and hence for any ∆out, the set λ(∆in) ∩∆out will be small. This implies that
truncated differentials, and a fortiori ordinary differentials, will have a small number of
trail cores. In the case of strong alignment λ(∆in) ∩∆out may be large and (truncated)
differentials possibly have many trails. An analogous reasoning holds for correlations and
linear trails, where clustering depends on the alignment of λ> instead.

With a similar (but not the same) reasoning it can be shown that in the case of weak
alignment the conditions imposed by round differentials in a trail tend to be independent,
while strong alignment increases the risk for dependence, as observed in plateau trails of
Rijndael [DR07].

In Xoodoo the boxes are 3-bit columns and an activity pattern has the shape of a
plane. Clearly, the linear layer maps the 23 − 1 single-row patterns (both differences and
masks) to 7 different output activity patterns. This is weak alignment. We experimented
with randomly generating many activity patterns a with n ≤ 10 active columns and for
the vast majority of cases the 7n elements of λ(a) had 7n different activity patterns.

5.4 Avalanche behavior
When reporting on (reduced-round) cryptographic functions, one often mentions criteria
such as full diffusion, avalanche and strict avalanche criterion (SAC) [WT85]. These
criteria are useful in estimating the vulnerability of the cipher to certain attacks. Each of
these criteria is binary: it is either met, or it is not. Typically, for an iterated cipher one
reports on the number of rounds required to satisfy it. In this section we define metrics
that allow evaluating in a more fine-grained way how the function realizes it through the
rounds.
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5.4.1 Definition of avalanche metrics

Concretely, we compute the avalanche probability vector of a cryptographic primitive F for
some input difference ∆: a vector P∆F where component i is the probability that bit i of
the output of F flips due to the input difference ∆. For clarity, we specify the generation of
the avalanche probability vector in Algorithm 2. After M samples, the expected standard
deviation of the elements of P∆F is 1/

√
M . So for high precision, M must be chosen large

enough. In our experiments, we took M = 250000.

Algorithm 2 Computation of the avalanche probability vector P∆F .
Parameters: a transformation F over Zb2, an input difference ∆ and number of samples
M .
Output: the avalanche probability vector P∆F .
Initialize a b-bit vector p of probabilities pi to all zeroes
for M randomly generated states A do
Compute B = F (A) + F (A+ ∆)
for all state bit positions i do
pi = pi +Bi/M

return P∆F = p

From the avalanche probability vector P∆F we extract three metrics, each one measuring
an aspect of the difference at the output of F due to a given input difference ∆. In the
following we write pi for P∆F [i].

Avalanche dependence: number of output bits that may flip, defined as:

Dav(F,∆) = b−
∑
i

δ(pi) ,

with δ(x) equal to 1 if x = 0 and 0 otherwise. This metric generalizes full diffusion,
that is satisfied if Dav(F,∆) = b for all ∆ with Hamming weight 1.

Avalanche weight: expected Hamming weight of the output difference, defined as:

wav(F,∆) =
∑
i

pi .

Clearly wav(F,∆) ≤ Dav(F,∆). This metric generalizes the avalanche criterion, that
is satisfied if wav(F,∆) ≈ b/2 for all ∆ with Hamming weight 1.

Avalanche entropy: uncertainty about whether output bits flip, defined as an entropy:

Hav(F,∆) =
∑
i

(−pi log2(pi)− (1− pi) log2(1− pi)) .

This metric generalizes SAC, that is satisfied if Hav(F,∆) ≈ b for all input differences
∆ with Hamming weight 1.

The three metrics have values in the range [0 . . . b] and for a random transformation F we
have for any input difference ∆: Dav(F,∆) ≈ b, wav(F,∆) ≈ b/2 and Hav(F,∆) ≈ b.

5.4.2 Reporting on the avalanche properties of Xoodoo

We report on the performance of Xoodoo with respect to the three avalanche metrics
described above, for particular input differences and for different number of rounds and
inverse rounds. For each of these metrics, we report on the worst-case values of these



Joan Daemen, Seth Hoffert, Gilles Van Assche and Ronny Van Keer 17

Table 8: Avalanche scores
δa δK δb

stage Dav wav Hav Dav wav Hav Dav wav Hav

a−2 384 191.999 383.999 384 191.963 383.999 384 191.976 383.999
b−2 381 187.636 357.483 384 189.751 376.877 384 191.977 383.999
a−1 293 176.502 224.000 346 183.942 315.999 384 191.991 383.999
b−1 3 2.000 2.000 6 3.999 4.000 279 168.504 220.999
a0 1 1.000 0.000 2 2.000 0.000 133 133.000 0.000
b0 7 7.000 0.000 2 2.000 0.000 1 1.000 0.000
a1 21 14.001 14.000 6 3.999 4.000 3 1.998 2.000
b1 102 64.494 75.000 42 28.005 28.000 21 13.991 14.000
a2 210 94.748 187.205 105 48.497 87.788 63 28.003 50.722
b2 371 181.096 366.199 293 140.463 268.162 207 94.992 182.936
a3 384 188.576 382.609 357 164.850 343.225 321 128.604 293.368
b3 384 191.997 383.999 384 191.938 383.936 384 188.014 381.672

metrics: the minimum value taken over all individual input differences of given type. We
give the results in Table 8.

In Table 8, we follow the convention ai and bi introduced in Section 5.2.1 and we apply
the difference in the stage a0. As bi = λ(ai) with λ linear, applying a difference ∆ at a0 is
equivalent to applying a difference λ(∆) at b0. Clearly, the avalanche scores at stage ai
report on the difference after i Xoodoo rounds. If i is positive, these are forward rounds,
if i is negative, these are inverse rounds. Avalanche scores at stages bi add one linear layer
λ to it. For the differences applied at a0 or b0, we consider:

δa Single-bit differences at a0.

δK Orbitals at the input/output of θ. These are 2-bit differences both at a0 and b0.

δb Single-bit differences at b0.

The avalanche behavior of a cipher gives a good indication of the number of rounds
that certain structural distinguishers can cover. For example, as a rule of thumb, it is hard
to find impossible differentials that span a number of rounds that is more than two times
the number of rounds it takes to have full diffusion. From Table 8 we can see that strict
avalanche is reached after 3.5 rounds in forward direction and after 2 rounds in backward
direction.

5.5 Symmetry
A plane in Xoodoo can be seen as an infinite state periodic in two directions: period 4
in the direction of the x-axis and period 32 in the direction of the z axis. Put otherwise:
it is invariant for translations over any vector in the two-dimensional lattice with basis
vectors (4, 0) and (0, 32). We express this lattice as 〈(4, 0), (0, 32)〉 and we call this the
Xoodoo lattice Ξ. Differences and masks propagate irrespective of the round constants so
that symmetry can be maintained during propagation.

This effect also exists in Keccak-p and is called Matryoshka [BDPA11b]: states (differ-
ences or masks) of Keccak-p[25× 2n] with symmetry ∀(x, y, z) : A[x, y, z] = A[x, y, z+2j ]
map to states of Keccak-p[25× 2n−j ]. The invariance of Xoodoo with respect to all
horizontal translations results in a two-dimensional Matryoshka property. A symmetric
state of Xoodoo can be expressed with respect to a lattice V : ∀(x, y, z) and v ∈ V :
A[x, y, z] = A[(x, y, z) + v]. If we take V the Xoodoo lattice Ξ, this describes a regular
Xoodoo state. If V is a lattice that has Ξ as a sub-lattice, we have a state with additional
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symmetry. Each symmetric state maps to a state in a smaller instance of Xoodoo, with
equal steps χ and variants of ρwest, ρeast and θ.

Each lattice V that has Ξ as a sub-lattice defines a symmetry class SV that forms a
subset of the state values. A state a is in the symmetry class SV if it is invariant with
respect to any translation along V and there exists no lattice V ′ with V ⊂ V ′ such that a
is invariant with respect to V ′. The symmetry classes form a partition of the state space.

We can exhaustively specify the symmetry classes by the basis of their lattices, where
the first element of the basis is of the form (0, 2e) with 0 ≤ e ≤ 5. For a basis with first
vector (0, 2e), the second vector is in the following range:

• (4, 0), (2, 0) and (1, 0): exists for all e

• (2, 2e−1) and (1, 2e−1): exist for e > 0

• (1, 2e−2) and (1, 2e−23): exist for e > 1

We count here 6× 3 + 5× 2 + 4× 2 = 36 lattices, including Ξ itself. The symmetry class
SV of the lattice V = 〈(1, 0), (0, 1)〉 can further be sub-divided in 2 symmetry classes due
the fact that all-0 or all-1 planes give rise to shift-invariance along the y axis. The two
classes are the one with three equal planes or the one with different planes. We can model
this split by extending the lattice vectors by a y-component and adding a third lattice
vector. The 3-equal-plane lattice can now be specified as 〈(1, 0, 0), (0, 0, 1), (0, 1, 0)〉. The
36 other lattices just get the additional vector (0, 3, 0). For readability, we will stick to the
two-dimension representation and will ignore the y component. So there are 37 symmetry
classes in total. For 36 of these classes, the elements exhibit some symmetry within the
boundaries of the Xoodoo state. For one class this is not the case: namely SΞ. This class
contains about 2384 − 3× 2192 of the 2384 state values, so the vast majority.

5.6 Round constants
Thanks to their shift-invariance and invertibility, applying any step mapping of the round
function other than ι to a state in a symmetry class SV results in a state in the same
symmetry class SV . The symmetry classes are hence invariant subsets [LAAZ11]. Moreover,
the union of any subset of the 37 symmetry classes is also an invariant subset. As n
disjoint subsets can be grouped into two non-empty subsets in 2n−1 − 1 ways, all steps
except ι have the same 236 − 1 invariant subsets. This property would carry over to a
round function variant without ι and thus to such a Xoodoo[nr] variant irrespective of
the number of rounds.

We chose the round constants to destroy shift-invariance of the round function and to
remove all these 236 − 1 invariant subsets. For this reason, we chose them to be in SΞ so
that addition of a round constant maps any state not in SΞ to a state in SΞ. As such the
round function cannot have any of the 236− 1 subsets as invariant subsets. As SΞ contains
more than half of the state values, it is not possible to group the symmetry classes into two
equal subsets. This allows us to exclude the case of a subset mapping to its complement.

It may be the case that the effect of the round constant in two (or more) consecutive
rounds would compensate each other. For that reason, we have opted for round constants
with support in a single lane (x, y) = (0, 0) so that the subsequent application of θ will
make it propagate to other lanes. Moreover, to avoid attacks that exploit equality of the
rounds such as slide attacks [BW99], the round constants depend on the round number.

Naturally, Xoodoo[6] is a permutation and for any permutation the union of the
elements in any subset of its cycles forms an invariant subset. For a random permutation
these invariant subsets would not carry enough structure to be exploitable in Farfalle.
Investigating what are the relevant cycle behavior properties of a permutation in the
context of Farfalle and whether such behavior is present in Xoodoo[6] are interesting
topics for future research.
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Finally, for allowing efficient implementation on ARM Cortex-M3 processors, the round
constants span at most 4 consecutive positions along the z axis.

5.7 The making of Xoodoo
For the design of Xoodoo, we started from Keccak-p and aimed for a 384-bit permutation.
We decided to use a nonlinear layer similar to Keccak-p’s χ but on 3 bits instead of 5 to
match the factor 3 in 384. Anyway, χ needs to apply on an odd number of bits, otherwise
it is not invertible. Another option would be to aim for a 320-bit permutation and to stick
to Keccak-p’s χ on 5 bits, but we thought that 384 bits would be better suited.

Next, we opted for 32-bit lanes. Another option could have been to take 128-bit
lanes and rewrite the algorithm into equivalent operations on 32-bit words using the bit
interleaving technique [BDP+12], but we found that a structure with 3 planes of 4× 32
bits was easier to describe.

For the mixing layer, we opted for a column parity mixer, similar to Keccak-p’s θ.
For this layer to have a dense inverse [SD18], θ needs to work on columns of odd size. This
made it clear that both χ and θ would need to work on 3-bit columns.

For dispersion, Keccak-p uses two operations: π that moves lanes and ρ that translates
lanes, both applied before χ, but it has no dispersion layer between χ and θ. In the case
of Xoodoo, however, we need two dispersion layers, to avoid overlaps between the mixing
and the nonlinear layers: one before χ and one before θ. So the idea of using ρeast and
ρwest came early in the design. Another option would have been to have χ operate on
skewed columns, but this was equivalent and just more complicated to describe than the
two dispersion layers. Moreover, it seemed that a ρ mapping that shifted planes rather
than lanes would be sufficient, and so would be simpler than that in Keccak-p. We
definitely liked the idea of three independent rigid objects interacting through χ and θ.

Initially, we thought that we could get away with one of the dispersion layers that
moves only along the x axis, i.e., to only move lanes without any shifts, hence saving on
the number of rotations in the implementation. However, it turned out that this was not
enough, and we therefore added some translation along z to make the work more balanced
between the two ρ steps.

Finally, we fixed all the rotation offsets as described in the next section.

5.8 Choosing the shift offsets in the light of trails
Once we defined the general structure of the Xoodoo, we set out experiments to find good
shift offsets for the linear layer. Specifically, the family we investigated is as in Algorithm 1,
where

• the θ-effect is computed as E ← P ≪ (1, t1) + P ≪ (t3, t2),

• in ρwest, the translation of A2 is A2 ← A2 ≪ (0, w1), and

• in ρeast, the translation of A2 is A2 ← A2 ≪ (e0, e1),

for parameters t1, t2, t3, w1, e0 and e1.
In short, we chose the shift offsets of ρeast, θ and ρwest such that the number of trails

of weight below 44 is minimized, both for differential and linear trails. Actually, only
the so-called inherent trails remain below 44, see Section 7.6. Let us detail the decision
process.

We restricted the offsets in ρwest and ρeast from the start to limit their computational
cost. As only relative shifts count, we start by not shifting plane A0 at all. For the other
two planes, we set out to limit the number cyclic lane shifts as they are expensive on
some platforms. In an early phase, we limited shifts in ρwest and ρeast to shifts along the
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x-axis (with an offset of the form (s, 0)) and shifts along the z-axis (of the form (0, t)). In
particular, A1 would undergo a shift (1, 0) in ρwest and a shift (0, 1) in ρeast and A2 a shift
(0, w1) in ρwest and (e0, 0) in ρeast. In that way, both ρwest ◦ ρeast and ρeast ◦ ρwest shift any
pair of planes with respect to each other over an offset of the form (s, t) with s 6= 0 6= t.
However, our propagation experiments immediately revealed systematic low-weight trails.
Adding a shift of A2 along the z-axis in ρwest made these trails go away, even with the
offset e1 = 8 that is cheaper on some platforms.

For θ, we needed to select the two offsets in the computation of the θ-effect. We
decided to fix t3 = 1, meaning that both affected columns are in the same lane. This
allows computing the θ-effect with just one additional register (see Section 4.1).

Loops are sequences of 32 odd columns such that the θ-effect cancels out, see Sec-
tion 7.3.2 for a more formal definition. Given the number of odd columns, the weight of a
trail containing a loop is well above our target, so this was not considered a problem. Yet,
we required that t1 − t2 is odd, as otherwise loops with fewer than 32 odd columns would
exist.

There remained the choice of the values of t1, t2, w1, e0 in the light of differential and
linear trails. For this part, we refer to Section 7 for the terminology. We proceeded in two
steps. First, we looked for 3-round trail cores where the input to θ is in the kernel in both
rounds. In this case, θ acts as the identity, and this process is thus independent of the
values of t1, t2. This allowed us to select good candidates for w1, e0. Second, we extended
the search to all 3-round trail cores to select good values for t1, t2.

1. The Vortex is an inherent trail core with weight 36 that is in the kernel (see Table 9).
Other trails in the kernel we found were a few trails of weight 46 = 16 + 14 + 16 and
three trails of weight 48 (one with weight profile 18 + 16 + 14, one symmetric along x
with profile 24+16+8, and one symmetric along z with profile 8+16+24). We looked
for couples (w1, e0) with e0 ∈ {2, 3} and w1 ∈ {2, . . . , 31} such that no other trails in
the kernel with weight up to 48 exist. We found generally better results for e0 = 2, so
we decided to fix that value, and the values w1 ∈ {2, 3, 4, 5, 6, 7, 9, 10, 11, 15, 19, 20, 21}
satisfied the criterion.

2. Outside the kernel, i.e., without any constraints on the input of θ, the best trails are
the Single-orbital fan and the θ2-glide. We looked for tuples (t1, t2, w1), with w1 in
the set above, such that no other trails below weight 44 would exist.

After this selection process, we were left with a list of about 20 candidate tuples for
(t1, t2, w1). We finally selected a single tuple from this list on the basis of performance
with respect to avalanche criteria, as illustrated in Table 8.

6 Design rationale of Xoofff
In this section, we first discuss the rolling functions, then give a rationale for the number
of rounds in the different permutations.

Both rolling functions operate as 12-stage feedback shift registers (FSR), with the lanes
mapping to the 32-bit stages. We can define an infinite sequence V of stages Vi with i ≥ 0.
The initial state/mask consists of the first 12 stages and the state/mask after j iterations
of the rolling function consists of stages j to j + 11. The mapping of these 12 stages to the
lanes of the state/mask at iteration t is as follows: Ax,y = Vi with i = t+ y+ 3x. The first
12 stages V0 to V11 are the initial value of the mask/state. All subsequent stages Vt are
defined by a recursion of the type Vt ← F (Vt−1 . . . Vt−12). Clearly, this is the operation of
an FSR.
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6.1 The rolling function rollXc

The rolling function rollXc is a lightweight invertible linear FSR of maximum order operating
on the entire 384-bit state constructed as proposed by Granger et al. [GJMN16]. It has
the following minimal polynomial:

1 + x46 + x92 + x94 + x138 + x142 + x186 + x188 + x190 + x199 + x223

+x238 + x245 + x247 + x269 + x271 + x284 + x286 + x295 + x319 + x330

+x334 + x341 + x343 + x352 + x365 + x367 + x378 + x380 + x382 + x384 .

As a consequence, each non-zero mask value will be in a cycle of length 2384 − 1. The zero
mask value is a fixed point in our rolling function. We think the probability that a user
key K maps to such a mask value is negligible.

The recursion in the stage representation is:

Vj+12 ← Vj + (Vj � 13) + (Vj+1 ≪ 3) .

As Vj+12 depends only on Vj and Vj+1, this allows the parallel computation of up to 11
subsequent iterations. In other words, given that we have Vj to Vj+11, we can compute
Vj+12 to Vj+22 in parallel.

An important purpose of rollXc is to avoid affine spaces of large dimensions. This
aspect is discussed in more detail by Bertoni et al. in [BDH+17].

6.2 The rolling function rollXe

The rolling function rollXe is a lightweight invertible non-linear FSR. It is non-linear to
resist against state-recovery attacks described in [CFG+18] that work if rolle is linear, pb
is Keccak-p with 6 rounds and the adversary has a very long sequence of output blocks.

The recursion in the stage representation of rollXe is:

Vj+12 ← (Vj ≪ 5) + (Vj+1 · Vj+2) + (Vj+1 ≪ 13) + 0x00000007 . (3)

As Vj+12 depends only on Vj , Vj+1 and Vj+2, this allows the parallel computation of up to
10 subsequent iterations, so given Vj to Vj+11, we can compute Vj+12 to Vj+21 in parallel.

The recursion contains a bitwise product of two stages for non-linearity, two linear
terms for diffusion and a constant term to remove symmetry and avoid fixed points. The
algebraic normal form (ANF) of rolliXe(A) is non-linear. Informally, the criterion for rollXe
is that the degree and number of monomials in this ANF grows sufficiently with i to thwart
attacks like the aforementioned ones.

The ANF of rolli+1
Xe (A) can be computed iteratively with i. Every iteration, the non-

linear term in (3) introduces 32 fresh products, contributing to the increase in algebraic
degree. The linear terms and the constant contribute to the increase of the number of
monomials. Due to the fact that bits of Vj are independent of Vj−1 to Vj−10, monomial
growth is relatively slow. Still, as the aforementioned attacks require a very long sequence
of output blocks, we believe this is sufficient.

Since rollXe is non-linear, its selection process is not as straightforward as that of rollXc.
We applied the following tests to arrive at our choice:

Fixed points First we test for cycles of length one (i.e., fixed points), preferring candidates
that have the fewest. Since a single iteration of the rolling function merely moves all
of the lanes by one position and calculates a new lane, the necessary and sufficient
condition for the state to be a fixed point is one where all lanes comprising the state,
including the newly calculated lane, are equal. For 32-bit (and smaller) lane sizes, it
is feasible to enumerate all fixed points simply by testing every possible lane value.



22 The design of Xoodoo and Xoofff

Short cycles Then we test for short cycles induced by various symmetric states, preferring
candidates for which no cycles could be found. The tested states are:

• Alternating bit patterns 10101... and 01010...
• Single bit toggles such as 10000..., 01000..., etc. and complements 01111...,

10111..., etc.
• Single bit toggles like the above, but starting with alternating lanes as

032||132||032||... and 132||032||132||...

Note that having an invertible rolling function is desirable since it is conducive to
longer cycles, and makes the short cycle test more efficient since it obviates the need
to keep track of all states that have been seen. Instead, only the initial state needs
to be remembered; if the state arrives back at the initial state, then a cycle has been
found. In our tests, we ran 106 iterations per pattern and candidate.

Monomial count Then we run simulations to gain an understanding of the number of
monomials present in the algebraic normal form of the rolling function after n
iterations, preferring candidates that contain the greatest number of monomials
in the fewest number of iterations. We repeat this simulation for monomials of
degree two, three, four and greater. We describe the degree two monomial count
test in Algorithm 3; the higher degrees are a generalization of this algorithm except
with a random sampling of monomial coordinates to make the execution time more
practical.

Algorithm 3 Definition of monomials(F, r,M) for monomials of degree two.
Parameters: a b-bit non-linear rolling function F , number of rounds r and number of
samples M
Let δi = 0i||1||0b−i−1

Initialize monomial count p to 0
for i = 0 to b− 1 do
for j = i+ 1 to b− 1 do
for all state bit positions k do
for M randomly generated states A do
Compute B = F r(A) + F r(A+ δi) + F r(A+ δj) + F r(A+ δi + δj)
If Bk = 1, increment p and break out of innermost loop

return p

6.3 Addressing Farfalle and Kravatte attacks
In this subsection we discuss Xoofff in the light of the attack paths on Farfalle and
Kravatte as identified in [BDH+17]. Specifically, our choice for the number of rounds
in pb, pc, pd and pe follows essentially the same rationale as for the number of rounds in
Kravatte Achouffe, with 6 rounds for the four permutations. Moreover, our choice of the
two rolling functions was guided by the experience with Kravatte. We will follow the
canvas of Sections 5 and 7.4 of [BDH+17].

6.3.1 Accumulator collisions

Clearly, as the accumulator has width 384, collisions can be found generically with expected
complexity 2192 Xoofff executions, the so-called birthday bound. Section 5.1 of [BDH+17]
discusses three non-generic methods to achieve collisions.
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The first two methods are finding sets of input blocks that contribute 0 to the accu-
mulator and input block swapping that leave the accumulator unchanged. Both methods
strongly depend on the properties of the mask rolling function. In [BDH+17, Section 5.1]
an extensive analysis provides evidence that a maximum-order linear rolling function with
a characteristic polynomial that is not too sparse has the properties to make these methods
infeasible. This is the case of the mask rolling function rollXc. Note that in Kravatte
the mask rolling function operates on 320 of the 1600-bit mask, thereby leaving 1280 bits
untouched, while rollXc is a maximum-order linear mapping operating on the full 384-bit
state.

The third method is the exploitation of differentials in pc and the choice of Xoodoo[6]
for pc is actually motivated by this method. In this method one applies message pairs
that differ in two blocks by the same difference ∆ and a collision occurs iff the differences
cancel in the accumulator. This happens with probability

CP(∆) =
∑
γ

DP2
f (∆, γ) .

We call CP(∆) the collision probability of ∆. Applying n pairs with the same difference
∆ gives success probability nCP(∆). In general, if we apply a set of messages X =
{X(1), X(2), . . . X(n)}, the success probability of having two message collide is CP(X ) =∑
i,j CP(X(i) +X(j)). Finding a set X that maximizes its collision probability is in general

a hard problem. Section 7.4.1 of [BDH+17] discusses how to find a set X and an estimate
of CP(X ) for Kravatte based on the properties of Keccak-p[6, nr]. When working out
a similar analysis for Xoofff, we found a method to increase the success probability for
generating collisions. We explain our method in the next subsection.

6.3.2 An improved collision generating method

We describe the method for a 6-round permutation, but it can trivially be generalized to
any number of rounds. As in [BDH+17, Section 7.4.1], we make the assumption that the
differentials over 6 and 5 rounds with the highest DP are dominated by a single trail. We
believe this is the case for both of Xoodoo and Keccak-p thanks to weak alignment.
Hence, in a pair of colliding messages, the differences ∆ follow the same trail in both active
blocks to end up in the same difference γ. Denoting trails solely by the differences bi at the
input of χ, (with b0 = λ(∆)) the ones followed by the differences in the two active blocks
is (b0, b1, b2, b3, b4, b5, γ). The value of γ is not important, as long as it is the same in both
trails. There are 2w(b5) possible values for γ, hence applying M/4 two-block message pairs
with input differences ∆ leads to following success probability:

M2−(2+2w(b0)+2w(b1)+2w(b2)+2w(b3)+2w(b4)+w(b5)) .

In [BDH+17, Section 7.4.1] this success probability is slightly increased by embedding
the pairs in a larger structure exploiting multiple input differences that have a high CP.
Our new method does something similar, but with a more spectacular increase of success
probability: it removes the contribution of b0 to the weight altogether.

In Xoofff, we arrange the two-block inputs in an affine space V = U + q that we
specify at the input of χ of the first round, with U a vector space and q an offset. U is the
vector space that spans all the bits in the columns of the two blocks where a1 = λ−1(b1)
is active, and all the other (passive columns) bits are fixed to 0. The number of active
columns in the two active blocks is w(a1) and hence the dimension of V is 3w(a1). Knowing
the basis of U at the input of χ it is straightforward to obtain the basis at the input of λ
by simply applying λ−1 to the basis vectors.

Note that, when applied to Kravatte, we do the same but with rows taking the place
of columns. In Kravatte there is no one-to-one correspondence between the (minimum
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reverse) weight of a1 and the dimension of U , except that it is at most 5 times the minimum
reverse weight of a1.

Since V takes all the possible values in each active column and χ is bijective, the set T
obtained by applying χ to the elements of V is an affine space with the same basis as U
and it can only differ from V in its offset. The point is now that T contains |T |/2 = |V |/2
pairs with difference a1 in both blocks, that we denote as a1||a1. We construct these pairs
as follows. For each element u ∈ T , construct u∗ = u+ (a1||a1). As (a1||a1) ∈ U , we have
u∗ ∈ T . This gives a pair with difference a1||a1. We can do this for any element u ∈ T
leading to a total of |T |/2 pairs. Note that the attacker cannot identify these pairs a priori
due to the presence of the secret masks, but their mere presence in T contributes to the
probability of a collision that is easily identifiable a posteriori.

So, we apply |V | messages and have |V |/2 pairs at the input of χ of the second round
with a difference b1 in both active blocks. We have basically linearized χ of the first round
by applying inputs forming a column-aligned affine space. Clearly, the first difference b0
vanishes from the equation as does γ and our attack is effectively based on the trail core
(b1, b2, b3, b4, b5). When applying M/2 two-block inputs with M/2 a multiple of |V |, the
success probability now becomes:

Pr(collision) ≈M2−(2+2w(b1)+2w(b2)+2w(b3)+2w(b4)+w(b5)) .

With the current trail weight bounds, found in Table 7, we would obtain an upper
bound of Pr(collision) ≈ M2−(2+54+56) = M2−112, higher than the term in our security
claim. However, our 4- and 5-round bounds for Xoodoo are not tight as they are just the
side effect of the absence of trails with weight below 54 and 56 respectively. Improving the
bounds to weights of, say, 15 per round, would be enough to decrease this term well below
M2−128. Our current bounds on 3 and 6 rounds suggest this can be done by adapting our
trail scanning software to 4- and 5-round trails and we consider this future work.

We also consider following more theoretical questions as interesting research problems:

• Is it possible to linearize (some active columns of) the non-linear layer χ of the
second round and, if so, what is the cost in terms of data complexity?

• How does success probability behave for values of M that are not large enough to
form an affine space that covers all active columns of a1?

• Can one increase the success probability by constructing structures with multiple
input differences that are horizontal shifts of each other?

6.3.3 Properties of mask derivation

The purpose of the mask derivation is to derive the 384-bit mask k from a variable-size
key K. To counter attacks that swap input blocks i and i+ δ, the adversary should have
no effective way to predict the value of k+ rollδXc(k) by guessing part of the mask k or key
K. Regarding collision attacks as described in the previous section, it shall be hard for
the adversary to reduce the required dimension of the vector space U by n after guessing
less than n bits of the masks (or linear combinations thereof) of the two active blocks.

We have addressed these requirements by having rollXc operate on the full state and
having the non-linear layer χ after the diffusion mapping θ in the round function.

6.3.4 Attacks solely based on outputs

Clearly, two or more blocks of output give enough information to determine the value of
the output mask k′ and the rolling state, independently of the compression phase or the
input that was applied. Extracting it however should be computationally difficult. When
performing an algebraic attack using two or more output blocks, the adversary must solve
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a system of equations with unknown variables spread over two full instances of Xoodoo[6].
The best reference on attacks on the expansion phase is Chaigneau et al. [CFG+18] that
discusses attacks on a preliminary version of Kravatte that we will denote as Kravatte’.
They used the following techniques:

Meet-in-the-middle They express bits of the intermediate state after q rounds of pe as
polynomials of bits of the rolling state rollje(y) on the one hand and as polynomials
of the output mask k′ on the other, using the knowledge of an output block zj . The
number of monomials in y is limited by the algebraic degree of q rounds of pe, and the
number of monomials in k′ is limited by the algebraic degree of n− q inverse rounds
of pe. As the inverse of χ in Xoodoo has only algebraic degree 2, this technique
would likely work better in Xoofff than in Kravatte’.

Linearization They convert non-linear equations to a system of linear equations by con-
sidering the monomials as independent variables, so-called monomial variables.

Elimination of monomials by exploiting linear recurrence If rolle is linear, the bits of
rollje(y) satisfy a linear recurrence equation. This allows eliminating the monomial
variables in rollje(y) from the system of linear equations above, leaving only monomial
variables in k′.

If rollXe would be linear, the attacks of [CFG+18] would probably work much better
on Xoofff than on Kravatte’. In Xoofff the inverse of χ has lower degree than
in Kravatte’ and it has a smaller state. However, rollXe is not linear and it has been
designed with these attacks in mind.

6.3.5 Attacks using input-output pairs

In [BDH+17, Section 5.4] an attack is described that exploits the outputs of a large set of
inputs that result in an affine space in the accumulator. In a way it skips the application
of pc and rollc, by restricting the value of the input blocks in each position to two values.
If the dimension D of this affine space is equal to the degree d of pe ◦ pd, the sum of the
outputs is independent of the input mask. If D > d this sum is zero and if it D = d− 1,
each bit of the output sum is a linear function of the mask. The former two can lead to a
distinguishing attacks, the latter to key recovery. These attacks impose a lower bound to
the degree of pe ◦ pd. In Xoofff these are 12 rounds of Xoodoo and hence the degree
approaches the maximum value 383.

In [CFG+18] this attack was improved by guessing output mask bits and peeling off 2
rounds at the end. Still, with 12 rounds of Xoodoo even peeling off 4 rounds would still
require applying a set of 2256 chosen inputs.

All remaining attacks on Xoofff require some distinguisher in an Even-Mansour like
structure, where the input and output masks serve as secret keys and the permutation
consists of 18 rounds of Xoodoo. This is the realm of the attacks based on classical
distinguishers such as differential and linear cryptanalysis, truncated differentials, impossi-
ble differentials, boomerang and rectangle attacks, integral cryptanalysis, and of course
invariant subspace and nonlinear invariant attacks. The challenge for the majority of above
attacks is that 18− ε rounds need to be bridged with some distinguisher. In the light of
the fact that Xoodoo reaches SAC after 3.5 rounds, that Xoodoo has weak alignment
and that for 4 rounds or more low-weight differential and linear trails are nowhere to be
seen, finding such a distinguisher would be a major breakthrough. Moreover, note that an
attacker has only access to the forward cipher, as Xoofff, or Farfalle in general, simply
has no inverse.
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7 Trail analysis
In this section, we prove lower bounds on the weight of differential and linear trails using
a computer-aided approach. We base ourselves on the techniques presented by Mella et al.
in [MDA17]. The results are in Section 5.2.4.

7.1 Unifying differential and linear trail search
Given the strong similarity between the study of differential and linear trails, we further
unify the notation by defining:

• λ? = λ, ρearly = ρeast , θ? = θ and ρlate = ρwest for differential trails, and

• λ? = λ>, ρearly = ρ−1
west, θ? = θ> and ρlate = ρ−1

east for linear trails.

This is illustrated in Figure 6.
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Figure 6: Conventions for differential (DC) and linear (LC) trails in the round function.

7.2 General strategy
Thanks to the similarity of our permutation with Keccak-p, we base our approach on
that of Mella et al. in [MDA17]. We exhaustively scan the space of 3-round trail cores and
use that to prove lower bounds on the weight of trail cores up to 6 rounds. The 3-round
trails are in turn obtained by extending 2-round trails forward and backward. We set our
parameters such that all trails up to weight T3 = 50 are generated. Finally, we extend
these trails to 6 rounds with the guarantee that any trail with weight ≤ 2T3 + 2 = 102 will
be found, if it exists.

In a nutshell, the underlying ideas are the following. The weight of a 3-round trail is
w(b0) + w(b1) + w(b2). A naive way to generate all trails up to some weight 6n would be
to generate all patterns b with weight below 2n and then extend forward and backward to
3-round trails. The number of such patterns however grows very fast with the weight, i.e.,
there are

(128
n

)
7n patterns with weight 2n. E.g., for 2n = 10, this is already about 242.

The number of patterns can be drastically reduced by considering symmetry. As both
χ and λ are invariant with respect to translations parallel to the planes, the number of
patterns reduces roughly by a factor 128. But it still grows very fast with the weight.

The weight of a 3-round trail can be expressed alternatively as w(a1)+w(λ(a1))+w(b2)
or as w(a1) + w(a2) + w(λ(a2)). In the former case, two of the three weights are fully
determined by a1 and in the latter case by a2. In both cases, the sum of those two weights
is of the form w(a) + w(λ(a)).

As demonstrated in [MDA17] for Keccak-p, we expect for Xoodoo that the number
of trails with a given weight per round decreases with the number of rounds. In other
words, we expect that the number of 2-round trails with weight below 4n is smaller than
that of 1-round trails with weight below 2n. We will hence scan the space of patterns
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a taking into account the sum w(a) + w(λ(a)) and extend them forward and backward,
thereby dramatically reducing the number of patterns to extend.

Let us detail our approach. A 3-round trail core Q = a1
λ?−→ b1

χ−→ a2
λ?−→ b2 has

weight w(Q) = w(a1) + w(b1) + w(b2) = w(a1) + w(a2) + w(b2). We are looking for all trail
cores such that w(Q) ≤ T3. Among these, either w(a1) ≤ w(b2) + δ or w(a1) > w(b2) + δ,
for some fixed integer δ that we set to δ = 2 in our implementation.

• The former case implies that 2w(a1) + w(b1) ≤ T3 + δ. Such trails can be obtained by
generating all 2-round trails a1

λ?−→ b1 satisfying this inequality and then extending
each of them forward by finding all states a2 compatible with b1.

• The latter case implies that w(a2) + 2w(b2) < T3 − δ, and since all weights are
even, the condition is equivalent to w(a2) + 2w(b2) ≤ T3 − δ − 2. Such trails can
be obtained by generating all 2-round trails a2

λ?−→ b2 satisfying this inequality and
then extending each of them backward by finding all states b1 compatible with a2.

Note that there are two differences between our general approach and that with the
one of Mella et al. First, we do not distinguish between kernel and non-kernel states when
generating 2-round trail cores. Second, we allow the generation of 2-round trail cores to
be unbalanced between those that are extended forward and backward by allowing δ 6= 0.
We noticed that in our implementation the backward extension takes more time than the
forward extension, so by setting δ > 0 we reduce the number of 2-round trails to extend
backward, at the cost of an increase of those to be extended forward, and we reach a more
balanced timing in both cases.

7.3 Generation of 2-round trail cores
We now concentrate on the generation of 2-round trail cores of the form a

λ?−→ b. We do this
by generating state values A at the input of θ?, so that we can control the parity of A and
exploit the properties of θ. From A, we can compute a = ρ−1

early(A) and b = ρlate(θ?(A)).
We do this while bounding the cost function αw(a) + βw(b) for α, β ∈ {1, 2} as explained
above.

7.3.1 Properties of θ

As θ is a linear layer similar to Keccak’s θ function, the following definitions are adapted
from those in [BDPA11b]. Note that, as a linear function, the properties of θ are the same
whether applied on a state absolute value or on a difference, so we just write “value”.

The parity plane (or parity for short) P (A) of a value A is defined as the parity of the
columns of A, namely P (A) =

∑
y Ay. A column is even (resp. odd) if its parity is 0 (resp.

1). When the parity of a value is zero (i.e., all its columns are even), we say it is in the
column-parity kernel (or kernel for short).

The θ-effect of a value A is E(A) = P (A) ≪ (1, 5) + P (A) ≪ (1, 14). A column
of coordinates (x, z) is affected iff the corresponding bit in E(A) is 1; otherwise, it is
unaffected. Note that the θ-effect always has an even Hamming weight so the number of
affected columns is even. We define the θ-gap as the number of affected columns divided
by two.

An odd column at coordinates (x, z) induces two affected columns at coordinates
(x+ 1, z+ 5) and (x+ 1, z+ 14). Adding a second odd column at coordinates (x, z+ 9) will
induce an affected column at (x+1, z+23) and cancel the affected column at (x+1, z+14).
This can be further extended to more odd columns at coordinates (x, z + 9n). Informally,
chaining such odd columns, together with their two induced affected columns, makes up a
run. When all the columns in a sheet are odd, then the θ-effect cancels and there are no
induced affected columns. Informally, we call the set of such odd columns a loop.
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To better formalize this, we can make a change of coordinates on the z-axis and use
the t coordinates instead:

z = 9t ⇔ t = 25z.
An odd column at coordinates (x, t) induces two affected columns at coordinates (x, t− 3)
and (x, t− 2). A run is thus a sequence of odd columns with the same x coordinate and
consecutive t coordinates.

7.3.2 Decomposition of a state value around θ

Given a state value A, a bit at position (x, y, z) (or, equivalently, at (x, y, t)) is said to be
active if its value is 1. Otherwise, it is passive.

We decompose a state value at the input of θ as the sum of basis vectors, called
elements, of three different kinds: the parity loops, the parity runs and the orbitals.

Definition 3. A parity loop (or loop for short) is a state value with 32 active bits in a
sheet, each in a distinct column.

Definition 4. A parity run (or run for short) is a state value composed of 1 ≤ l ≤ 31 active
bits in l different columns of a sheet x with consecutive t coordinates (t0, t0+1, . . . , t0+l−1),
and of zero or two active bits in each of the (affected) columns (x + 1, t0 − 3) and
(x+ 1, t0 + l − 3).

Definition 5. An orbital is a state value with two active bits in the same column.

Loops and runs generate odd columns, while runs also have affected columns. From
the decomposition of the value before θ, the value at the output of θ is easy to determine:
A loop and an orbital are invariant through θ, and a run gets the bits in its two affected
columns complemented through θ, while the remaining columns remain unchanged. Since
θ is linear, the state after θ can be decomposed in the images of the elements through θ,
with the same coefficients. So the decomposition into elements tells as much about the
state before as the state after θ.

Any state value can be expressed as the bitwise sum of elements and, as such, they
generate the full state space. However, this decomposition is not unique. To make the
decomposition unique, we rely on a number of conventions. These conventions also help
bounding the weight of the states obtained when combining these elements by avoiding as
much as possible turning an active bit back to passive on either side of θ. The conventions
are as follows. First, all odd columns stem from a unique loop or run. Then, an orbital
can only be added to an empty column or to an unaffected odd column with a single active
bit at y = 0. Finally, an affected odd column must follow the odd-0 convention:

Definition 6. The odd-0 convention says that an affected odd column must be represented
as the sum of an unaffected odd column with a single active bit at y = 0 (of a loop or of a
run) and of an affected even column (of a run) chosen accordingly. Figure 7 illustrates this.

Lemma 1. The value A at the input of θ can be uniquely decomposed as a sum of elements.

Proof. Let us define an algorithm that determines the last element of the state, then
removes it by adding it back to A. The algorithm can then be applied recursively until all
bits are passive.

The algorithm takes as input a value A at the input of θ, computes the parity P (A)
and the θ-effect E(A) and then proceeds as follows.

1. First, it looks for the unaffected column with two or more active bits with the highest
coordinates using [x, z] lexicographical ordering. If it exists, the algorithm outputs
an orbital O by taking the two bits with the highest y coordinates in that column,
adds back O to A and recursively starts again.
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= + = +

= + = +

Figure 7: The odd-0 convention, illustrated. Here, each rectangle represents a column
and each circle a bit. A bit can be either passive (white) or active (black). In an affected
column, the left half shows the value before θ?, while the right half shows the value after
θ?. The position y = 0 is at the bottom.

2. Otherwise, it looks for the odd column with coordinates (x, t) such that (x, t− 1)
is even and with the highest coordinates using [x, z] lexicographical ordering. If it
exists, the algorithm counts how many consecutive columns are odd, until (x, t+ l)
is even. It then builds a run R by taking from A the l active bits in each of the
l columns from (x, t) to (x, t + l − 1), plus some bits in the affected columns at
(x+ 1, t− 3) and (x+ 1, t+ l − 3):

(a) For each unaffected odd column, the run takes the unique odd active bit.

(b) For each affected odd column, it follows the odd-0 convention, i.e., the run is
defined with an active bit at y = 0, independently of what bit is actually active
in A.

(c) If the column at (x+ 1, t− 3) is affected even, the run takes the zero or two
active bits in that column.

(d) If the column at (x+ 1, t− 3) is affected odd, it follows the odd-0 convention,
i.e., the run takes the zero or two active bits such that flipping those bits leaves
a single bit at y = 0 in that column.

(e) The last two steps are repeated for the column at (x+ 1, t+ l − 3).

It outputs the obtained run R, adds it back to A and recursively starts again.

3. Otherwise, it looks for the sheet with 32 odd columns with the highest x coordinate.
If it exists, the algorithm outputs a loop L by taking from A the 32 active bits in
each of the 32 columns, adds back L to A and recursively starts again.

4. Otherwise, it returns none.

The algorithm is deterministic, so the output is uniquely determined by the value of A.
It remains to show that the algorithm always terminates, and that it stops iff A = 0.

When step 1 outputs an orbital, it strictly decreases the number of active bits. If step 1
does not output an orbital, it means that all the unaffected columns have either zero or
one active bit.

When step 2 outputs a run, it strictly decreases the number of odd columns (by l ≥ 1)
and of affected columns (by 2). Furthermore, the affected columns that are removed leave
zero or one active bit behind, thanks to the odd-0 convention. If step 2 does not output a
run, it means that there are no more affected columns and that all columns contain at
most one active bit. In such conditions, a state is either passive or contains only loops.

When step 3 outputs a loop, it strictly decreases the number of odd columns (by 32).
If step 3 does not output a loop, it must be passive so A = 0.
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7.3.3 Breaking down to bit-level units

To construct differential and linear trails, we use the tree traversal technique as defined
by Mella et al. in [MDA17, Section 3]. We represent a state value as a set of units, each
consisting of a pattern of active bits. By defining an ordering of units, a set of units
becomes a unit list. A unit list can be constructed progressively by appending a unit at
the end. Finally, we need to define a cost function and a subtree bounding function to
define the set of state values we are interested in and to be able to prune the search.

Compared to the choice of more macroscopic units by Mella et al. for the bounds in
Keccak [MDA17], we decided to define units that activate at most one bit before θ and
at most one bit after θ. More specifically, a unit represents an active bit both before and
after θ in unaffected columns, or a bit that is active either before or after θ in affected
columns. This allows a finer-grained bounding function, where the decision to set a bit
can every time lead to pruning the tree and thus potentially save processing time. We
thus break down loops, runs and orbitals in a number of bits, called bit units.

A bit unit is first characterized by the type of the element it composes, and that can
be a loop, a run or an orbital. The ordering is primarily on the type and such that loops
come first, then runs and finally orbitals:

loop ≺ run ≺ orbital.

• A loop-typed bit unit represents an active bit in a loop and is characterized by its
(x, y, z) coordinates. After the type, the ordering is lexicographic on [x, z, y]. Since a
loop is bound to a given sheet x, all the bit units composing a loop are consecutive
in the unit list.

• A run-typed bit unit represents an active bit in an odd column or in an affected
column of a run. It is first characterized by the (x0, z0) (or, equivalently, (x0, t0))
coordinates of the first odd column. We then distinguish the different bit units
by their rank r and subrank s, and either by their y coordinate or their value v.
After the type, the ordering is lexicographic on [x0, z0, r, s, y, v] so that the bit units
composing the same run are consecutive. The different bit units are as follows, in
this order:

– For the affected column at (x0 + 1, t0 − 3), there are three bit units with rank
r = 0 and subrank s ∈ {−3,−2,−1}. Since these units represent what happens
in an affected column, they are also characterized by a value v ∈ {before, after}
telling whether the bit is active before or after θ. The effective position of the
active bit is (x0 + 1, s+ 3, t0 − 3).

– For each odd column, there is bit unit representing an active bit at (x0, y, t0 + r)
for rank r ∈ {0, 1, . . . , l − 1}, subrank s = 0 and y coordinate. These bits are
active before and after θ.

– For the affected column at (x0 + 1, t0 + l − 3), there are again three bit units
characterized by their value v and, this time, with rank r = l − 1 and subrank
s ∈ {1, 2, 3}. The effective position of the active bit is (x0 + 1, s− 1, t0 + r − 2).

• An orbital-typed bit unit represents an active bit in an orbital and is characterized
by its (x, y, z) coordinates. After the type, the ordering is lexicographic on [x, z, y]
so that the bit units composing an orbital are consecutive.

As already said, the ordering of units is defined such that the units that compose an
element are consecutive in the unit list. Additionally, the ordering is chosen in agreement
with Lemma 1. That is, for a state value represented as a unit list, the last units correspond
to the element returned by the algorithm in the proof of Lemma 1.
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7.3.4 Lower bounding the cost

Recall that we are interested in the cost function αw(ρ−1
early(A)) + βw(ρlate(θ?(A))) for

α, β ∈ {1, 2} as explained above.
In a unit list, we distinguish between stable and unstable bits. A stable bit is an active

bit that is guaranteed to stay active even if more bit units are added to the unit list. We
characterize stable bits as follows.

• If the unit list does not contain orbital-typed bit units, an active bit in a loop or in
a run is stable iff its y coordinate is not zero.

• If the unit list contains at least one orbital-typed bit unit, all active bits are stable.

The rationale is as follows. If an active bit in a loop or in a run is added to an
unaffected column, it is active both before and after θ. But if the column it sits in becomes
affected due to the addition of a run, the active bit is removed from either before or after θ.
Similarly, a bit in an even affected column is active at a given side of θ, but a new active
bit from a loop or a run can be added to it, effectively changing the side where the old bit
is active. However, the odd-0 convention prevents an affected column from being added to
an odd column where the active bit is at y > 0 and, vice-versa, it prevents an active bit of
a loop or a run with y > 0 from being added to an affected column. So once an active bit
with y > 0 is added, it cannot be removed. Furthermore, an orbital is stable and comes
after other types of elements, so once we start adding orbital-type bits, all the bits are
stable.

The subtree bounding function starts by counting the contribution of the stable bits
after translations through ρ−1

early and ρlate. An active bit contributes the weight by 2 only
if it lands in a column without any active bits yet. Then the subtree bounding function
lower-bounds the contribution of the unstable bits. Notice that an unstable bit will yield
an active bit at least in either side of θ. So the subtree bounding function counts the
minimum of the contribution of an active bit before or after θ. It also marks the column
where the unstable bit lands, on both side of θ, so that the contribution in a given column
cannot be counted more than once.

7.4 Extension to 3 and 6 rounds
For every 2-round trail core produced, we extend it forward or backward according to the
general strategy outlined in Section 7.2 above.

The extension exploits the fact that the compatible states form an affine space, as
shown in Corollary 1. Let us illustrate this for the forward extension, as the backward
extension enjoys the same property and the description can be easily adapted to that case.
For each active column at the input of χ, we form an affine space of the compatible states
at the output of χ. We do this for all active columns, resulting in a description of an
affine space at the output of χ: O + 〈B1, B2, . . . , Bw〉. We then transform the offset and
basis vectors through λ? to get a description of the affine space at the input of the next χ,
namely O′ + 〈B′1, B′2, . . . , B′w〉 with O′ = λ?(O) and B′i = λ?(Bi). This way, we can more
easily compute (and bound) the weight that is added to the trail when extending it.

To help bound the weight of the trail when extending it, we first triangularize the
basis vectors (Bi). The triangularization defines a nested sequence of sets (Bi) of bit
positions such that i < j ⇒ Bi ⊃ Bj and Bi has no bits 1 outside of Bi. The search
through the affine space also uses the technique of tree search of Mella et al. [MDA17].
Here, the units represent the basis vectors and their ordering is according to their indexes,
i.e., i < j ⇔ Bi ≺ Bj . This way, if the current unit list ends with Bi, we can lower bound
the weight of all its descendants given that all bits outside of Bi+1 cannot be changed.
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Table 9: Inherent trails
name θ-gap profile weight profile #
Vortex |0|0| 12 + 12 + 12 = 36 1
Single-orbital fan |0|2| 4 + 4 + 28 = 36 3
θ2-glide |1|2| 10 + 6 + 22 = 38 3

A 6-round trail core Q as

Q = a1
λ?−→ b1

χ−→ a2
λ?−→ b2

χ−→ a3
λ?−→ b3

χ−→ a4
λ?−→ b4

χ−→ a5
λ?−→ b5

has a weight of w(Q) = w(a1)+
∑5
i=1 w(bi). If w(Q) ≤ 2T3 +2 = 102, then w(a1)+w(b1)+

w(b2) ≤ T3 or w(b3) + w(b4) + w(b5) = w(a4) + w(b4) + w(b5) ≤ T3. So if such a trail exists,
we must find it when extending all 3-round trails of weight at most T3 both backward and
forward.

7.5 Concrete experiments
We performed the generation of 2-round trail cores and their extension to 3 rounds together.
The search for both differential and linear trails of 3 rounds took about 16 core×days on a
desktop PC equipped with an IntelR© CoreTM i5-6500 CPU. We ran the computation on
four parts in parallel, split between linear and differential trails and between the forward
and backward extensions, with the longest part taking 5 days. The extension to 6 rounds
took a few minutes.

The source code of the program to generate and extend trails is available as open source
software [DHAK18b]. We wrote it in C++ and used parts of KeccakTools [BDP+17],
in particular for the generic tree search code from Mella at al. [MDA17]. We improved
the generic tree search code slightly, then instantiated it with the appropriate classes for
the generation of 2-round trail cores. The resulting trail cores listed in Table 6 are also
given, with differential and linear trails split in different files [DHAK18b]. Each set of
trails is provided both in a format easily parsable by the software and in a visual text
representation.

7.6 Inherent 3-round trails
We now describe trails that are inherent to the very structure of Xoodoo.

Definition 7. We say that a trail is inherent if a trail with the same structure exists
for any variant of Xoodoo with θ that is a column parity mixer, with χ that allows
one-active-bit patterns to propagate to the same one-active-bit pattern, and with ρwest
and ρeast that consist of plane shifts.

For convenience, we restrict to the case where one odd column in θ makes 2 columns
affected, but this could be easily generalized to another number of affected columns, and
the number of active bits in the sequel would need to be adapted. Table 9 shows the three
types of inherent trails with weight up to 38 and Figure 8 schematically depicts them.

In all three types of inherent trail, the nonlinear layer χ of the middle round acts as the
identity. This means that we can replace ρearly ◦ χ ◦ ρlate with ρearly ◦ ρlate, and we denote
it by ρboth. Moreover, in the nominal case, all active bits in the three χ layers appear in
different columns, hence each making one column active. So, we study trails (a0, a

′
0, a1, a

′
1)

that propagate through θ? ◦ ρboth ◦ θ? with a′0 = θ?(a0)), a1 = ρboth(a′0) and a′1 = θ?(a1):

Q = a0
θ?−→ a′0

ρboth−→ a1
θ?−→ a′1 .
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Figure 8: Schematics of three types of inherent trails: vortex (top), single-orbital fan
(middle) and θ2 glide (bottom).
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The trail weight equals the sum of the Hamming weights of a0, a′0 (or equivalently a1 as
ρboth is a mere bit transposition) and a′1 times 2. Note that the value of a0 determines the
full trail.

In the first inherent trail the input to θ in both rounds is in the kernel making it vanish.
In such trails, a′0 is called a vortex in [DA12] and it is a state that is in the kernel and
remains so after applying ρboth . Clearly, as all patterns in the trail have the same Hamming
weight, the trail weight is 6 times the Hamming weight of a0. Vortices are completely
determined by ρboth, and more specifically, by its (two-dimensional) translation offsets for
the planes 1 and 2. Let us denote these by u1 and u2. Due to the fact that ρboth treats the
three planes as rigid structures, there exists a vortex consisting of 3 orbitals, that ρboth
maps to 3 orbitals. In particular, a′0 and a1 have active bits in in the following positions:

• Plane 0: in 0 and u1 − u2 before ρboth, then in 0 and u1 − u2 after ρboth

• Plane 1: in 0 and −u2 before ρboth, then in u1 and u1 − u2 after ρboth

• Plane 2: in −u2 and u1 − u2 before ρboth, then in 0 and u1 after ρboth

Note that the existence of such a 3-orbital vortex is independent of the dimension of the
rigid structures (in our case planes) and so is the weight of the corresponding 3-round
trails: 36.

A single-orbital fan is a trail that has two active bits in the same column in a0. Since a0
is in the kernel, a′0 = a0. These bits propagate through ρboth, where they land in different
columns before θ?. They then expand to 7 bits each after θ? in a′1, and these 2× 7 bits
can land in 14 different columns. Since a0 and a′0 contain 2 active bits and a′1 contain 14
active bits, the total weight is thus 36.

A θ2-glide is a trail with the following structure:

• In a0, the state is made of one active bit alone in a column and of two orbitals
located in the affected columns induced by the first active bit.

• In a′0, the two orbitals are replaced by a single active bit each, in addition to the
first active bit that remains. We choose the positions of the bits in a0 such that they
all arrive in the same plane in a′0.

• Since all the active bits are in the same plane, ρboth acts as a global shift of the
whole state, which we can ignore in this discussion and consider that a1 = a′0.

• Finally, a′1 = θ?(a1) = θ?(θ?(a0)) up to the global shift. The (θ?)2 operation applied
to the single active bit of a0 induces 4 affected columns, two going from 1 to 2 active
bits, and two going from 0 to 3 active bits, so with a total of 1 + 4 + 6 = 11 active
bits.

Since a0 contains 5 active bits, a′0 contains 3 active bits and a′1 contains 11 active bits, the
total weight is thus 38.

8 Conclusions and perspectives
In this paper, we have introduced a novel permutation called Xoodoo and a deck function
called Xoofff for concrete encryption and authentication applications.

From a cryptographic point of view, we think that the chosen structure and set of
operations lead to a design with nice properties. It is easier to analyze the differential and
linear trail propagation than on Keccak, and we could make sure that the chosen rotation
constants avoid low-weight trails that are not inherent to the structure. Our permutation
has a dispersion layer between every mixing and nonlinear layer, whereas in Keccak-p
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the mixing layer follows the nonlinear layer immediately, causing suboptimal intra-slice
effects. This may explain why the minimum weight over 3-round trails is 36 for Xoodoo,
while it is 24 for differential trails in Keccak-p[400] [MDA17]. Furthermore, there is no
known bounding of linear trails in Keccak-p[400].

From an implementation point of view, we expect that Xoodoo shares with Keccak-p
highly efficient hardware implementations (and much smaller than Keccak-p[1600]) and
efficient protections against side-channel attacks. Looking back at Table 5, the performance
of Xoofff on Skylake(X) processors is excellent, competing with that of the AES in
counter mode although the latter benefits from hardware acceleration and the former uses
only general-purpose instructions. On 32-bit processors, Xoofff is much faster than the
AES in counter mode. As for the performance on ARM Cortex processors as reported in
Table 4, we notice that the performance per round of Xoodoo on ARM Cortex-M3 is
similar to that of Gimli, while Gimli is significantly faster on Cortex-M0. However, these
values have to be taken with care, as each permutation does not need the same number of
rounds when used in a given mode to yield a secure scheme. For instance, Xoodoo needs
6 rounds to guarantee the absence of trails with weight less than 104, while Gimli would
need 16 rounds as suggested by [BKL+17, Table 1].

For future work, defining Xoodoo variants with other dimensions can be useful. For
constrained platforms, it could be interesting to have permutations with smaller widths.
If we take the birthday bound on the permutation width as the limiting factor and we
consider the minimum processor word length to be 32 bits, two particular widths come
to mind: 288 = 32× 3× 3 for targeting 128-bit security and 192 = 32× 2× 3 for 80-bit
security. This can be realized by taking planes consisting of 3 and 2 lanes respectively. On
the other hand, one can also have “planes” consisting of only a single lane of length 96
and 64 respectively. Efficient implementations on 32-bit platform can then be derived by
rewriting the operations using bit interleaving [BDP+12]. Towards larger permutations, a
768-bit variant with planes consisting of 4 lanes of 64 bits each would be interesting for
sponge-based hashing.
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A Constants for any number of rounds
We here detail how the round constants are constructed and, following the formula, how
to compute them for any number of rounds.

The round constants Ci are planes with a single non-zero lane at x = 0. We specify
the value of the lanes at x = 0 in the round constants as binary polynomials pi(t) where
the coefficient of ti denotes the bit of the lane with coordinate z = i. We define pi(t) in
terms of a polynomial qi(t) and an integer si in the following way:

pi(t) = tsi
(
qi(t) + t3

)
with qi(t) = ti mod 1 + t+ t3 and si = 3i mod 7 .

https://realtimelogic.com/products/sharkssl/Cortex-M0/
https://realtimelogic.com/products/sharkssl/Cortex-M0/
https://ko.stoffelen.nl/talks/20170119-esc.pdf
https://ko.stoffelen.nl/talks/20170119-esc.pdf


38 The design of Xoodoo and Xoofff

The sequence of polynomials qi(t) has period 7 and the sequence of offsets si has period
6. It follows that the sequence of round constants Ci(t) have period 42. An instance of
Xoodoo with nr rounds uses the round constants with indices 1 − r to 0. We list the
round constants with indices −11 to 0 in Table 10.

Table 10: The round constants with indices -11 to 0
i qi si ci in hex

−11 1 + t 3 t3 + t4 + t6 0x00000058
−10 t+ t2 2 t3 + t4 + t5 0x00000038
−9 1 + t+ t2 6 t6 + t7 + t8 + t9 0x000003C0
−8 1 + t2 4 t4 + t6 + t7 0x000000D0
−7 1 5 t5 + t8 0x00000120
−6 t 1 t2 + t4 0x00000014
−5 t2 3 t5 + t6 0x00000060
−4 1 + t 2 t2 + t3 + t5 0x0000002C
−3 t+ t2 6 t7 + t8 + t9 0x00000380
−2 1 + t+ t2 4 t4 + t5 + t6 + t7 0x000000F0
−1 1 + t2 5 t5 + t7 + t8 0x000001A0

0 1 1 t1 + t4 0x00000012
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